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Abstract: Visual perception technology is of great significance for underwater robots to carry out
seabed investigation and mariculture activities. Due to the complex underwater environment, it is of-
ten necessary to enhance the underwater image when detecting underwater targets by optical sensors.
Most of the traditional methods involve image enhancement and then target detection. However, this
method greatly increases the timeliness in practical application. To solve this problem, we propose a
feature-enhanced target detection network, Global-Net (G-Net), which combines underwater image
enhancement with target detection. Different from the traditional method of reconstructing enhanced
images for target detection, G-Net realizes the integration of image enhancement and target detection.
In addition, our feature map learning module (FML) can effectively extract defogging features. The
test results in a real underwater environment show that G-Net improves the detection accuracy of
underwater targets by about 5%, but also has high detection efficiency, which ensures the reliability
of underwater robots in seabed investigation and aquaculture activities.

Keywords: image enhancement; image reconstruction; underwater object detection; feature
enhancement

1. Introduction

In recent years, research on underwater intelligent sensing technology has become
increasingly popular due to the rapid development of modern technologies, such as the
internet and artificial intelligence. Underwater unmanned vehicles perform underwater
information detection, underwater aquaculture, and underwater rescue tasks with the
assistance of intelligent perception technology. These tasks depend heavily on the quality
of captured images [1]. However, due to the complex underwater environment, under-
water images obtained from optical imaging devices cannot be directly used for target
identification. These underwater images are blurred and color distorted due to scattering
and absorption by water, which seriously affects the performance of underwater target
detection. Some research works have been presented in the literature for underwater image
enhancement [1–8]. More specifically, underwater image enhancement can be seen as an
image defogging problem, and a defogging method with minimum information loss and
histogram distribution prior is proposed in [2]. To better represent underwater images, an
improved underwater image model was proposed in [6]. The model uses ocean monitoring
data to derive the physical effective space of backscattering, which will be conducive to
restoring image enhancement of complex scenes. Both [7,8] employed depth images to
enhance underwater image. A lightweight adaptive feature fusion network is proposed
in [5] for underwater image enhancement. The simplified U-Net was used to enhance
the paired underwater images in [3]. An algorithm based on color feature fusion is pro-
posed in [4], which adopts multi-channel feature extraction strategy to achieve underwater
image enhancement.
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With the widespread use of convolutional neural networks, the research on target
detection techniques has been greatly improved, such as a series of faster one-stage tar-
get detection algorithms Single Shot MultiBox Detector (SSD) [9], You Only Look Once
(YOLO) [10], RetinaNet [11], Fully Convolutional One-Stage Object Detector (FCOS) [12],
and more accurate two-stage target detection algorithms Regions with CNN features
(RCNN) [13], Fast RCNN [14], Faster RCNN [15], and Cascade RCNN [16]. These detection
methods extract features through the backbone network and then classify extracted features
and perform bounding box regression through the head network. However, underwater
target detection remains a challenging task. These methods are only applicable to clear
datasets and have difficulty detecting underwater degraded images. Moreover, underwa-
ter image enhancement methods restore degraded images to clear images and perform
target detection on clear images. The traditional method firstly enhance the underwater
degradation image and then detect the objects. However, the difficulty of underwater
target detection is the degradation of image features extracted by backbone network, which
makes it difficult for the detector to classify the target and perform boundary regression.
Ref. [17] improved Fast RCNN and adversarial occlusion network for underwater target
detection. Ref. [18] improved RCNN for underwater target detection. Ref. [19] improved
one-stage detector yolov5 for underwater target detection. Ref. [20] improved yolox and
tested it on underwater data sets. Also, image enhancement networks aim to enhance
image sharpness and contrast and color correction, which may not necessarily be applicable
to target detection networks. Furthermore, the efficiency of reconstructing clear images
and performing target detection is inefficient, and it is difficult to reconstruct clear images
and perform target detection in real time during underwater operations. To solve these
two issues, the underwater target detection task is divided into two subtasks in G-Net, i.e.,
underwater image feature enhancement and enhanced target detection. Previous studies
typically separate the two without considering the impact of enhanced images on subse-
quent higher-order vision tasks, but underwater enhanced image reconstruction seriously
affects the operational efficiency of underwater target detection. Therefore, we construct an
end-to-end underwater target detection method that does not require the reconstruction of
enhanced images.

