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Abstract: Unmanned surface vehicles (USVs) have wide applications in marine inspection and moni-
toring, terrain mapping, and water surface cleaning. Accurate and robust environment perception
ability is essential for achieving autonomy in USVs. Small object detection on water surfaces is
an important environment perception task, typically achieved by visual detection using cameras.
However, existing vision-based small object detection methods suffer from performance degradation
in complex water surface environments. Therefore, in this paper, we propose a millimeter-wave
(mmWave) radar-aided vision detection method that enables automatic data association and fusion
between mmWave radar point clouds and images. Through testing on real-world data, the proposed
method demonstrates significant performance improvement over vision-based object detection meth-
ods without introducing more computational costs, making it suitable for real-time application on
USVs. Furthermore, the image–radar data association model in the proposed method can serve as a
plug-and-play module for other object detection methods.

Keywords: unmanned surface vehicle; object detection; visual–radar fusion

1. Introduction

In recent years, unmanned surface vehicles (USVs) have been gradually used in
various fields, such as autonomous surface transportation [1], water quality testing [2],
autonomous surface cleaning [3], etc. To ensure that USVs complete their tasks safely
and intelligently, an excellent and robust perception system is essential. Among all the
perception tasks, object detection plays an important role in both safe navigation and
special task completion, and small object detection causes the most challenges, for example,
the small reefs and other small obstacles that may affect USVs or small floating wastes that
a cleaning USV needs to collect.

Recent development in computer vision makes vision-based object detection one of the
most cost-effective solutions for the detection system of USVs. However, for vision-based
small object detection on water surfaces, many can be missed and falsely detected due to
the water surface environments. For vision-based small object detection on water surfaces,
on the one hand, as the sky and water surfaces occupy the most area of the image, the
reflection of sunlight may cause overexposure. The small objects can be shaded by the halo
or fused with the background, which can cause miss detection. Besides, the reflection of
objects in the surrounding environments also disturbs the detection system and causes
false detection. In addition to the camera, LiDAR is also widely used for object detection
as it can provide precise location and shape information of the objects [4]. However, for
the small object detection on water surfaces, for LiDAR with a low number of beams, the
possibility of LiDAR beams falling on small objects is low and the objects might be unstable
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in sequential frames. In addition, dense fog is easy to appear on the water surface, which
can disturb the propagation of LiDAR and lead to more clutter points [5].

With the development of integrated circuits, the low-cost single-chip 77 GHz millimeter-
wave (mmWave) radar is gradually used in autonomous vehicles and mobile robots recently.
The mmWave radar can provide measurements of the range, azimuth, and Doppler velocity
of the objects. Besides, benefiting from the inherent propagation characteristics of 77 GHz
electromagnetic wave, the mmWave radar shows better robustness to harsh weather condi-
tions and lighting conditions compared to camera and LiDAR [6] and can be used during all
types of weather and all day. Despite this, there are still some challenges in using mmWave
radar for small object detection on water surfaces. The angular resolution of mmWave
radar point clouds is relatively low and the points of the objects are usually more sparse [7].
Furthermore, the semantic information of mmWave radar point clouds is often insufficient,
making it difficult to accurately discern the types of targets.

Therefore, for small object detection on water surfaces, vision and mmWave radar
data complement each other effectively, and fusion of vision and radar can improve the
detection performance. Compared to other levels of fusion, decision-level fusion has greater
robustness and adaptability, and the fused results are also more interpretable. However,
there are two challenges in the decision-level fusion of camera and radar in USVs scenes:

• Extrinsic Calibration. To perform decision-level fusion, the spatial relationship be-
tween the mmWave radar and camera needs to be found, which is referred to as
extrinsic calibration. Due to the characteristics of glittery and sparsity of mmWave
radar point clouds, extrinsic calibration between mmWave radar and cameras typically
requires specific markers, and the calibration process is usually complex. Current
extrinsic calibration is mainly conducted offline with human assistance. However,
the positions of sensors on the platform may change due to vibrations, shocks, or
structural deformations of USVs, leading to some degree of variation in the extrinsic
parameter between the mmWave radar and the camera.

