
Citation: Capetillo-Contreras, O.;

Pérez-Reynoso, F.D.;

Zamora-Antuñano, M.A.;

Álvarez-Alvarado, J.M.;

Rodríguez-Reséndiz, J. Artificial

Intelligence-Based Aquaculture

System for Optimizing the Quality of

Water: A Systematic Analysis. J. Mar.

Sci. Eng. 2024, 12, 161. https://

doi.org/10.3390/jmse12010161

Academic Editor: Lluís Miret-Pastor

Received: 23 November 2023

Revised: 9 January 2024

Accepted: 11 January 2024

Published: 13 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Review

Artificial Intelligence-Based Aquaculture System for Optimizing
the Quality of Water: A Systematic Analysis
Omar Capetillo-Contreras 1 , Francisco David Pérez-Reynoso 2 , Marco Antonio Zamora-Antuñano 3 ,
José Manuel Álvarez-Alvarado 1,* and Juvenal Rodríguez-Reséndiz 1,*

1 Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico;
ccapetillo08@alumnos.uaq.mx

2 Laboratorio Nacional de Investigación en Tecnologías Médicas (LANITEM), Centro de Ingeniería y Desarrollo
Industrial (CIDESI), Querétaro 76125, Mexico; investigador3.lanitem@cidesi.edu.mx

3 Centro de Investigación, Innovación y Desarrollo Tecnológico (CIIDETEC-UVM), Universidad del Valle
de México, Querétaro 76230, Mexico; marco.zamora@uvmnet.edu

* Correspondence: jmalvarez@uaq.edu.mx (J.M.Á.-A.); juvenal@uaq.edu.mx (J.R.-R.);
Tel.: +52-442-192-1200 (ext. 7043) (J.R.-R.)

Abstract: The world population is expected to grow to around 9 billion by 2050. The growing need
for foods with high protein levels makes aquaculture one of the fastest-growing food industries in
the world. Some challenges of fishing production are related to obsolete aquaculture techniques,
overexploitation of marine species, and lack of water quality control. This research systematically
analyzes aquaculture technologies, such as sensors, artificial intelligence (AI), and image processing.
Through the systematic PRISMA process, 753 investigations published from 2012 to 2023 were
analyzed based on a search in Scopus and Web of Science. It revealed a significant 70.5% increase in
the number of articles published compared to the previous year, indicating a growing interest in this
field. The results indicate that current aquaculture technologies are water monitoring sensors, AI
methodologies such as K-means, and contour segmentation for computer vision. Also, it is reported
that K means technologies offer an efficiency from 95% to 98%. These methods allow decisions
based on data patterns and aquaculture insights. Improving aquaculture methodologies will allow
adequate management of economic and environmental resources to promote fishing and satisfy
nutritional needs.

Keywords: machine learning; artificial vision; feed managment; aquaculture; physical–chemical
parameters; real-time detection

