An Ensemble CNOP Method Based on a Pre-Screening Mechanism for Targeted Observations in the South China Sea
Abstract
:1. Introduction
2. Methodology
2.1. Original Definition of CNOP
2.2. Design of Pre-Screening and Ensemble CNOP Method
2.2.1. The Algorithm of the EN-CNOP Core
2.2.2. Pre-Screening Mechanism for Global CNOP
- 1.
- groups of initial guesses are randomly generated. Each initial guess is generated within the range , where is expressed as:
- 2.
- Then, the gradient of the initial guess for each group is computed by Equation (14) of the EN-CNOP core:
- 3.
- After obtaining the gradient information of all initial guesses, only one optimal search iteration is performed for . Then, the updated initial guesses and the cost function value (CFV) corresponding to each initial guess can be obtained:
- 4.
- A point is screened out so that the following equation holds (the smallest CFV):
2.3. Ocean Model and Data Assimilation Method
3. Preliminary Experiments
3.1. Experimental Setup
3.1.1. Targeted Region Observations and Data Preparation
3.1.2. Initial Configuration of the Ocean Model
3.1.3. Experimental Design for Identifying Sensitive Areas
3.2. Experimental Results and Analysis
3.2.1. Analysis of Sensitive Areas
3.2.2. Analysis of the Targeted Assimilation Results
3.2.3. Effectiveness of Pre-Screening Mechanisms
3.2.4. Analysis of an Extreme Case
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rasmusson, E.M.; Carpenter, T.H. Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño. Mon. Weather. Rev. 1982, 110, 354–384. [Google Scholar] [CrossRef]
- Philander, S.G.H. El Niño Southern Oscillation Phenomena. Nature 1983, 302, 295–301. [Google Scholar] [CrossRef]
- Wu, C.-C.; Chou, K.-H.; Lin, P.-H.; Aberson, S.D.; Peng, M.S.; Nakazawa, T. The Impact of Dropwindsonde Data on Typhoon Track Forecasts in DOTSTAR. Weather. Forecast. 2007, 22, 1157–1176. [Google Scholar] [CrossRef]
- Chou, K.-H.; Wu, C.-C.; Lin, P.-H.; Aberson, S.D.; Weissmann, M.; Harnisch, F.; Nakazawa, T. The Impact of Dropwindsonde Observations on Typhoon Track Forecasts in DOTSTAR and T-PARC. Mon. Weather. Rev. 2011, 139, 1728–1743. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, W.; Shao, Q.; Han, G.; Wang, X. A Mid- and Long-Term Arctic Sea Ice Concentration Prediction Model Based on Deep Learning Technology. Remote Sens. 2022, 14, 2889. [Google Scholar] [CrossRef]
- Köhl, A.; Stammer, D. Optimal Observations for Variational Data Assimilation. J. Phys. Oceanogr. 2004, 34, 529–542. [Google Scholar] [CrossRef]
- Montani, A.; Thorpe, A.J.; Buizza, R.; Undén, P. Forecast Skill of the ECMWF Model Using Targeted Observations during FASTEX. Q. J. R. Meteorol. Soc. 1999, 125, 3219–3240. [Google Scholar] [CrossRef]
- Lermusiaux, P.F.J. Adaptive Modeling, Adaptive Data Assimilation and Adaptive Sampling. Phys. D Nonlinear Phenom. 2007, 230, 172–196. [Google Scholar] [CrossRef]
- Shahrezaei, I.H.; Kim, H.-C. A Novel SAR Fractal Roughness Modeling of Complex Random Polar Media and Textural Synthesis Based on a Numerical Scattering Distribution Function Processing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7386–7409. [Google Scholar] [CrossRef]
- Large, W.G.; McWilliams, J.C.; Doney, S.C. Oceanic Vertical Mixing: A Review and a Model with a Nonlocal Boundary Layer Parameterization. Rev. Geophys. 1994, 32, 363–403. [Google Scholar] [CrossRef]
- Morss, R.E.; Battisti, D.S. Evaluating Observing Requirements for ENSO Prediction: Experiments with an Intermediate Coupled Model. J. Clim. 2004, 17, 3057–3073. [Google Scholar] [CrossRef]
- Mu, M. Methods, Current Status, and Prospect of Targeted Observation. Sci. China Earth Sci. 2013, 56, 1997–2005. [Google Scholar] [CrossRef]
- Mu, M.; Zhou, F.; Wang, H. A Method for Identifying the Sensitive Areas in Targeted Observations for Tropical Cyclone Prediction: Conditional Nonlinear Optimal Perturbation. Mon. Weather. Rev. 2009, 137, 1623–1639. [Google Scholar] [CrossRef]
