Robust Underwater Acoustic Channel Estimation Method Based on Bias-Free Convolutional Neural Network
Abstract
:1. Introduction
- We incorporate the “bias-free” concept [16] into denoising convolutional neural network (DnCNN) enhances the stability of the model performance and aims to overcome overfitting the training SNR conditions. And through theoretical justification and framework customization, we develop a specialized neural network for channel estimation known as bias-free complex DnCNN (BF-CDN).
- Utilizing the temporal correlation of the channel over a certain time period, the input to the model consists of the coarse channel estimation results of data blocks received within a certain time segment. This results in further improvement and robustness in estimation performance.
- Simulations and real sea experimental data results confirm the robustness of the method under different noise conditions and highlight its potential to improve the accuracy and reliability of channel estimation.
2. UWA-OFDM System Model
3. Methods
3.1. Problem Transformation
3.2. Theoretical Analysis of DnCNN Estimator
3.3. Proposed BF-CDN Architecture
4. Results and Discussion
4.1. Simulations
4.1.1. Robustness under Various Noise Levels
4.1.2. Gains from Temporal Correlation
4.1.3. UWA Channel Estimation Performance
4.2. Processing of Real Experimental Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UWA | Underwater acoustic |
OFDM | Orthogonal frequency division multiplexing |
LS | Least squares |
SNR | Signal-to-noise ratio |
MSE | Mean square error |
MMSE | Minimum mean square error |
DL | Deep learning |
DNN | Deep neural network |
CNN | Convolutional neural network |
MLP | Multilayer perceptron |
LSTM | Long short-term memory |
CSI | Channel state information |
RLS | Recursive least square |
CSRNet | Channel super-resolution network |
DeSA-DNN | Denoising sparsity-aware DNN |
DnCNN | Denoising convolutional neural network |
BF-CDN | Bias-free complex denoising convolutional neural network |
CP | Cyclic prefix |
ReLU | Rectified linear unit |
CompelxReLU | Compelx rectified linear unit |
ComplexConv1d | One-dimensional complex convolution layers |
BN | Batch normalization |
CIRs | Channel impulse responses |
OMP | Orthogonal matching pursuit |
SOMP | Simultaneous orthogonal matching pursuit |
BER | Bit error rate |
References
- Stojanovic, M.; Beaujean, P.P.J. Acoustic communication. In Springer Handbook of Ocean Engineering; Springer: Cham, Switzerland, 2016; pp. 359–386. [Google Scholar]
- Howe, B.M.; Miksis-Olds, J.; Rehm, E.; Sagen, H.; Worcester, P.F.; Haralabus, G. Observing the oceans acoustically. Front. Mar. Sci. 2019, 6, 426. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Li, Y.; Sadiq, M.; Liang, J.; Khan, M.A. Recent advances, future trends, applications and challenges of internet of underwater things (iout): A comprehensive review. J. Mar. Sci. Eng. 2023, 11, 124. [Google Scholar] [CrossRef]
- Stojanovic, M.; Preisig, J. Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Commun. Mag. 2009, 47, 84–89. [Google Scholar] [CrossRef]
- Huang, J.g.; Wang, H.; He, C.b.; Zhang, Q.f.; Jing, L.y. Underwater acoustic communication and the general performance evaluation criteria. Front. Inf. Technol. Electron. Eng. 2018, 19, 951–971. [Google Scholar] [CrossRef]
- Li, B.; Huang, J.; Zhou, S.; Ball, K.; Stojanovic, M.; Freitag, L.; Willett, P. MIMO-OFDM for high-rate underwater acoustic communications. IEEE J. Ocean. Eng. 2009, 34, 634–644. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Qin, Z.; Ye, H.; Li, G.Y.; Juang, B.H.F. Deep learning in physical layer communications. IEEE Wirel. Commun. 2019, 26, 93–99. [Google Scholar] [CrossRef]
- Lu, H.; Jiang, M.; Cheng, J. Deep learning aided robust joint channel classification, channel estimation, and signal detection for underwater optical communication. IEEE Trans. Commun. 2020, 69, 2290–2303. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Zakharov, Y.; Li, X.; Li, J. Deep learning based underwater acoustic OFDM communications. Appl. Acoust. 2019, 154, 53–58. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Wang, H.; Wang, J.; Yang, F.; Meriaudeau, F. Deep learning aided OFDM receiver for underwater acoustic communications. Appl. Acoust. 2022, 187, 108515. [Google Scholar] [CrossRef]
- Liu, J.; Ji, F.; Zhao, H.; Li, J.; Wen, M. CNN-based underwater acoustic OFDM communications over doubly-selective channels. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, OK, USA, 27–30 September 2021; pp. 1–6. [Google Scholar]
- Liu, L.; Cai, L.; Ma, L.; Qiao, G. Channel state information prediction for adaptive underwater acoustic downlink OFDMA system: Deep neural networks based approach. IEEE Trans. Veh. Technol. 2021, 70, 9063–9076. [Google Scholar] [CrossRef]
- Ouyang, D.; Li, Y.; Wang, Z. Channel estimation for underwater acoustic OFDM communications: An image super-resolution approach. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Liu, S.; Mou, Y.; Wang, X.; Su, D.; Cheng, L. Denoising enabled channel estimation for underwater acoustic communications: A sparsity-aware model-driven learning approach. Intell. Converg. Netw. 2023, 4, 1–14. [Google Scholar] [CrossRef]