• Data association. Traditional methods tend to manually craft various distance metrics
to represent the similarities between vision and mmWave radar data. However, these
manually crafted metrics are not adaptable when the data from different sensors
degrade, and setting the parameters is also challenging.

In this paper, we propose a water surfaces small object detection method based on the
decision-level fusion of vision and mmWave radar data. Compared to traditional methods,
the proposed method has the following advantages: (1) With an initial offline calibrated
extrinsic parameter, the proposed method is adapted to changes in extrinsic parameters
to some degree during USVs’ online operation; (2) The method has lower computational
complexity and can run in real time on embedded systems; (3) The method achieves a
higher detection accuracy in the water surface small object detection task.

The contribution of this paper mainly lies in the following aspects:

• We propose a new mmWave radar-aided visual small object detection method.
• We propose a new image–radar association model based on the metric learning model,

which can achieve a robust association of mmWave radar data and images with
inaccurate extrinsic parameters to some degree.

• We test the proposed method on real-world data, and the results show that our method
achieves significantly better performance than current vision detection methods.

The detailed composition of this paper is listed as follows. In Section 2, we discuss the
related works, including object detection on water surfaces and the visual–radar fusion-
based detection method. In Section 3, we introduce the proposed mmWave radar-aided
visual small object detection method in detail. Section 4 gives the results of experiments
based on real-world data. Finally, Section 5 concludes this paper.
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2. Related Works
2.1. Object Detection on Water Surfaces

Attention from researchers has been paid to object detection on water surfaces.
Hammedi et al. [8] proposed a relevant dataset for inland water navigation that con-
tains categories of riverside, vessel, person, etc. Moosbauer et al. [9] proposed a benchmark
for object detection in maritime environments based on the Singapore Marine Dataset [10]
to support relevant research. Vision-based detection methods are the ones that are mainly
used for water surface object detection. For example, the method proposed in [11] is based
on MobileNet for feature extraction and SSD for fast multi-scale detection to achieve real-
time marine object detection of high-speed USVs. Zhang et al. [12] proposed a method for
marine object detection and tracking based on improved YOLOv3 and used their method
on a real USV experiment platform. The authors of [13] fused DenseNet in YOLOv3 for
robust detection of marine objects under various weather conditions.

The vision-based methods for object detection on water surfaces are easily disturbed
by weather and lighting conditions. Besides, the methods mainly aim at detection and
cannot provide relative location information of the object. Therefore, methods based
on the fusion of LiDAR data and images are proposed to improve detection accuracy
and support object localization. Wu et al. [14] proposed a 3D object detection method
based on the fusion of image and LiDAR point cloud for USVs in marine environments.
They used a two-stage network which contains the proposal generation network and the
deep fusion detection network. Cardillo et al. [15] analyzed the detection performance of
radars with different frequency bands for USVs obstacle avoidance tasks, providing a
valuable reference for the perception applications of mmWave radar in USVs. Im et al. [16]
conducted object detection and tracking in USVs using frequency-modulated continuous
wave (FMCW) radar with improved density-based spatial clustering of applications with
noise (DBSCAN). Ha et al. [17] achieved autonomous obstacle avoidance tasks of USVs
based the on marine radar. Stanislas et al. [18] utilized the fusion of LiDAR point clouds,
camera, and 2D sparse radar point clouds for robust detection and classification in marine
environments. The fusion-based methods can provide location information of the object
in addition to object detection.

Current water surface object detection research mainly aims at maritime object detec-
tion. The objects are mostly vessels and other objects which are relatively big. However, for
USVs, there are many other small objects that may cause dangers, such as small fountain
nozzles, or are the searching targets of USVs, such as floating wastes. Besides, the Lidar
that can be applied to complex water body environments is relatively expensive.

