A Deep Neural Network-Ensemble Adjustment Kalman Filter and Its Application on Strongly Coupled Data Assimilation
Abstract
:1. Introduction
2. Methods
2.1. Divided State-Space Approach for CDA
2.2. Ensemble Adjustment Kalman Filter with Divided State-Space
2.2.1. Observation Increments
2.2.2. State-Space Increments
2.2.3. DNN-Based State-Space Increments for EAKF
3. Model and Experimental Settings
3.1. Numerical Model
3.2. Neural Network Model
3.3. Data Assimilation Experiment Settings
4. Results
4.1. Atmosphere Observations
4.2. Multiple Observations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujii, Y.; Nakaegawa, T.; Matsumoto, S.; Yasuda, T.; Yamanaka, G.; Kamachi, M. Coupled climate simulation by constraining ocean fields in a coupled model with ocean data. J. Clim. 2009, 22, 5541–5557. [Google Scholar] [CrossRef]
- Saha, S.; Nadiga, S.; Thiaw, C.; Wang, J.; Wang, W.; Zhang, Q.; Van den Dool, H.; Pan, H.L.; Moorthi, S.; Behringer, D.; et al. The NCEP climate forecast system. J. Clim. 2006, 19, 3483–3517. [Google Scholar] [CrossRef]
- Zhang, R.; Delworth, T.L. Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett. 2007, 34, 2162. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Z.; Zhang, X.; Wu, X.; Deng, X. Coupled data assimilation and parameter estimation in coupled ocean–atmosphere models: A review. Clim. Dyn. 2020, 54, 5127–5144. [Google Scholar] [CrossRef]
- Penny, S.G.; Bach, E.; Bhargava, K.; Chang, C.; Da, C.; Sun, L.; Yoshida, T. Strongly Coupled Data Assimilation in Multiscale Media: Experiments Using a Quasi-Geostrophic Coupled Model. J. Adv. Model. Earth Syst. 2019, 11, 1803–1829. [Google Scholar] [CrossRef]
- Han, G.; Wu, X.; Zhang, S.; Liu, Z.; Li, W. Error covariance estimation for coupled data assimilation using a Lorenz atmosphere and a simple pycnocline ocean model. J. Clim. 2013, 26, 10218–10231. [Google Scholar] [CrossRef]
- Lu, F.; Liu, Z.; Zhang, S.; Liu, Y. Strongly coupled data assimilation using leading averaged coupled covariance (LACC). Part I: Simple model study. Mon. Weather Rev. 2015, 143, 3823–3837. [Google Scholar] [CrossRef]
- Smith, P.J.; Lawless, A.S.; Nichols, N.K. Treating sample covariances for use in strongly coupled atmosphere-ocean data assimilation. Geophys. Res. Lett. 2018, 45, 445–454. [Google Scholar] [CrossRef]
- Frolov, S.; Bishop, C.H.; Holt, T.; Cummings, J.; Kuhl, D. Facilitating strongly coupled ocean–atmosphere data assimilation with an interface solver. Mon. Weather Rev. 2016, 144, 3–20. [Google Scholar] [CrossRef]
- Yoshida, T. Covariance Localization in Strongly Coupled Data Assimilation. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2019. [Google Scholar]
- Shen, Z.; Tang, Y.; Li, X.; Gao, Y. On the Localization in Strongly Coupled Ensemble Data Assimilation Using a Two-Scale Lorenz Model. Earth Space Sci. 2021, 8, e2020EA001465. [Google Scholar] [CrossRef]
- Cheng, S.; Quilodrán-Casas, C.; Ouala, S.; Farchi, A.; Liu, C.; Tandeo, P.; Fablet, R.; Lucor, D.; Iooss, B.; Brajard, J.; et al. Machine Learning With Data Assimilation and Uncertainty Quantification for Dynamical Systems: A Review. IEEE/CAA J. Autom. Sin. 2023, 10, 1361–1387. [Google Scholar] [CrossRef]
- Arcucci, R.; Zhu, J.; Hu, S.; Guo, Y.K. Deep data assimilation: Integrating deep learning with data assimilation. Appl. Sci. 2021, 11, 1114. [Google Scholar] [CrossRef]
- Farchi, A.; Bocquet, M.; Laloyaux, P.; Bonavita, M.; Malartic, Q. A comparison of combined data assimilation and machine learning methods for offline and online model error correction. J. Comput. Sci. 2021, 55, 101468. [Google Scholar] [CrossRef]
- Li, X.; Xiao, C.; Cheng, A.; Lin, H. Joint Estimation of Parameter and State with Hybrid Data Assimilation and Machine Learning. 2022. Available online: https://www.authorea.com/doi/full/10.22541/au.164605938.86704099 (accessed on 27 December 2023).