- Majumdar, S.J. A Review of Targeted Observations. Bull. Am. Meteorol. Soc. 2016, 97, 2287–2303. [Google Scholar] [CrossRef]
- Palmer, T.N.; Gelaro, R.; Barkmeijer, J.; Buizza, R. Singular Vectors, Metrics, and Adaptive Observations. J. Atmos. Sci. 1998, 55, 633–653. [Google Scholar] [CrossRef]
- Langland, R.H.; Gelaro, R.; Rohaly, G.D.; Shapiro, M.A. Targeted Observations in FASTEX: Adjoint-Based Targeting Procedures and Data Impact Experiments in IOP17 and IOP18. Q. J. R. Meteorol. Soc. 1999, 125, 3241–3270. [Google Scholar] [CrossRef]
- Ancell, B.; Hakim, G.J. Comparing Adjoint- and Ensemble-Sensitivity Analysis with Applications to Observation Targeting. Mon. Weather. Rev. 2007, 135, 4117–4134. [Google Scholar] [CrossRef]
- Mu, M.; Duan, W.S.; Wang, B. Conditional Nonlinear Optimal Perturbation and Its Applications. Nonlinear Process. Geophys. 2003, 10, 493–501. [Google Scholar] [CrossRef]
- Zhou, F.; Mu, M. The Impact of Verification Area Design on Tropical Cyclone Targeted Observations Based on the CNOP Method. Adv. Atmos. Sci. 2011, 28, 997–1010. [Google Scholar] [CrossRef]
- Daescu, D.N.; Navon, I.M. Adaptive Observations in the Context of 4D-Var Data Assimilation. Meteorol. Atmos. Phys. 2004, 85, 205–226. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, Y.; Wang, H.; Chen, D.; Toth, Z. Ensemble Transform Sensitivity Method for Adaptive Observations. Adv. Atmos. Sci. 2016, 33, 10–20. [Google Scholar] [CrossRef]
- Houtekamer, P.L.; Mitchell, H.L. A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation. Mon. Weather. Rev. 2001, 129, 123–137. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, H.; Feng, X.; Xie, Y. Nonlinear Least Squares En4DVar to 4DEnVar Methods for Data Assimilation: Formulation, Analysis, and Preliminary Evaluation. Mon. Weather. Rev. 2018, 146, 77–93. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, X. A Multigrid Nonlinear Least Squares Four-Dimensional Variational Data Assimilation Scheme With the Advanced Research Weather Research and Forecasting Model. J. Geophys. Res. Atmos. 2018, 123, 5116–5129. [Google Scholar] [CrossRef]
- Tian, X.; Xie, Z.; Dai, A. An Ensemble Conditional Nonlinear Optimal Perturbation Approach: Formulation and Applications to Parameter Calibration. Water Resour. Res. 2010, 46, W09540. [Google Scholar] [CrossRef]
- Tian, X.; Feng, X. An Adjoint-Free CNOP–4DVar Hybrid Method for Identifying Sensitive Areas Targeted Observations: Method Formulation and Preliminary Evaluation. Adv. Atmos. Sci. 2019, 36, 721–732. [Google Scholar] [CrossRef]
- Tian, X.; Feng, X.; Zhang, H.; Zhang, B.; Han, R. An Enhanced Ensemble-Based Method for Computing CNOPs Using an Efficient Localization Implementation Scheme and a Two-Step Optimization Strategy: Formulation and Preliminary Tests. Q. J. R. Meteorol. Soc. 2016, 142, 1007–1016. [Google Scholar] [CrossRef]
- Tian, X.; Feng, X. A Nonlinear Least-Squares-Based Ensemble Method with a Penalty Strategy for Computing the Conditional Nonlinear Optimal Perturbations. Q. J. R. Meteorol. Soc. 2017, 143, 641–649. [Google Scholar] [CrossRef]
- Tian, X.; Xie, Z.; Sun, Q. A POD-Based Ensemble Four-Dimensional Variational Assimilation Method. Tellus A Dyn. Meteorol. Oceanogr. 2011, 63, 805–816. [Google Scholar] [CrossRef]
- Wang, B.; Tan, X. Conditional Nonlinear Optimal Perturbations: Adjoint-Free Calculation Method and Preliminary Test. Mon. Weather. Rev. 2010, 138, 1043–1049. [Google Scholar] [CrossRef]
- Duan, W.; Xu, H.; Mu, M. Decisive Role of Nonlinear Temperature Advection in El Niño and La Niña Amplitude Asymmetry. J. Geophys. Res. Ocean. 2008, 113, C01014. [Google Scholar] [CrossRef]