The main contributions of this work are summarized as follows:

• We propose a data-driven approach based on an end-to-end target detection model.
It fuses image enhancement with target detection in the feature extraction part and
enables accurate detection of target information of underwater blurred images based
on enhanced features, which can be generalized to real-world underwater scenarios.

• In order to simplify the process of image enhancement, feature extraction, object
classification and boundary regression in traditional methods, image enhancement
and feature extraction for object detection are combined to realize the integration
of image enhancement and object detection. By inputting hazy images, our G-Net
network can enhance the detection features of degraded images and directly output
the target detection results. The perception efficiency of the underwater unmanned
boat is greatly improved.

• In order to better capture the degradation features, we propose a feature map learn-
ing (FML) module, using clear image features to guide the network to enhance the
detection features of degraded images.

• Our proposed lightweight neural network not only exhibits good performance on
the dataset but also performs well on real underwater environment images. It has
significant performance improvement compared with other underwater object detec-
tion algorithms.

The remainder of this paper is organized as follows. Section 2 briefly describes the
current research status on underwater target detection. Section 3 presents the network
structure and loss function of the proposed novel lightweight neural network and the FML
learning module combining feature enhancement and target detection. Section 4 compares
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and analyzes the experiments of G-Net and existing methods. The experimental results are
summarized in Section 5.

2. Related Works

In this section, we will briefly introduce the development of deep learning-based
target detection and the related content of underwater target detection.

2.1. Object Detection Based on Deep Learning

Target detection, as one of the most fundamental and important tasks in computer
vision, has received widespread attention in recent years [21]. Traditional manual feature-
based detection frameworks, including the Viola–Jones detector [22], histogram of gradients
(HoG) [23], and deformable models [24], have been gradually replaced by neural networks.

Deep learning-based methods have achieved success in perception tasks [25–28]. With
the development of deep learning, deep learning-based target detection can be divided into
two categories: one-stage target detection represented by the YOLO series [29–32] and two-
stage target detection represented by Faster RCNN. The two-stage detection network first
forms candidate regions and then detects targets in the candidate regions. The advantage
of two-stage target detection is its higher accuracy, and the advantage of one-stage target
detection is its faster speed. However, the accuracy of the one-stage detector gradually
becomes higher than that of the two-stage detector with development, which indicates its
wider industrial application.

2.2. Underwater Object Detection Based on Deep Learning

Deep learning techniques have also developed rapidly in underwater target detection.
For example, the R-CNN-based fish detection method proposed in [33], the classification
of underwater plankton using deep residual networks [34], and the lightweight neural
network for underwater fish detection [35]. Li et al. [36] improved the YOLOv4 target
detection network by gradually using MobileNetv2 [37] and proposed a multiscale atten-
tional feature fusion mechanism to improve the detection accuracy of underwater small
targets. Yeh [38] et al. used a color conversion module and detection module jointly trained
to enhance underwater target detection through the joint training of color conversion
and detection modules. The underwater target single aggregation network was proposed
in [39] by using multiscale features and complementary context information [40] proposed
a fast underwater target detection network [41] fine-tuned YOLOv2 and tested it on the
underwater dataset.

3. Proposed Methods

The traditional underwater image enhancement and target detection process is in-
efficient, and the detection performance is insufficient, which can not meet the needs of
underwater target detection. Therefore, we propose a framework that integrates image
enhancement and target detection. The enhanced network no longer needs to rebuild a
clear image before detection, as shown in Figure 1. This will greatly improve the efficiency
of underwater target detection. In this section, we will focus on G-Net.