1. Introduction

In recent years, aquaculture has gained greater importance due to concern that live-
stock farming, agriculture, and fishing are no longer sufficient activities to provide certainty
in the demand for the food necessary for the population. Therefore, this technique can
provide an option that includes food security, reduces food shortages, alleviates poverty,
and reduces exploitation of the global fishing market. There has been a substantial increase
in the consumption of aquaculture protein, reaching 3.1% worldwide, and its consumption
also increased by 2.1% concerning other commonly consumed proteins of animal origin,
such as meat and dairy products, to name a few [1]. Aquaculture products are globalized
foods and the focus of the Global Value Chain. Europe, North America, and Japan require
around 60% and 70% of aquaculture production [2]. The availability of fish was due to the
proliferation of development of aquaculture systems that had an average annual growth
of 6% from 2001 to 2018 [1]. Due to this, aquaculture became one of the most globalized
foods, concentrating interest of agroindustries, civil society organizations (CSOs), and non-
governmental organizations (NGOs). Preserving the proper physicochemical parameters
contributes to the preservation of health and development in the density of the species. On
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the other hand, it is concluded that having poor-quality pond water will cause a severe
problem for the fish since it will contribute to reducing the defenses against viral and
bacterial infections and more diseases that could cause the death of the biological entity [3].
Therefore, maintaining the physicochemical parameters that preserve water quality and
contribute to protecting the species represents a challenge for technology. The solution
will consist of applying current technological devices, such as sensors, to obtain the data
required to implement artificial intelligence (AI) and artificial vision methodologies. The
technologies mentioned above will provide an opportunity to improve natural resource
management practices, increase food certainty, reduce fishing efforts, and preserve food se-
curity. One of the challenges of this article, from the engineering application approach, is to
identify the trends of all the technologies developed for aquaculture systems in the last ten
years. The use of artificial intelligence and artificial vision will also be emphasized from the
perspective of applying these methodologies to establish a path toward future challenges
in fish production. This food of maritime origin is a notable provider of protein since it
contains essential elements for the development of human beings, in addition to being part
of nutritional balance [2]. Due to the proliferation of consumption of marine products, it has
been essential to perpetuate fish health through semi-intensive and intensive techniques in
aquaculture farms [4]. Maintaining water quality control and timely identification of any
disease in the fish is a priority in aquaculture processes. Real-time monitoring serves to
prevent and specify the treatment of the biological entity, avoiding diseases and deaths. It
has been shown that the insertion of technological innovation in the timely diagnosis of fish
contributes to increased production and decreased environmental impact. The objective of
this article is to analyze the trends of sensors for data collection, artificial vision, and AI
methodologies in aquaculture issues to improve fishery production and adequately manage
water resources. Through the above, the following research questions could be answered:

• What current technologies are applied in smart aquaculture systems?
• What instrumentation systems are used for water control and monitoring?
• What image processing and artificial intelligence methodologies are applied in intelli-

gent aquaculture systems?
• What is the future trend of aquaculture systems?

This article is divided as follows. Section 1 presents the introduction, where a brief
context is provided on the generalities about aquaculture and its impact as an option in
the need to provide food. Section 2 presents the methodology and tools used to obtain
and analyze the data. Section 3 mentions the taxonomy that provides a hierarchical frame-
work for aquatic species. Section 4 presents the technologies and innovations currently
applied in aquaculture systems to control and monitor water quality. Section 5 shows the
variety of sensors used to obtain water data in ponds and lakes. Section 6, the discussion
section, presents the findings about the articles presented and the methodologies used in
aquaculture systems, and scope and limitations are discussed. Finally, Section 7 presents
the conclusion and future works.

2. Methodology

For the research of this article, publications from 2012 to 2023 were taken into account;
more than 753 investigations were found based on the search in Scopus and Web of
Science with the keywords “aquaculture and intelligent systems”. Figure 1 presents the
information selection process. The objective of this article is to provide a general review of
the technological instruments and artificial intelligence methods that are currently used.
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Query
Aquaculture AND Intelligent systems.

Data found in the Scopus and Web of Science registry database

Scopus = 419 Web of Science = 334

Total=753

Inclusion Criteria:
-Techniques in aquaculture, water quality
including fish factories, ponds, and lakes
using different electronic devices, AI and
vision intelligence to monitor water quality,
and information was added, including the
following aspects:
-Implementation of some techniques for the
control and monitoring the water quality.
-Empirical models or prototypes to analyze
water quality with external data or data
collected by the authors.
-Studies related to the areas of engineering
and computer sciences.
Exclusion Criteria:
-The articles are not in English.
-Works that do not preserve water quality.

Full Text 
reading

754
-614
140

Latest reading 
and set of 

bibliographies 
included in the 

review. 
67

Figure 1. Systematic process for selecting review information.

In the following subsections, the specific discussions of each aquaculture hierarchy are
analyzed, thus delimiting the topic to be addressed concerning other titles that could coin-
cide in some keywords but that are not the object of study of this article. The aquaculture
taxonomy is shared in Figure 2.