2.2. Visual–Radar Fusion Detection

Using solely visual information for object detection is susceptible to the influence
of factors such as weather conditions, lighting, and object motion, which can result in
detection errors and unreliability. In contrast, mmWave radar offers robust localization
and velocity information for objects even in adverse weather conditions. Consequently,
the fusion of visual and radar modalities, known as camera–radar fusion detection, has
garnered increasing attention in the field of computer vision in recent years. Various fusion
methods have been proposed to combine the strengths of camera and radar modalities and
achieve improved detection performance in diverse scenarios. Based on the fusion stage
within the network, the fusion methods of camera and radar can be broadly categorized as
data-level fusion, feature-level fusion, and decision-level fusion. Data-level fusion [19–21]
integrates raw or preprocessed data from radar and camera sensors at the early stages of
deep learning models. Such methods necessitate addressing the correspondence between
the camera and mmWave radar data, often requiring object matching or association op-
erations. Long et al. [19] introduced Radar-Camera Pixel Depth Association (RC-PDA),
which enhances and densifies radar images by associating radar point clouds with nearby
image pixels. This approach resolves the challenge of associating radar point clouds with
image pixels. Nobis et al. [20] input cascaded camera and radar point clouds into a network
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and extract features from the combined data using VGG [22]. However, data-level fusion
methods typically impose high computational complexity and real-time requirements due
to the potential disparate update rates between the camera and mmWave radar data.

Feature-level fusion [23–27] combines features extracted from radar data and camera
images at the intermediate stages of deep learning-based fusion networks. Leveraging
the distinct characteristics and advantages of these two sensor types, fusing their features
provides a more comprehensive description of target objects. Chadwick et al. [24] proposed
generating image and radar features separately using ResNet [28] and subsequently fusing
them through concatenation and addition operations. Li et al. [25] introduced a feature
pyramid layer attention module that integrates radar information, extending the feature
pyramid module through the input interface of radar-projected images and attention
modules. Nevertheless, feature-level fusion methods face challenges in striking a balance
between fusion and aligning different sensor features.

Decision-level fusion [29] entails conducting separate object detection using camera
and radar, followed by combining their results through weighted averaging or voting to
obtain a comprehensive outcome. By amalgamating detection results from multiple sensors,
the reliability of object detection experiences significant improvement. Jha et al. [29] em-
ployed YOLOv3 [30] as the image detector, projecting radar-detection results onto the image
plane using transformation matrices, and subsequently aligning independently detected
objects from the two sensors. Compared to the first two fusion methods, decision-level
fusion exhibits greater robustness and adaptability, facilitating adaptive adjustments based
on real-world scenarios and requirements. However, decision-level fusion encounters
challenges associated with data inconsistency.

The existing methods primarily focus on road scenes, where visual information plays
a dominant role and radar information serves as a supplementary source. However, the
water surface environment is considerably more complex, characterized by water reflections
and a prevalence of small objects. Relying predominantly on visual information in such
scenarios can lead to a higher rate of false detections. Currently, there are limited camera–
radar fusion methods specifically designed for water surface detection. Only RISFNet [23] has
been proposed, which maps radar point clouds onto the image plane. It incorporates global
attention and self-attention mechanisms to achieve deep multi-scale feature fusion between
the two sensors, demonstrating robustness in detecting small objects on the water surface.
Nevertheless, feature-level fusion alone fails to address the issue of unreliable camera sensors,
and RISFNet heavily relies on accurate extrinsic parameters between radar and camera.

3. Our Method

For the task of small object detection on water surfaces, vision-based detection methods
always generate false detection due to the sunlight reflection and surrounding scene
reflection. The mmWave radar is robust to different lighting conditions but contains limited
semantic information compared to the RGB image, which makes it difficult to distinguish
objects of similar sizes using the radar-based detection method. Besides, the radar-based
detection method may generate false detection on water surfaces due to the water clutter.
Therefore, to improve the accuracy and robustness of small object detection on water
surfaces, we propose a radar-aided visual small object detection method on water surfaces.