- Duan, W.; Mu, M. Investigating Decadal Variability of El Nino–Southern Oscillation Asymmetry by Conditional Nonlinear Optimal Perturbation. J. Geophys. Res. Ocean. 2006, 111, C07015. [Google Scholar] [CrossRef]
- Mu, M.; Jiang, Z. A Method to Find Perturbations That Trigger Blocking Onset: Conditional Nonlinear Optimal Perturbations. J. Atmos. Sci. 2008, 65, 3935–3946. [Google Scholar] [CrossRef]
- Pires, C.; Vautard, R.; Talagrand, O. On Extending the Limits of Variational Assimilation in Nonlinear Chaotic Systems. Tellus A 1996, 48, 96. [Google Scholar] [CrossRef]
- Liu, S.; Shao, Q.; Li, W.; Han, G.; Liang, K.; Gong, Y.; Wang, R.; Liu, H.; Hu, S. A New Scheme for Capturing Global Conditional Nonlinear Optimal Perturbation. J. Mar. Sci. Eng. 2022, 10, 340. [Google Scholar] [CrossRef]
- Liang, K.; Li, W.; Han, G.; Shao, Q.; Zhang, X.; Zhang, L.; Jia, B.; Bai, Y.; Liu, S.; Gong, Y. An Analytical Four-Dimensional Ensemble-Variational Data Assimilation Scheme. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002314. [Google Scholar] [CrossRef]
- Mu, M.; Duan, W.; Wang, Q.; Zhang, R. An Extension of Conditional Nonlinear Optimal Perturbation Approach and Its Applications. Nonlinear Process. Geophys. 2010, 17, 211–220. [Google Scholar] [CrossRef]
- Sparnocchia, S.; Nadia, P.; Demirov, E. Multivariate Empirical Orthogonal Function Analysis of the Upper Thermocline Structure of Mediterranean Sea from Observations and Model Simulations. Ann. Geophys. 2003, 21, 167–187. [Google Scholar] [CrossRef]
- Birgin, E.G.; Martínez, J.M.; Raydan, M. Algorithm 813: SPG—Software for Convex-Constrained Optimization. ACM Trans. Math. Softw. 2001, 27, 340–349. [Google Scholar] [CrossRef]
- Ezer, T.; Mellor, G.L. A Generalized Coordinate Ocean Model and a Comparison of the Bottom Boundary Layer Dynamics in Terrain-Following and in z-Level Grids. Ocean. Model. 2004, 6, 379–403. [Google Scholar] [CrossRef]
- Mellor, G.L.; Häkkinen, S.M.; Ezer, T.; Patchen, R.C. A Generalization of a Sigma Coordinate Ocean Model and an Intercomparison of Model Vertical Grids. In Ocean Forecasting: Conceptual Basis and Applications; Pinardi, N., Woods, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 55–72. ISBN 978-3-662-22648-3. [Google Scholar]
- Han, G.; Li, W.; Zhang, X.; Li, D.; He, Z.; Wang, X.; Wu, X.; Yu, T.; Ma, J. A Regional Ocean Reanalysis System for Coastal Waters of China and Adjacent Seas. Adv. Atmos. Sci. 2011, 28, 682–690. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a Turbulence Closure Model for Geophysical Fluid Problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef]
- Li, W.; Xie, Y.; He, Z.; Han, G.; Liu, K.; Ma, J.; Li, D. Application of the Multigrid Data Assimilation Scheme to the China Seas’ Temperature Forecast. J. Atmos. Ocean. Technol. 2008, 25, 2106–2116. [Google Scholar] [CrossRef]
- Qu, T.; Song, Y.T.; Yamagata, T. An Introduction to the South China Sea Throughflow: Its Dynamics, Variability, and Application for Climate. Dyn. Atmos. Ocean. 2009, 47, 3–14. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Q.; Xie, Q.; He, Z.; Zhuang, W.; Shu, Y.; Xiao, X.; Hong, B.; Wu, X.; Sui, D. Progress of Regional Oceanography Study Associated with Western Boundary Current in the South China Sea. Chin. Sci. Bull. 2013, 58, 1205–1215. [Google Scholar] [CrossRef]
- Marks, K.M.; Smith, W.H.F. An Evaluation of Publicly Available Global Bathymetry Grids. Mar. Geophys. Res. 2006, 27, 19–34. [Google Scholar] [CrossRef]
- Carton, J.A.; Chepurin, G.A.; Cao, X. A Simple Ocean Data Assimilation Analysis of the Global Upper Ocean 1950-95. Part II: Results. J. Phys. Oceanogr. 2000, 30, 311–326. [Google Scholar] [CrossRef]
- Conkright, M.E.; Locarnini, R.A.; Garcia, H.E.; O’Brien, T.D.; Boyer, T.P.; Stephens, C.; Antonov, J.I. World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures CD-ROM Documentation; National Oceanographic Data Center: Silver Spring, MD, USA, 2002.