3.1. Model Workflow

The flow chart of the proposed G-Net network structure is shown in Figure 1. G-Net
consists of an Object Detection Feature Map Enhancement (ODFME) module for image
feature enhancement and a Detect Target and Output Result (DTR) module for classification
and regression, as shown in Figure 2. In the proposed FML learning module, the ODFME
module learns feature maps of clear images without reconstructing the enhanced images,
which enables the integration of underwater image enhancement and detection. The
ODFME module outputs the enhanced detection features, and the DTR module inputs
enhanced features for the regression of bounding boxes and target classifications. Compared
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with the traditional independent tasks of underwater image enhancement and target
detection, it can be better applied to underwater target detection.
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3.2. ODFME Module

The G-Net network structure consists of an Object detection feature map enhancement
and output (ODFME) module and a detect target and output (DTR) module, as shown
in Figure 2. ConBNLeaky consists of Conv2d, Batch normalization, Leaky. ConvBNMish
consists of Conv2d, BN, Mish. ConvSet consists of ConvBNLeaky. SPPF consists of parallel
Maxpool2d. Where Conv2d denotes the convolution, BN denotes Batch Normalization,
Mish denotes Mish activation function. Leaky denotes Leaky activation function. Since
our feature enhancement module does not need to reconstruct a clear underwater image
but uses the enhanced feature map directly for coordinate regression and classification, our
network design focuses on the ODFME part.

Our ODFME module is designed based on the CSP-DarkNet model. The main struc-
ture of the network is shown in Figure 2. Our ODFME module is mainly composed of five
Attention Resual Blocks (Att_res Block). The structure of Att_res block is shown in Figure 3
(five Att_res blocks only differ in the number of attention resistance block (Aresblock), and
the rest are exactly the same). Att_res module adds an attention resistance block (AresBlock)
among the three ConvBNMish. It adopts serial channel attention and spatial attention,
which can extract and enhance degradation features. AResBlock Concat operation can fuse
shallow information with deep information. Then, parallel channel attention (CA) and
spatial attention (PA) modules encode the transmission value and global atmospheric light
value of the fused image, respectively. The multi-layer perceptron (MLP) module is used to
re-fit the enhanced dehazing features.
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and tandem channel attention and spatial attention. CA means channel attention, PA means spatial
attention, MLP means multi-layer perceptron. AresBlock means attention resistance block. ⊕ means
point-wise addition.
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According to the image degradation model widely used in [42–45], the underwater
image degradation formula can be expressed as

I(x) = J(x)t(x) + A(1 − t(x)) (1)

where I(x) represents underwater degradation image, J(x) white represents clear image,
t(x) represents transmission value and A represents global atmospheric light value.

We believe that transmission value t(x) in the underwater image degradation Formula
(1) is a location-related local variable, and the global atmospheric light value A is a global
shared variable. Meanwhile, most image enhancement works treat channel and pixel
features equally and cannot process images with uneven distributions of underwater
degradation and weighted channels. Inspired by FFA-Net, AResBlock adopts a local
residual structure and a combination of a serial channel attention module and spatial
attention module, which can address different features and pixel regions unequally and
provide more flexibility when processing different types of information. We believe that the
channel attention mechanism can better obtain the global shared variable A, and the spatial
attention mechanism can better obtain the local variable t related to position. Therefore,
in addition to the serial attention module used in AResBlock, we use parallel channel
attention and spatial attention at the end of the Att_res structure to enhance different
channel and pixel features, respectively, and the MLP module to adjust the number of
channels and combine different enhancement features. We believe that the parallel use of
the channel attention module and spatial attention module can prevent features from being
overenhanced and can better extract the global shared variable A and the location-related
local variable t(x) from the original features.

The channel attention structure is shown in Figure 4. Let X be the feature map.
According to the gating mechanism in [46], our channel attention can be expressed as

Xw = Sigmoid(Conv2d(Relu(Conv2d(GAP(X)))))
Xout = Xw ⊗ X

(2)

where the GAP means Global average pooling, Relu means activation function, and ⊗
refers to the Hadamard product.
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We use global averaging pooling, Conv2d, ReLU functions, and sigmoid functions to
obtain its weight on the channel and then multiply the corresponding elements with x.