3.1. Network Overview

Due to the inherent shortcomings of camera and radar sensors, in the water surface
small object detection task, both vision-based and radar-based detection methods have
false detection. However, the reasons that the two sensors generate false detection are
different, and the statistical probabilities of error occurrence in detection methods based on
the two sensors are also independent. Hence, we adopt a detection method based on the
decision-level fusion of vision and radar data. The visual object detection results are gained
first, and then the detection results are associated with radar data to reduce false detection.
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However, for the decision-level fusion method, the spatial position correlation of
different sensors is of vital importance and acquires accurate extrinsic parameters. Due to
the sparse and glittery characteristics of mmWave radar point clouds, corner reflectors or
LiDAR are usually needed as the auxiliary in the extrinsic calibration between radar and
camera, which involves complex calibration procedures [31]. For the applications of USVs,
there can be certain variations in the extrinsic parameters between the radar and camera
due to vibrations, shocks, or structural deformations of USVs during operations. In this
case, we propose a new image–radar association model based on the metric learning model.
By training the model using data based on the provided initial extrinsic parameters, the
model is adaptable to variations in extrinsic parameters in practical application.

As shown in Figure 1, there are two main stages in the proposed radar-aided visual
small object detection method: the detection stage and the association stage. Next, we will
introduce more details about the two stages.

MLP
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shared

Max pool MLP(64,16)

32 ✖ 256

 Vision-based
Object Detection 
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( YOLOv5-I )
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Object Detection 
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Figure 1. The architecture of the proposed method.

3.2. Detection Stage

The detection stage includes a vision-based detection model and a radar-based detec-
tion algorithm. We adopt YOLOv5-l [32] as the vision-based model. YOLOv5-l shows good
performance in visual object detection tasks and it is a lightweight model which can carry
out real-time inference in an embedded system.

3.2.1. Vision-Based Detection

To make the object detection model specialize on our fusion algorithm, we modify the
original YOLOv5-l [32] as the vision-based model. As our fusion detection algorithm can
remove the false positive detection results efficiently through the radar-detection results
and vision detection results, we need to generate more detection results to improve the
recall rate of the vision-based model. The framework of enhanced YOLOv5-l is illustrated
in Figure 2. We adjust the prediction head of YOLOv5-l using a double prediction head
and transformer decoder module, then we will introduce the architecture of the prediction
head in detail.

(1) Double prediction heads. YOLOv5 object detector uses a single prediction head
to predict the location and classification of the detected bounding box at the same time.
In our vision-based model, we design a double prediction head including a classification
head and location regression head to predict, respectively, the location and classification of
objects. Independent double prediction heads will benefit from searching both the location
and classification of objects. While we utilize the full connection (FC) layer to obtain more
semantic information about objects in the classification head, we obtain the position of
detection objects in the location regression head.

(2) Transformer decoder module. Inspired by the vision transformer [33], we use
a transformer decoder module to replace the convolution blocks in the prediction head.
Compared with convolution operation, the transformer decoder module can capture global
information and abundant contextual information. Each transformer decoders contain a
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multi-head attention layer and a fully-connected layer. Furthermore, there are residual
connections between each sublayer. As the prediction head is at the end of the network
and the feature map has low resolution, applying a transformer decoder module in a low-
resolution feature map explores the feature representation potential with a self-attention
mechanism and enlarges the receptive field of the prediction head with low computation
and memory cost.

Origin Image Input 
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Class

Double Prediction Head
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Pyramid
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Detection ResultBackbone
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Figure 2. The framework of enhanced YOLOv5-l.