- Mohan, S.; Kadkhodaie, Z.; Simoncelli, E.P.; Fernandez-Granda, C. Robust and interpretable blind image denoising via bias-free convolutional neural networks. arXiv 2019, arXiv:1906.05478. [Google Scholar]
- Zhang, Y.; Wang, H.; Tai, Y.; Li, C.; Meriaudeau, F. A machine learning label-free method for underwater acoustic OFDM channel estimations. In Proceedings of the 15th International Conference on Underwater Networks & Systems, Shenzhen, China, 22–24 November 2021; pp. 1–5. [Google Scholar]
- Li, B.; Zhou, S.; Stojanovic, M.; Freitag, L.; Willett, P. Multicarrier Communication over Underwater Acoustic Channels with Nonuniform Doppler Shifts. IEEE J. Ocean. Eng. 2008, 33, 198–209. [Google Scholar]
- Minn, H.; Bhargava, V.K. An investigation into time-domain approach for OFDM channel estimation. IEEE Trans. Broadcast. 2000, 46, 240–248. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Li, C.; Chen, X.; Meriaudeau, F. On the performance of deep neural network aided channel estimation for underwater acoustic OFDM communications. Ocean Eng. 2022, 259, 111518. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef]
- Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1993. [Google Scholar]
- Gizzini, A.K.; Chafii, M.; Nimr, A.; Fettweis, G. Enhancing least square channel estimation using deep learning. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar]
- Moon, T.K.; Stirling, W.C. Mathematical Methods and Algorithms for Signal Processing; Prentice-Hall, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Hirose, A. Complex-Valued Neural Networks; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 400. [Google Scholar]
- Guberman, N. On complex valued convolutional neural networks. arXiv 2016, arXiv:1602.09046. [Google Scholar]
- Huang, S.; Yang, T.; Huang, C.F. Multipath correlations in underwater acoustic communication channels. J. Acoust. Soc. Am. 2013, 133, 2180–2190. [Google Scholar] [CrossRef]
- Qiao, G.; Song, Q.; Ma, L.; Liu, S.; Sun, Z.; Gan, S. Sparse Bayesian learning for channel estimation in time-varying underwater acoustic OFDM communication. IEEE Access 2018, 6, 56675–56684. [Google Scholar] [CrossRef]
- Zhou, Y.h.; Tong, F.; Zhang, G.q. Distributed compressed sensing estimation of underwater acoustic OFDM channel. Appl. Acoust. 2017, 117, 160–166. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
UWA modulation scheme | OFDM with 4QAM |
Bandwidth | 100 Hz |
Center frequency | 300 Hz |
Number of subcarriers | 256 |
Number of pilots | 64 |
Number of data subcarriers | 192 |
Length of cyclic prefix | 0.44 s |
Number of blocks in a frame | 10 |
Parameter | Value |
---|---|
Optimizer | Adam |
Learning rate | |
Batch number | 20 |
Epoch number | 500 |
Layer * | Input Layer | Operation | Output Shape | |
---|---|---|---|---|
Input | - | - | - | (20, 160, 10) |
Conv1 | ComplexConv1d layer (256, 7, 1, 3) | Input | ComplexReLU | (20, 160, 256) |
Conv2 | ComplexConv1d layer (256, 7, 1, 3) | Conv1 | BN + ComplexReLU | (20, 160, 256) |
Conv3 | ComplexConv1d layer (256, 7, 1, 3) | Conv2 | BN + ComplexReLU | (20, 160, 256) |
Conv4 | ComplexConv1d layer (256, 7, 1, 3) | Conv3 | BN + ComplexReLU | (20, 160, 256) |
Output | ComplexConv1d layer (10, 7, 1, 3) | Conv4 | - | (20, 160, 10) |
Algorithm | Runtime (ms) |
---|---|
LS | 3.7 |
OMP | 304.0 |
SOMP | 170.6 |
DnCNN | 16.3 |
BF-CDN | 17.4 |
Parameter | Value |
---|---|
UWA modulation scheme | OFDM with 4QAM |
Bandwidth | 100 Hz |
Center frequency | 300 Hz |
Number of subcarriers | 256 |
Number of pilots | 64 |
Number of null subcarriers | 9 |
Number of data subcarriers | 183 |
Length of cyclic prefix | 0.44 s |
Number of blocks in a frame | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhang, Y.; Wu, L.; Tai, Y.; Wang, H.; Wang, J.; Meriaudeau, F.; Yang, F. Robust Underwater Acoustic Channel Estimation Method Based on Bias-Free Convolutional Neural Network. J. Mar. Sci. Eng. 2024, 12, 134. https://doi.org/10.3390/jmse12010134
Wang D, Zhang Y, Wu L, Tai Y, Wang H, Wang J, Meriaudeau F, Yang F. Robust Underwater Acoustic Channel Estimation Method Based on Bias-Free Convolutional Neural Network. Journal of Marine Science and Engineering. 2024; 12(1):134. https://doi.org/10.3390/jmse12010134
Chicago/Turabian StyleWang, Diya, Yonglin Zhang, Lixin Wu, Yupeng Tai, Haibin Wang, Jun Wang, Fabrice Meriaudeau, and Fan Yang. 2024. "Robust Underwater Acoustic Channel Estimation Method Based on Bias-Free Convolutional Neural Network" Journal of Marine Science and Engineering 12, no. 1: 134. https://doi.org/10.3390/jmse12010134
APA StyleWang, D., Zhang, Y., Wu, L., Tai, Y., Wang, H., Wang, J., Meriaudeau, F., & Yang, F. (2024). Robust Underwater Acoustic Channel Estimation Method Based on Bias-Free Convolutional Neural Network. Journal of Marine Science and Engineering, 12(1), 134. https://doi.org/10.3390/jmse12010134