- Legler, S.; Janjić, T. Combining data assimilation and machine learning to estimate parameters of a convective-scale model. Q. J. R. Meteorol. Soc. 2022, 148, 860–874. [Google Scholar] [CrossRef]
- Brajard, J.; Carrassi, A.; Bocquet, M.; Bertino, L. Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model. J. Comput. Sci. 2020, 44, 101171. [Google Scholar] [CrossRef]
- Vlachas, P.R.; Byeon, W.; Wan, Z.Y.; Sapsis, T.P.; Koumoutsakos, P. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks. Proc. R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20170844. [Google Scholar] [CrossRef] [PubMed]
- Bocquet, M.; Brajard, J.; Carrassi, A.; Bertino, L. Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models. Nonlinear Process. Geophys. 2019, 26, 143–162. [Google Scholar] [CrossRef]
- Grooms, I. Analog ensemble data assimilation and a method for constructing analogs with variational autoencoders. Q. J. R. Meteorol. Soc. 2021, 147, 139–149. [Google Scholar] [CrossRef]
- Pawar, S.; Ahmed, S.E.; San, O.; Rasheed, A.; Navon, I.M. Long short-term memory embedded nudging schemes for nonlinear data assimilation of geophysical flows. Phys. Fluids 2020, 32, 076606. [Google Scholar] [CrossRef]
- Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. Ocean. 1994, 99, 10143–10162. [Google Scholar] [CrossRef]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Luo, X.; Hoteit, I. Ensemble Kalman filtering with a divided state-space strategy for coupled data assimilation problems. Mon. Weather Rev. 2014, 142, 4542–4558. [Google Scholar] [CrossRef]
- Anderson, J.L. An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 2001, 129, 2884–2903. [Google Scholar] [CrossRef]
- Whitaker, J.S.; Hamill, T.M. Ensemble data assimilation without perturbed observations. Mon. Weather Rev. 2002, 130, 1913–1924. [Google Scholar] [CrossRef]
- Bishop, C.H.; Etherton, B.J.; Majumdar, S.J. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather Rev. 2001, 129, 420–436. [Google Scholar] [CrossRef]
- Anderson, J.L. A local least squares framework for ensemble filtering. Mon. Weather Rev. 2003, 131, 634–642. [Google Scholar] [CrossRef]
- Han, G.J.; Zhang, X.F.; Zhang, S.; Wu, X.R.; Liu, Z. Mitigation of coupled model biases induced by dynamical core misfitting through parameter optimization: Simulation with a simple pycnocline prediction model. Nonlinear Process. Geophys. 2014, 21, 357–366. [Google Scholar] [CrossRef]
- Zhang, S. A study of impacts of coupled model initial shocks and state–parameter optimization on climate predictions using a simple pycnocline prediction model. J. Clim. 2011, 24, 6210–6226. [Google Scholar] [CrossRef]
- Zhang, S. Impact of observation-optimized model parameters on decadal predictions: Simulation with a simple pycnocline prediction model. Geophys. Res. Lett. 2011, 38, L02702. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Z.; Rosati, A.; Delworth, T. A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model. Tellus A Dyn. Meteorol. Oceanogr. 2012, 64, 10963. [Google Scholar] [CrossRef]