The structure of spatial attention is shown in Figure 5. The gating mechanism is used
as the main content of the spatial attention mechanism, the left branch is used as the feature
branch, and the right branch is used as the spatial pixel selection communication number.
According to [47], if the input feature graph is x, the spatial attention mechanism can be
expressed as

W = Sigmoid(Conv2d(Avgpool(X)⊕ maxpool(X)))
Xout = X ⊗ W

(3)

where the ⊕ means point-wise addition, Avgpool means average pooling, and maxpool
means max pooling.
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3.3. DTR Detection Module

The DTR structure is improved on the basis of YOLOv4. Multiple convolution blocks
are used in DTR to detect feature information on features of different scales, and the up-
sampled low-resolution features are combined with high-resolution features in the channel
dimension to enrich the semantic and spatial information in high-resolution features. In
the DTR structure, we use the SPPF module to replace the original SPP module, which
can pool different feature maps without changing the size of the feature map, to capture
the details of the target at different scales. It can also reduce the calculation amount of
the model and improve the reasoning speed. The model structure of SPPF is shown in
Figure 2. For the detection header of YOLOv4, the decoupling header can extract target
location information and category information, which can effectively reduce the number
of parameters and computational complexity and enhance the generalization ability and
robustness of the model. The structure of the decoupling header is shown in Figure 2. In the
G-Net proposed in this paper, since the ODFME module has completed the enhancement of
degraded image detection features, DTR can directly perform accurate target classification
and coordinate regression according to ODFME output features, which greatly improves
the detection efficiency. Therefore, we did not make much improvement on the DTR part,
and our improvement mainly lies in the enhanced feature extraction part of ODFME.

3.4. FML Module

The FML module proposed by us can be regarded as a new loss, and the FML learning
module enables the ODFME module to better obtain the feature mapping of clear images.
The concrete structure of the FML net is shown in Figure 5. As a whole, our learning
module network is similar to gan. In the generator, we freeze the DTR part of G-Netnd
and then let ODFME module learn the features of the corresponding clear image (the clear
image is used as the input of G-Net and then trained to obtain the model and frozen). The
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generator outputs three kinds of characteristic maps with different scales, and the enhanced
network is trained by gradient back propagation of L2 loss. As for the discriminator,
our discriminator adopts the design of patch gan, and the input of different scales is
converted into the feature map with the size of 4 × 4 by full convolution method, so that
the discriminator can more accurately identify whether the feature map comes from a clear
underwater image or a fuzzy underwater image. In the discriminator, we use the clear
image output under ODFME module as the true value. Through iterative training, the
feature mapping of underwater blurred image generated by ODFME enhancement network
is closer to clear images. FML learning module only participates in the training phase of
the model, but not in the reasoning phase of the model. Through the FML module, our
ODFME module can obtain clearer detection features, which plays an important role in the
following target classification and boundary regression.

3.5. Loss Function

In the training stage, we first train our G-Net network, then freeze the DTR part of the
G-Net network and use the FML learning module to further train the ODFME module.

In the first phase, G-Net uses exactly the same loss functions as yolov4 (bounding box
loss, confidence loss, and classification loss).

During FML module training, in the generator, we use an ODFME network with clear
image as input to instruct the ODFME network with the haze image as input to learn image
degradation features. According to [48], we use L2loss as the generator’s loss function. L2loss
can be formulated as:

L2loss[X, Y] =
M,N

∑
i=1,j=1

[X(i, j)− Y(i, j)]2 (4)

where X and Y correspond to the feature maps of paired clear and blurred underwater
images, respectively; M and N correspond to the width and height of the feature maps,
respectively; and i and j denote pixel points.

The loss function of the discriminator can be expressed intuitively as

Ldis[Ds, Dt] = ([Ds − 0] + [Dt − 1])/2 (5)

where Ds and Dt indicate whether the discriminator identifies the input feature map as
coming from a clear or degraded image.