Production systems

Type of species Number of species Productive intensity level Environment 

Pisciculture

Shrimp farming

Salmon farming

Tilapiculture

Raniculture

Malacoculture

Monoculture

Polyculture

Whole crop

Extensive

Semi extensive

Hypertensive

Semi intensive

Mariculture

Brackish water 
aqucaculture

Fresh water 
aquaculture

Figure 2. Taxonomy for keyword research in Scopus and Web of Science databases.
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The research identifies the scope, capabilities, biases, and challenges of intelligent
aquaculture systems. The articles’ interest analysis was also carried out based on the year
and country of each publication; this information is shared in Figure 3.
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Figure 3. Report of publications from 2012 to 2022, where (a) displays the documents published by
country and (b) presents the documents published by year.

Figure 3a shows that China had an increase in scientific publications derived from
the fact that aquaculture production increased by 40.89% in 2021 compared to 2012. This
increase led to the evaluation of sustainable and ecological development by identifying the
different modes of cultivation [5]. The technology was applied to encourage traditional
aquaculturists to adopt advanced techniques to promote the quality of the aquatic prod-
uct [6]. Figure 3b shows the increase in scientific publications worldwide, with a rise of
70.5% from 2021 to 2022 derived from the need to satisfy food needs through obtaining
maritime food. Aquaculture techniques reduce the environmental impact, preserve marine
species, and provide high-protein, nutritious food. Aquaculture research also aims to
optimize fishery production and protect water resources and land use.
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Figure 4 shows publications about aquaculture systems by subject area. It is seen
that 20.3% of the publications are made in computer sciences and 19.6% in engineering.
The explanation of these percentages can be derived from the fact that it is challenging to
introduce computational methodologies to the application of the entire engineering project.
Some issues, such as limited resources, non-transparent objectives, unrealistic expectations,
and a schedule preparation deficiency, result in the failure of most projects.

20.34%

19.55%

11.51%8.94%

7.15%

5.25%

3.91%

3.80%

3.24%

3.02%

2.68%

2.46%

2.01%
1.45%

4.69%

Computer Science

Engineering

Agricultural and Biological Sciences

Environmental Science

Physics and Astronomy

Mathematics

Decision Sciences

Social Sciences

Energy

Materials Science

Biochemistry, Genetics and Molecular Biology

Earth and Planetary Sciences

Medicine

Chemical Engineering

Chemistry, business, economics and others

Figure 4. Documents published with the keywords “smart aquaculture” and their contributions for
each research area.

3. Aquaculture Taxonomy

From an engineering point of view, aquaculture is approached from the activities
related to the use of technologies applied in hydrobiological production processes. Tech-
nology also implies the proper management of natural resources and aquaculture species.
The innovative development of new processes that will be incorporated into aquaculture
methodologies means sustainability in cultivating maritime species. Aquaculture can be
hierarchized into different production systems according to the habitat, the species, the type
of facility, and the level of intensification, among others [7]. For this article, classification by
environment and species will be the focus.

3.1. Taxonomic Classification According to Environment

This section briefly introduces the division of aquaculture by the environment in
which the cultivation of the species is practiced.

• Mariculture or marine aquaculture refers to the breeding and reproduction of oysters,
shrimp, clams, salmon, and bivalves, to name a few. It regularly develops in the ocean
in saline water with at least 30 PSU (practical salinity units).

• Aquaculture in freshwater: This activity takes place on the continent, with water that
has less than 0.5 PSU. This practice refers to the reproduction and rearing of aquatic
animals in ponds, rivers, lakes, and continental bodies of water; some species are
shrimp, tilapia, and crabs, to name a few.

• Aquaculture in salty water uses a mixture of seawater and freshwater in coastal areas,
containing a salinity between 0.5 and 30 practical salinity units.

Figure 5 focuses on the hierarchy by type of environment.
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Figure 5. Aquaculture is divided by type of environment.

3.2. Classification According to the Type of Species

It is important to divide aquaculture by species to apply monitoring technologies,
system control, and appropriate good practices so that the organism is cultured efficiently
and optimized for its production. The taxonomic classification by species division is shared
in Figure 6.