After applying the vision-based detection model to an RGB image, the image anchors,
expressed as B1, B2, . . . , Bm, where m denotes the number of image anchors, are extracted.
Each image anchor B contains four parameters, including the u-axis position, v-axis posi-
tion, box width, and box height in the u-v image coordinate system. Therefore, for each
image, the output size in the detection stage is m× 4.

3.2.2. Radar-Based Detection

A mmWave radar system senses its surroundings by transmitting and receiving FMCW
signals. The transmitted and reflected signals are mixed using a frequency mixer to obtain
beat signals. Then, 1D (range) Fast Fourier Transformation (FFT) and 2D (velocity) FFT
are applied to the sampled beat signals along the fast time and slow time, respectively,
resulting in the well-known range–Doppler matrix (RDM). The cells with strong energy in
the RDM are detected as targets. The most commonly employed detector for FMCW signal
processing is the constant false alarm rate (CFAR) detector, which adaptively estimates the
noise level based on nearby cells relative to the cell under test. After detection, the direction
of arrival (DOA) is estimated for each detected target using signals from multiple antennas.
Consequently, we obtain what is referred to as 4D radar point clouds, representing various
detected targets with distinct 3D positions and Doppler velocities. The illustration of the
radar signal processing chain is shown in Figure 3.

For radar-based detection, we use the spatial information of mmWave point clouds
and the size of the input radar point cloud is N × 3, where N denotes the number of radar
points in the current frame and each point contains three coordinates information x,y,z.
The radar point clouds are clustered into groups and the discrete radar clutter points are
also removed using DBSCAN [34]. The point clouds are divided into n clusters C1, C2, . . .,
Cn, where n denotes the number of radar point clusters. Then, we use the farthest point
sampling (FPS) [35] to sample the point clouds of each group Ci into a fixed number 32.
Therefore, the final size of outputs of radar-based detection is n× 32× 3.

Through the detection stage, the vision-based and radar-based detection results are
gained. Then, the detection results are sent to the fusion association stage to generate fusion
detection results.
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Figure 3. Illustration of the radar signal processing chain.

3.3. Fusion Association Stage

The fusion association stage extracts image feature vectors from object detection
bounding boxes in the image plane and extracts radar feature vectors from radar point
clouds. The image features can represent the position and size of detection-bounding
boxes of corresponding objects in the image plane. The radar feature contains the spatial
information of objects in the radar coordinate system as well as the shape information
of objects. Therefore, by measuring the similarity between image and radar features,
the association of vision and radar-detection results can be achieved. The Hungarian
algorithm [36] is used for matching image and radar data according to the L2 distance
between two feature vectors. Thus, an end-to-end spatial correlation between image and
radar data can be achieved without the extrinsic parameter calibration procedure.

Next, we will introduce the radar and vision feature extraction model in detail. For
a frame of RGB image, m bounding boxes are generated from the detection stage and the
size of each bounding box is 1× 4. We use the multi-layer perception (MLP) to extract the
image feature Fimg whose size is m× 16 from each vision detection result Bi:

Fimg = {Fimgi
|Fimgi

= MLP(Bi), i = 1, 2, ..., m}, (1)

where Fimgi
is the feature tensor of ith vision detection result Bi.

A frame of radar data contains n point cloud groups and the output size of the radar-
detection result is n × 32× 3, where 32× 3 denotes each group consisting of 32 points
with each point containing x, y, z coordinates. For radar feature extraction, we adopt
the mini-PointNet [37] architecture, which is a famous method to extract point cloud
features. Through the shared weighted MLPs, the max-pooling, and another MLP, each
point cluster generates a feature of size 1× 16. The n× 16 radar feature vector of a whole
frame is generated by combining the n cluster features. The radar feature extraction can be
represented as follows:

Fr = {Frj |Frj = MLP
(
maxpool

(
MLP(Cj)

))
, j = 1, 2, ..., n}, (2)

where Frj denotes the radar point cloud feature of the ith cluster.
After obtaining a frame of image feature Fimg and corresponding radar feature Fr,

we compute the L2 distance between each object’s image feature Fimgi
and each object’s

radar feature Frj and obtain a cost matrix of size m× n. Based on the cost matrix, within
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the minimum distance threshold, the matching results are gained using the Hungarian
assignment algorithm.