4. Experiment
4.1. Datasets

It is difficult to obtain clear and degraded underwater images simultaneously. Mean-
while, to simulate the real environment as much as possible, we added haze to the under-
water dataset based on the underwater imaging model based on Equation (6). To generate
different concentrations of haze, the global atmospheric light value is set to (0.5, 0.95), and
the transmission map is set to (0.3, 0.95). Our clear underwater dataset (UPRC) applies
the data from real offshore environments and includes a total of 5542 images of four ob-
jects: holothurian, echinus, scallop, and starfish, with a total of 5542 images, as shown in
Figure 6. Among them, 4987 images are used for training, and 555 images are used for
testing. To reduce the memory consumption during training, our image size is set to (256,
256). Although G-Net functions include two parts, underwater image feature enhancement
and object detection, underwater image enhancement (detection feature enhancement) is
designed to improve the accuracy of object detection. Therefore, the experiment mainly
verifies the target detection performance of G-Net.
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4.2. Evaluation Metric

To evaluate the target detection performance, the average accuracy mAP is applied
to measure the detection performance of the network, and the IOU is set to 0.5. The mAP
equation is expressed as

mAP =
AP

num_classes
(6)

where AP is the detection accuracy of each class of targets, and num_classes is the number
of classes.

The IOU can be denoted by:

IOU =
Bd ∩ Bgt

Bd ∪ Bgt
(7)

As shown in Figure 7, the green box indicates Bd, and the blue box indicates Bgt. Bd
represents the detected bounding box, and Bgt represents the real bounding box. If the IOU
of Bd and Bgt is greater than 0.5 and belongs to the same category, the test result is a true
positive sample. Otherwise, it is a false positive sample. The intersection over union (IOU)
is shown in Figure 7.
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The Precision can be expressed as

Precision =
TP

TP + FP
(8)

where TP indicates a correct prediction as a true value and FP indicates an incorrect
prediction as a true value. The details are shown in Table 1.

Table 1. TP denotes true positive samples, FP denotes false-positive samples, FN denotes false-
negative samples, and TN denotes true negative samples.

True Detect False Detect

True ground TP FN
False ground FP TN

4.3. Implementation Details

All experiments are built on the PyTorch framework using a single NVIDIA GTX
4090 GPU and an Intel Core i9-13900 CPU. The resolution of the experimental image is
256 × 256. To better fit the training data and make full use of the GPU, we use a batch size
of bit 32, a learning rate of 0.0001, and an Adam optimizer with a total of 300 epochs.

4.4. Contrast Experiment

The underwater degraded image feature enhancement and target detection included
in G-Net are aimed at improving the accuracy of underwater target detection. Therefore,
our comparison experiments mainly verify the target detection performance of G-Net. Since
our G-Net was improved based on the YOLOv4 network, we adopted YOLOv4 as the target
detection network for comparative testing. In this section, we first employ YOLOv4 to test
different underwater enhancement methods to explore the effectiveness of our proposed
method. Next, ablation experiments are conducted to investigate the effects of different
components of our method using qualitative and quantitative approaches.

Underwater degraded images severely affect visibility. To verify the effectiveness
of G-Net in real underwater environments, we compare the detection results of different
advanced underwater degradation image enhancement methods through YOLOv4. UDCP,
Ugan, CycleGan and PUIE were used as image enhancement networks, and YOLOv4 was
used as a detection network to perform comparative experiments with G-Net. Table 2
demonstrates that compared to using ordinary detectors to detect underwater degraded
images with the lowest detection accuracy, our G-Net has the highest detection accuracy of
approximately 75.46% for the overall mAP. It can visually demonstrate the importance of
G-Net in underwater degraded images without reconstructing the enhanced images and
directly detecting the enhanced features. Although the parameters of G-Net are slightly
higher than those of CycleGan and PUIE, but the time only needs 7.1 ms, which is lower
than others, and overall, our performance is the best.

To better display the detection results of G-Net, the detection results of different
enhancement algorithms are shown in Figure 8. Figure 8a is the detection result of YOLOv4
on clear images, and Figure 8b–d denote the detection results after image enhancement
using the U-Gan, CycleGan, and PUIE methods, respectively. Figure 8e is the detection
result of G-Net. In the second column, three different image enhancement algorithms of
Figure 8b–d have missed detection behavior in holothurian detection. When detecting
scallops in the third column, Figure 8b,c were misdetected; when detecting starfish in
the fourth column, Figure 8b–d were also missed. Only Figure 8e can successfully detect
all results.
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Table 2. The detection results of traditional methods on underwater degraded images and G-Net
detection results. “Params” is the total number of parameters of underwater image enhancement
methods and detection methods. “FLOPs” is the number of floating-point operations of different
algorithms. “Time” is the time needed for enhancement and detection by different methods. The
second rows “C1” to “C4” are holothurian, echininus, scallop, and starfish.