Frog farming
is a process by

which the
bullfrog is

mainly
cultivated.

Procedure in
which the

cultivation of
oyster-type

mollusks, fan
shells and
mussels is

carried out.
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RANICULTURE TILAPICULTUREMALACOCULTURE

Is the
production of

salmon for
human

consumption.

SALMON FARMING

Refers to the
cultivation of
freshwater or

marine
shrimp.

SHRIMP FARMING

Refers to the
production of

alga for
human

consumption.

ALGACULTURE

Figure 6. Taxonomic division by species in aquaculture.

4. Aquaculture Technologies

Current aquaculture systems employ applied technologies such as data acquisition
sensors, AI, and machine vision. These devices allow the control and monitoring of
water quality to maintain the appropriate physicochemical parameters for use within an
aquaculture system [8–14]. Preserving the variables of the aquatic habitat allows increasing
the growth rates of fish, improving food, and preserving adequate habitat parameters to
provide certainty in fishery production.Water quality must be maintained in optimal ranges
of potential hydrogen (pH), ammonia, nitrate (NO3), temperature, nitrite (NO2), water level
in the pond, dissolved oxygen (DO), salinity (SL), electrical conductivity (EC), and water
hardness. In the case of controlling optimal parameters, it is necessary to prioritize water
quality through constant monitoring and the execution of actuators that help preserve the
desirable habitat to produce the species. Table 1 presents the minimum concentrations or
optimal ranges for aquaculture systems.
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Table 1. Minimum concentrations or optimal ranges of water quality for aquaculture system.

Parameter Minimum or Optimal Concentrations Reference

pH 6.5–8.0 [8]Nitrite nitrogen 0.25–1.0 mg NO2-N/L

Temperature 17–34 °C [9]Dissolved Oxygen >4 mg/L

Flow 1–2 L/min
Total Dissolved Solids <1000 mg/L [10]

Salinity 0–2 ppt
Relative Humidity 60–80%

CO2 340–1300 ppm
Alkalinity 50–150 mg/L CaCO3 [11]

Electro-Conductivity 30–5000 µ-mhos/cm

Total ammonia <2 mg NH3-N/L [12]

Nitrate nitrogen 50–100 mg NO3-N/L [13]

Light Intensity 600–900 PPFD [14]

It is worth mentioning that depending on the species to be cultivated, a specific concept
is labeled that will serve to identify the type of culture that is going to be carried out, for
example, tilapia farming, shrimp farming, salmon farming, and malacoculture. Fish farming,
part of aquaculture, focuses on fish farming in general. In fish production, it should be
mentioned that production has grown by 46% from 2016 to 2018, compared to 45.1% from
2011 to 2015. However, technology is still required to help with disease problems, water
contamination, fry production, and poor process management practices. To solve part of
these problems, it is necessary to include innovations applicable to these systems, such as
aquaculture sensors, artificial vision, artificial intelligence, and data analysis. In [15], the
authors propose a buoy system in which affordable AI is applied to measure water quality
and provide real-time information to predict temperature, salinity, dissolved oxygen, and
water velocity to establish the ideal place where aquaculture cages will be installed in the
coastal zone and thus optimize the fishing production of certain maritime species. Another
example of the contribution in the control and monitoring of water conditions to preserve
marine ecosystems that will allow fishing for maritime food is established in the study carried
out on the coasts of the Mediterranean, where space images, remote sensing, satellites, and
machine learning were used. With this, the results yielded a method to evaluate ecological
quality and environmental management [16]. In [17], the use of remote sensors is shared,
which allows data to be obtained about the quality of the water in the coastal lagoon of the
Mar Menor in the Southeast of Spain, where water parameters are measured for the purpose
of making strategic decisions to provide preventive assistance in the event of ecological
disasters that condition the environmental balance that compromises the continued provision
of ecosystem services such as aquaculture, fishing, and some industrial activities in the area.