Through the fusion association stage, the final fusion detection results which contain
the vision-based detection box, object classification result, and the range and azimuth of
the objects can be gained.

3.4. Loss Function

In our method, the detection model and the image–radar association model are trained
separately. The training loss function of vision-based detection model Lvis is the same as
the YOLOv5 object detection model, which is computed as:

Lvis = αb ∗ Lbox + αo ∗ Lobj + αc ∗ Lcla, (3)

where Lbox denotes the location loss, Lobj denotes the confidence loss, and Lcla denotes
the classification loss. The three loss weights αb, αo, and αc are constants. For the training
of the image–radar association model, we choose the triplet loss [38], which is commonly
used as the training loss function in the metric learning. Each training data pair for triplet
loss contains three samples: a vision-based detection bounding box Bi as a base anchor, a
positive radar sample Cj, which is the radar-detection cluster corresponding with Bi, and a
negative radar sample, which is randomly selected from rest of the radar-detection clusters.
The image and radar features are extracted from the training data pair, and the triplet loss
is used to minimize the L2 distance dpos between the image feature and positive radar
feature while maximizing the L2 distance dneg between the image feature and negative
radar feature using:

Ltriplet = max(dpos + dneg + β, 0), (4)

where β is a constant to express the minimum distance loss.

4. Experiment and Evaluation
4.1. Dataset, Evaluation Metric, and Baseline

To evaluate the performance of our method, we use the public FloW-RI dataset [39],
which contains synchronized images and mmWave radar data of floating bottles on water
surfaces. Besides, to test the model’s generalization performance on a broader range of data,
we supplement a new dataset for water surface small object detection using a USV platform
equipped with an RGB camera and a Texas Instruments 77 GHz single-chip mmWave radar
AWR1843. The dataset includes 1600 frames of synchronized RGB images and mmWave
radar point cloud data. The newly added data are shown in Figure 4. Finally, we use
4400 frames of data as the training set and 1200 frames of data as the test set.

To quantitatively evaluate the performance of our method, we use the mean of average
precision (mAP), which is widely used in object detection as the evaluation metric, and
compare the performance of our method with some famous baseline methods in object
detection. For vision-based methods, the YOLO [40] series object detection methods are
widely used in mobile robots due to the high inference speed. Therefore, we choose the
newest YOLOv5-l as one baseline method. Compared to the single-stage object detection
methods, the two-stage methods are usually slower but can achieve a higher detection
accuracy. Therefore, Fast R-CNN [41] and Cascade R-CNN [42] are also selected as baselines
in the experiment. In addition to methods based on the convolutional neural network,
in recent years, methods based on transformers also achieve SOTA performance in some
tasks. Therefore, we also choose the Swin Transformer [43] as one baseline method. For the
mmWave radar-based object detection method, we choose the VoteNet [44] and the method
of Danzer et al. [45] as baselines. In addition, we also compare our method with other
visual–radar fusion-based methods including feature-level fusion method RISFNet [23],
CRF-Net [20], the method in Li et al. [25], and a decision-level fusion method [29].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Examples of the supplementary data. The blue and red boxes indicate the targets in the image
and radar point cloud respectively. (a,c,e,g) Images; (b,d,f,h) Corresponding radar point clouds.