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, Y. Numerical Simulation of the Regional Ocean Circulation in the Coastal Areas of China. Adv. Atmos. Sci. 1999, 16, 443–450. [Google Scholar] [CrossRef]
- Li, Y.; Peng, S.; Liu, D. Adaptive Observation in the South China Sea Using CNOP Approach Based on a 3-D Ocean Circulation Model and Its Adjoint Model. J. Geophys. Res. Ocean. 2014, 119, 8973–8986. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Zhu, B.; Sun, C.; Zhang, L. The Upper Ocean Response to Tropical Cyclones in the Northwestern Pacific Analyzed with Argo Data. Chin. J. Oceanol. Limnol. 2007, 25, 123–131. [Google Scholar] [CrossRef]
- Lin, I.-I.; Liu, W.T.; Wu, C.-C.; Chiang, J.C.H.; Sui, C.-H. Satellite Observations of Modulation of Surface Winds by Typhoon-Induced Upper Ocean Cooling. Geophys. Res. Lett. 2003, 30, 1131. [Google Scholar] [CrossRef]
Name | Initial Month | Integration Step (Day) | Year of Sample |
---|---|---|---|
Case1 | January | 30 | (2015, 2016, 2017) |
Case2 | April | 30 | (2014, 2015, 2016) |
Case3 | July | 30 | (2013, 2014, 2015) |
Case4 | October | 30 | (2012, 2013, 2014) |
Test Name | SSH | Temperature | Salinity | Current | Mean |
---|---|---|---|---|---|
T0 | 0.613 | 0.517 | 0.509 | 0.472 | 0.527 |
TA | 0.706 | 0.633 | 0.636 | 0.610 | 0.646 |
TB | 0.673 | 0.603 | 0.612 | 0.568 | 0.614 |
Name | Metrics | Steps | SSH (m) | SST (°C) | SSS (PSU) | SSU (m·s−1) | SSV (m·s−1) |
---|---|---|---|---|---|---|---|
TA | RMSE | 5 | 0.052 | 0.332 | 0.056 | 0.033 | 0.038 |
10 | 0.091 | 0.376 | 0.068 | 0.067 | 0.071 | ||
Mean | 0.063 | 0.351 | 0.061 | 0.058 | 0.062 | ||
TB | RMSE | 5 | 0.058 | 0.353 | 0.056 | 0.035 | 0.043 |
10 | 0.093 | 0.381 | 0.071 | 0.069 | 0.079 | ||
Mean | 0.071 | 0.367 | 0.063 | 0.061 | 0.066 |
Name | Metrics | SSH (m) | SST (°C) | SSS (PSU) | SSU (m·s−1) | SSV (m·s−1) | Mean |
---|---|---|---|---|---|---|---|
TA | R2 | 0.734 | 0.747 | 0.745 | 0.638 | 0.593 | 0.691 |
Adj R2 | 0.731 | 0.746 | 0.743 | 0.633 | 0.591 | 0.688 | |
Mean | 0.732 | 0.746 | 0.744 | 0.635 | 0.592 | 0.690 | |
TB | R2 | 0.282 | 0.317 | 0.225 | 0.274 | 0.216 | 0.262 |
Adj R2 | 0.281 | 0.317 | 0.223 | 0.272 | 0.216 | 0.261 | |
Mean | 0.281 | 0.317 | 0.224 | 0.273 | 0.216 | 0.262 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Zheng, Q.; Li, W.; Han, G.; Wang, X.; Hu, S. An Ensemble CNOP Method Based on a Pre-Screening Mechanism for Targeted Observations in the South China Sea. J. Mar. Sci. Eng. 2024, 12, 135. https://doi.org/10.3390/jmse12010135
Wang R, Zheng Q, Li W, Han G, Wang X, Hu S. An Ensemble CNOP Method Based on a Pre-Screening Mechanism for Targeted Observations in the South China Sea. Journal of Marine Science and Engineering. 2024; 12(1):135. https://doi.org/10.3390/jmse12010135
Chicago/Turabian StyleWang, Ru, Qingyu Zheng, Wei Li, Guijun Han, Xuan Wang, and Song Hu. 2024. "An Ensemble CNOP Method Based on a Pre-Screening Mechanism for Targeted Observations in the South China Sea" Journal of Marine Science and Engineering 12, no. 1: 135. https://doi.org/10.3390/jmse12010135
APA StyleWang, R., Zheng, Q., Li, W., Han, G., Wang, X., & Hu, S. (2024). An Ensemble CNOP Method Based on a Pre-Screening Mechanism for Targeted Observations in the South China Sea. Journal of Marine Science and Engineering, 12(1), 135. https://doi.org/10.3390/jmse12010135