5. Aquaculture Sensors

Various sensors can extract information from the parameters existing in the external
environment and within the aquaculture system. This water quality monitoring is critical for
assembling a database that will be analyzed using AI technologies. The purpose of the analysis
will be to explain the events that occurred at the time and so that patterns can be established
that can predict future events in the control of the fish care process. Pattern prediction will lead
to optimal, economically viable, and sustainable production. Figure 7 shows how information
about the aquaculture system and its external environment is acquired. Aquaculture sensors,
transmission processes, collection, analysis, and application of the data obtained to execute
water quality management processes, preservation of the biological entity, and determined
biomass forecasts are mentioned.
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Process management and application

Data search engine
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Estimation of biomass

Water quality
management

Habitat preservation
processes

Figure 7. Sensors, transmission, and data processing are applied to different tasks in aquaculture systems.

The main objective of aquaculture systems is the control and monitoring of aquaculture
systems, so innovative applications have been developed and applied to smart devices with
computing devices where the aquarium system interacts with a remote user interface [18].
In [19], the authors implement the Internet of Things (IoT). Essential data in an aquarium
system are the ammonia level and water temperature. This paper proposes a robust aquarium
control system using the decision tree regression (DTR) algorithm. In [20], it is explained
that aquaculture is one of the most important sources of food for humans. This paper
proposed a sustainable fish farming system prototype, which can, through the application
of IoT, reduce the need for energy to control the environment; LED lighting is used to
support photosynthesis during the night. In [21], the integration of intelligent systems with
applications in aquaculture that include water recirculation, biological flocculation technology,
automation, and continuous monitoring that guarantees water quality and transcends a high
percentage of growth and development of the fish is mentioned.

One aquaculture system that controls and collects data in real time was developed in
Taiwan to solve the problems faced by the aquaculture sector in that country. Since there is a
large population of senile people and little labor participation by young adults, this system
is configured with sensors for pH, water temperature, turbidity, and dissolved oxygen.
It proposes monitoring and adjusting water parameters remotely. Data are acquired to
apply AI to predict increased California bass biomass. The intelligent aquaculture system
and artificial intelligence can be used as an autonomous system that will reduce costs,
increase species production, and support aquaculturists [22]. Another aquaculture system
emerged due to the problem of typhoons, lack of labor, outdated traditional techniques,
and cold waves that harm aquaculture in Taiwan. For this system, temperature, pH, water
level, dissolved oxygen, and wireless data transmission sensors were used to monitor
the optimal parameters of the fish’s habitat. The pH sensor used for this system cannot
be in continuous contact with water, so a system with a robot arm was designed. This
implementation made it possible to correct the problem above and reduce costs due to
handling errors, material resources, and labor savings [23,24]. Obtaining environmental
data and transmitting the information wirelessly to the computer is essential. The data will
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then be analyzed, processed, and presented through LabView software 2012 version or
superior and the GSM (Global System for Mobile module) [25].

Innovative aquaculture has been promoted exponentially in recent years, and excess
production has been required because of the high density of aquaculture practices. This
contributes to the appearance of diseases in fish, and the reduction in production quality has
undermined the balance of the aquatic habitat. Current technologies have been integrated
to support smart fish farming to solve problems such as cost-effective labor. When the
appropriate parameters of the aquaculture habitat are maintained, the efficiency of feeding
the fish is increased, in addition to preventing diseases. Intelligent equipment based on
IoT, 5G connections, and AI, with its algorithms and computing, will aim to find and solve
aquaculture problems. Therefore, optimized module designs that will serve as construction
for a smart fish farm [26–31] are proposed. Figure 8 shows a typical aquaculture system
with actuators, sensors (turbidity, pH, salinity, dissolved oxygen, etc.), storage of the data
obtained by the sensors, data analysis, the visual user interface, and, in several of the
aquaculture systems, process control to enable the actuators and preserve water quality.

pH
Temperature

Ammonia
etc.

SensorsActuators

Cloud

Storage Data Analysis

Making decision

User interface

Web page/Pc
mobile

Control processes

Figure 8. A standard aquaculture system includes communication protocol, actuators, sensors,
storage, data analysis, decision making by the data system, and notification to the user.