4.2. Training Details

In our method, the detection model and the image–radar association model are trained
separately. In the training of the vision-based detection model, our model based on PyTorch
implements is pre-trained from the COCO dataset [46] and is trained on an Nvidia GTX
3090 with an initial learning rate set to 10−3 and the momentum of 0.937. The network is
trained for 100 epochs using the SGD optimizer with a batch size of 8 and the mini-batch
StepLR descent algorithm with step-size = 1, gamma = 0.94. Besides, in order to enhance
the performance of the detection model, multiscale data augmentation methods such as
image resizing image placing, color adjustment, and image left-right flipping are used for
the training images. During the training of the image–radar association model, using the
extrinsic parameters provided in the dataset, we generate 4600 pairs of objects’ radar point
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clouds and RGB image bounding boxes to train the metric learning model. The training
implementation of our association network is based on Pytorch and is trained with a batch
size set to 16 and an initial learning rate set to 10−4. We train the image–radar association
model for 200 epochs using an ADAM optimizer with weight decay of 5× 10−4.

4.3. Quantitative Evaluation

To evaluate the performance of our method, we compared our method with other
baseline methods. All the baselines and our model are trained on the same training set.
As different model training parameters influence the final results, in the experiment, the
training parameters for the baseline models are primarily set by following its recommended
default values with only minor adjustments.

The result in Table 1 shows that, compared with other vision-based baseline methods,
the proposed method achieves better detection accuracy while keeping a relatively low
computation cost. The result in Table 2 shows that our mmWave radar-aided vision
detection method outperforms other radar-based and most visual–radar fusion-based
methods in detection accuracy. Although the RISFNet achieves higher detection accuracy,
it has a higher computation cost and requires accurate extrinsic parameters between the
radar and camera. When the extrinsic parameter is inaccurate, the performance of RISFNet
decreases significantly.

In addition, we also combine our image–radar association model with other vision-
based object detection methods. As shown in Table 3, by directly applying our image–radar
association model, other vision-based methods all achieve obvious improvement in detection
accuracy. As our image–radar association model has low computational complexity and the
inference speed of the image–radar association model is extremely fast with about 280 FPS,
the image–radar association model can also be seen as an independent plug-and-play model
to improve the detection accuracy of the vision-based detection method.

Table 1. Comparison of the detection accuracy using vision-based baseline methods and our method
on the dataset.

Method mAP (IoU = 0.35, %) FPS

YOLOv5-l [32] 74.66 29
Cascade-RCNN [42] 78.36 17

Faster-RCNN [41] 74.34 19
Swin-Transformer [43] 77.33 15

Ours 81.41 29

Table 2. Comparison of the detection accuracy using radar-based and fusion-based methods and our
method on the dataset.

Modality Method mAP (IoU = 0.35, %)

Radar VoteNet [44] 45.24
Danzer et al. [45] 32.65

Vision + Radar

CRF-Net [20] 74.35
Li et al. [25] 77.23

Jha et al. [29] 77.98
RISFNet [23] 83.25

Ours 81.41
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Table 3. The results of combining our image–radar association model with other vision-based object
detection methods.

Method mAP (IoU = 0.35, %) FPS
(with Image–Radar Association Model)

YOLOv5-l [32] 81.41 (+6.75) 29
Cascade-RCNN [42] 83.62 (+5.26) 15

Faster-RCNN [41] 79.53 (+5.19) 17
Swin-Transformer [43] 82.42 (+5.09) 19

4.4. Robustness Analysis

In order to validate the effect of camera–radar extrinsic parameter changes on the
performance of the proposed model, based on the known extrinsic parameter, we artificially
add a rotation and translation bias to the overall radar point clouds, to simulate variations in
the camera–radar extrinsic parameters. As shown in Table 4, when the extrinsic parameters
change slightly (with ±5° rotation bias, ±1 m translation bias), the model’s performance is
nearly not affected, indicating the model’s adaptability to small changes in the extrinsic
parameters. However, when the extrinsic parameters change a lot (with ±20° rotation
bias, ±4 m translation bias), there is a significant decrease in the model’s performance.
Nevertheless, in the practical application of USVs, extrinsic parameters are unlikely to have
large variations, and the model can adapt well to most scenes.