- Zhang, S.; Winton, M.; Rosati, A.; Delworth, T.; Huang, B. Impact of enthalpy-based ensemble filtering sea ice data assimilation on decadal predictions: Simulation with a conceptual pycnocline prediction model. J. Clim. 2013, 26, 2368–2378. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Sluka, T.; Penny, S.; Kalnay, E.; Miyoshi, T. Strongly coupled enkf data assimilation in coupled ocean-atmosphere models. In Proceedings of the 96th AMS Annual Meeting, “Earth System Science in Service to Society”, New Orleans, LA, USA, 10–14 January 2016; pp. 10–14. [Google Scholar]
RMSE | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N = 10 | N = 20 | N = 50 | ||||||||||
WCDA | 8.64 | 0.72 | 0.52 | 0.21 | 7.63 | 0.67 | 0.46 | 0.19 | 5.60 | 0.33 | 0.30 | 0.15 |
SCDA-I | 10.01 | 0.82 | 0.89 | 0.28 | 9.86 | 0.65 | 0.87 | 0.25 | 7.21 | 0.65 | 1.02 | 0.26 |
SCDA-F | 9.61 | 0.89 | 1.96 | 0.33 | 10.37 | 0.85 | 1.26 | 0.26 | 7.50 | 0.64 | 1.30 | 0.24 |
SCDA-I(MLP) | 2.35 | 0.28 | 0.51 | 0.13 | 2.04 | 0.26 | 0.54 | 0.11 | 2.10 | 0.24 | 0.46 | 0.11 |
SCDA-I(SLP) | 1.81 | 0.31 | 0.40 | 0.14 | 1.63 | 0.30 | 0.55 | 0.13 | 1.52 | 0.28 | 0.70 | 0.13 |
SCDA-I(SIP) | 2.33 | 0.31 | 0.53 | 0.14 | 2.31 | 0.30 | 0.53 | 0.13 | 1.68 | 0.29 | 0.56 | 0.13 |
reduction rate | 72.78% | 61.50% | 1.01% | 39.46% | 73.30% | 61.43% | −16.42% | 39.88% | 62.52% | 27.42% | −55.21% | 20.4% |
ACC | ||||||||||||
WCDA | 0.86 | 0.74 | 0.79 | 0.69 | 0.89 | 0.85 | 0.70 | 0.77 | 0.93 | 0.93 | 0.82 | 0.83 |
SCDA-I | 0.81 | 0.76 | 0.84 | 0.59 | 0.84 | 0.84 | 0.91 | 0.66 | 0.90 | 0.85 | 0.90 | 0.64 |
SCDA-F | 0.81 | 0.75 | 0.38 | 0.51 | 0.80 | 0.72 | 0.28 | 0.57 | 0.89 | 0.82 | 0.47 | 0.65 |
SCDA-I(MLP) | 0.98 | 0.99 | 0.93 | 0.90 | 0.99 | 0.99 | 0.95 | 0.92 | 0.99 | 0.99 | 0.95 | 0.92 |
SCDA-I(SLP) | 0.98 | 0.98 | 0.90 | 0.89 | 0.99 | 0.99 | 0.95 | 0.90 | 1.00 | 0.99 | 0.93 | 0.9 |
SCDA-I(SIP) | 0.99 | 0.99 | 0.96 | 0.88 | 0.99 | 0.98 | 0.95 | 0.90 | 0.99 | 0.99 | 0.95 | 0.90 |
growth rate | 14.07% | 32.89% | 16.78% | 30.67% | 12.04% | 16.40% | 34.98% | 20.17% | 6.33% | 5.87% | 16.72% | 11.44% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Shen, Z. A Deep Neural Network-Ensemble Adjustment Kalman Filter and Its Application on Strongly Coupled Data Assimilation. J. Mar. Sci. Eng. 2024, 12, 108. https://doi.org/10.3390/jmse12010108
Wang R, Shen Z. A Deep Neural Network-Ensemble Adjustment Kalman Filter and Its Application on Strongly Coupled Data Assimilation. Journal of Marine Science and Engineering. 2024; 12(1):108. https://doi.org/10.3390/jmse12010108
Chicago/Turabian StyleWang, Renxi, and Zheqi Shen. 2024. "A Deep Neural Network-Ensemble Adjustment Kalman Filter and Its Application on Strongly Coupled Data Assimilation" Journal of Marine Science and Engineering 12, no. 1: 108. https://doi.org/10.3390/jmse12010108
APA StyleWang, R., & Shen, Z. (2024). A Deep Neural Network-Ensemble Adjustment Kalman Filter and Its Application on Strongly Coupled Data Assimilation. Journal of Marine Science and Engineering, 12(1), 108. https://doi.org/10.3390/jmse12010108