Image Enhance
Method

Detection
Method

mAP(%)
AP(%) Params

(M)
FLOPs

(G) Time (ms)
C1 C2 C3 C4

- YOLOv4 70.92 86.67 52.86 67.19 76.96 63.98 22.72 4.5

UDCP YOLOv4 71.62 86.74 53.54 64.30 81.89 63.98 22.72 12.0

UGan YOLOv4 70.64 83.86 53.96 70.48 74.27 105.81 58.85 8.2

CycleGan YOLOv4 72.49 87.29 54.43 70.29 77.49 78.12 113.75 7.7

PUIE YOLOv4 74.02 87.94 58.38 71.48 78.27 65.38 82.69 7.3

G-Net 75.46 87.08 59.63 74.02 81.11 78.75 33.41 7.1
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The combination of traditional image enhancement and detection has resulted in
missed and false detection. The detection results of the G-Net network are very close to
those of the clear image, and there is no need to rebuild clear images, which further proves
the effectiveness of the proposed G-Net network.

4.5. Ablation Study

Qualitative and quantitative methods are used to validate the effectiveness of the
FML learning module. We use the same dataset to compare G-Net with and without FML
learning modules separately. The results in Table 3 demonstrate that G-Net with the FML
learning module has the highest average detection accuracy. G-Net has a 75.46 mAP. Except
for the detection accuracy of holothurian and scallop, which is slightly lower than that of
G-Net without the FML module, the detection accuracy of echinus, scallop, and starfish
is higher than that of G-Net without the FML module. Furthermore, the FML learning
module does not participate in the forward inference of the model, so there is no increase
in the number of parameters and the model time. When the backbone network does not
use our attention structure, the number of parameters and the complexity of the model are
reduced, the reasoning speed is relatively increased, but the detection accuracy is decreased.
As shown in Table 3, the number of parameters, FLOPs, and runtime of our model are
the same regardless of whether the FML module is used. The results show that the FML
module can improve the detection accuracy of the G-Net network without reducing the
speed. The attention structure of the backbone network also shows that we can improve
our detection accuracy with a small increase in inference time.

Table 3. Experimental results of G-Net with or without the FML module. “Params” represents the
number of parameters of the model. “FLOPs” indicates the complexity of the model. “C1” to “C4”
and “Time” are the same as those in Table 2.

FML
Module

Att_res
Module

mAP(%)
AP(%) Params

(M)
FLOPs

(G)
Time
(ms)C1 C2 C3 C4

✔ 74.86 88.06 58.90 73.40 79.08 65.031 27.351 6.3

✔ 74.52 87.43 58.62 75.30 79.28 78.75 33.41 7.1

✔ ✔ 75.46 87.08 59.63 74.02 81.11 78.75 33.41 7.1

5. Conclusions

To reduce the interference of underwater degraded images on target detection perfor-
mance and to improve the underwater detection efficiency, we propose an image feature
enhancement detection network, G-Net. It simultaneously completes feature enhancement
and detection tasks of underwater images in a single network, achieving the unification of
underwater image enhancement and detection, and greatly improving underwater detec-
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tion efficiency. Moreover, the FML unsupervised learning module uses an unsupervised
approach to extract clear underwater image features, which guide the ODFME module
for learning. It enables the ODFME module to learn clear underwater image features
even in degraded underwater conditions. The experimental results demonstrate that our
G-Net effectively reduces the interference of underwater degraded images and achieves
high-accuracy target detection, which is crucial for tasks such as underwater grasping and
surrounding obstacle detection.

In the follow-up study, due to the complexity and variety of underwater scenes, the
visual interference caused by fog only being a part of it, as well as the effects of motion blur
and light intensity, we should improve the FML module, so that it can learn different kinds
of degradation features. Therefore, in the future, we will study the ODFME module and
FML learning module with more general and better performance, so that they can better
serve underwater target detection. At the same time, we will also try to combine some
newer detectors with our G-Net to investigate more feasibility.
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