Table 4. Comparison of results of the fusion model with different extrinsic parameter variations.

Method mAP (IoU = 0.35, %)

Using origin radar data 81.41
Using radar data with slight bias 80.83
Using radar data with large bias 56.29

4.5. Ablation Analysis

To verify the contributions of the proposed modifications to the YOLOv5 model’s predic-
tion head, we conduct an ablation analysis by replacing it with the original prediction head.
Furthermore, to test the effectiveness of the newly proposed image–radar association model
for data fusion, we compare it with the traditional manual configuration fusion method. The
method directly projects the mmWave radar point cloud onto the RGB image plane based
on the initial extrinsic parameters. Then, data association is performed based on the spatial
relationships between radar point cloud clusters and 2D image boxes in the image plane with
a predefined distance threshold. The results are shown in Table 5, indicating that the proposed
improved double prediction heads effectively enhance the object detection accuracy. Besides,
the proposed metric learning-based image–radar association model achieves better fusion
results compared to the traditional manual association method.

Table 5. Results of the ablation analysis.

Method mAP (IoU = 0.35, %)

Without double prediction heads 79.85
Without image–radar association model 78.17

Our method 81.41

4.6. Discussion

The visualization of the detection results of our fusion detection method compared
with the vision-based YOLOv5-l is shown in Figure 5. As can be seen, our method achieves
a lower false object detection rate in various surrounding scenes.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Visualization of results of the proposed method and vision-based YOLOv5-l. The red and
green boxes in the figures represent correct and false detection results, respectively.(a,c,e,g) Ours;
(b,d,f,h) YOLOv5-l.

To enhance the detection performance of the YOLOv5-l visual detector, we integrate
a transformer decoder module to replace the conventional convolutional blocks within
its prediction head. The transformer decoder uses multi-head attention to enhance the
low-resolution feature representation capability. We visualize the input and output feature
maps of the transformer decoder module in Figure 6. In Figure 6, each row represents a
frame, where the first column displays the original image with the final detection results
(highlighted in red bounding boxes), the second column shows the output features of the
backbone network, and the third column show cases the features strengthened through
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the transformer decoder module. The highlighted regions denote areas of high response,
indicating a higher probability of object presence in those regions. As can be seen, the
results demonstrate that small objects in the enhanced features of this module are more
distinguishable, so that our vision-based detector can locate all objects more accurately.

Backbone Feature map Enhanced Feature MapRGB Image

Figure 6. Feature maps of the transformer decoder module in enhanced YOLOv5-l.

5. Conclusions

In this paper, we propose a new mmWave radar-aided visual water surfaces small
object detection method. The method associates mmWave radar data and images through
the metric learning model, and is adapted to changes of extrinsic parameters to some
degree. Through the detection stage and the fusion association stage, the proposed method
outputs the final fusion detection results. Finally, we conduct experiments on the real-world
dataset to test the proposed method. The results show that our method outperforms other
visual detection methods on water surface small object detection.

Author Contributions: Conceptualization, J.Z., Y.Y. and Y.C.; methodology, J.Z. and Y.Y.; validation,
J.Z.; data curation, J.Z.; coding and experiments, Y.C.; writing—original draft preparation, J.Z. and
Y.C.; writing—review and editing, Y.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China under Grant
Number 11974286.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



J. Mar. Sci. Eng. 2023, 11, 1794 14 of 16

Abbreviations
The following abbreviations are used in this manuscript:

CFAR Constant false alarm rate
DBSCAN Density-based spatial clustering of applications with noise
DOA Direction of arrival
FC Full connect
FFT Fast Fourier Transformation
FMCW Frequency-modulated continuous wave
FPS Farthest point sampling
GNSS Global navigation satellite system
IMU Inertial measurement unit
mAP Mean of average precision
MLP Multi-layer perception
mmWave Millimeter wave radar
RDM Range–Doppler matrix
USV Unmanned surface vehicle
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