In [30], the aquaculture system describes a series of sensors for water monitoring that,
unlike the other systems compared in the following table, adds sensors for ammonia, fish
mobility, salinity, and nitrate. This review identified different articles on aquaculture that
share the use of sensors. The synthesis of the systems is shown in Table 2.

Table 2. General overview of aquaculture systems.

Ref System Connection Tb DO Ca WL WQ Wt Server

[22] Fishpond Wi-Fi X X Cloud
[24] Fish farm Wi-Fi/LoRa X X Web
[25] Fishpond Wi-Fi X X PC
[26] Fishpond Wi-Fi X X Cloud
[27] Fishpond Wire Network X X Web
[28] Fishpond Wireless X X Cloud
[29] Fish farm Lora Wan X X Cloud
[30] Fish farm Wi-Fi/LoRa/5G X X X X Cloud

X = Apply.

Table 2 describes the network protocols and servers most commonly used in aquacul-
ture systems. The aquaculture systems [22,25] were applied for a prototype compared with
the other aquaculture systems used in fish farms. It should be noted that the aquaculture
project [25] turned out to be more energy-efficient and less costly compared to the one [31]
that required more excellent economic investment in addition to having the limitation of
presenting instability in the system. According to the monitoring of water through the
sensors, the particular objectives of each project can be achieved, as shown in Table 3.
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Table 3. Water monitoring, objectives, benefits, and limitations.

Reference Mainboard Objective Benefits

[22] Arduino Mega 2560 Predict growth,
autonomous feeding

Reduce excess feeding, fish
monitoring and control, optimize
production, reduce production costs

[24]
Plc for the robot,
Arduino Mega 2560
for sensors

Problem detection

24 h processes, high reliability and
stability in measurements,
parameter change notice, the robotic
arm can perform maintenance work,
remote monitoring, real-time water
notification

[31] Microcontrollers

Measurement and
control of
production,
continuous
monitoring, biomass
estimation

Remote monitoring, real-time water
notification, disease prevention,
24 h processes, robot process
operators, precise and automatic
food distribution, reduce operating
costs, improve food management

[25] Atmega 16, Labview
for visualization

Water monitoring
and network control

Monitoring in 3 min time intervals,
user notification

Artificial Vision and Image Processing in Aquaculture System

Artificial vision allows computers and systems to extract important data from videos
or digital images, actions can be taken, and processes can be executed. Aquaculture
has been used to recognize fish and monitor and extract information that allows proper
management, effective feeding, and disease prevention. The activities carried out through
AI are summarized in the recognition and counting of individuals, biomass measurement,
behavioral monitoring, and classification of the species and factors around the fish’s habitat.
Within sustainable development trends, machine learning is a subdivision of artificial
intelligence that can recognize and learn the observed data characteristics by applying
algorithmic models. In the application of this article, data such as size, weight, temperature,
and pH measurement can be focused on. It is essential to mention that aquaculture
represents a continuously growing global production, mainly in species such as carp, catfish,
bivalves, and tilapia, representing 75% of aquaculture production [32]. There is a significant
diversity of species in aquaculture, and it is estimated that 40% of the different categories
belong to shellfish, fish, and algae produced in various aquatic habitats such as freshwater,
brackish water, and marine water [33]. For an approach in innovative aquaculture, a range
of instruments are proposed that can monitor the parameters of the aqueous habitat in
real time and thus make decisions based on the data obtained [34]. Innovative aquaculture
production includes automated and remote control and IoT. Through collecting information
on temperature, humidity, dissolved oxygen, light, and pH, data transmission to the
monitoring center, data analysis, and decision making for performance aquaculture systems
can be carried out [35]. The application of AI and the IoT in aquaculture has resolved
existing difficulties in traditional aquaculture [36]. These technologies have made it possible
to carry out actions to control water quality in hatcheries, water troughs, and cages [37,38];
by monitoring the existing parameters in the ponds, the supply of the amount of food and
the appropriate time for its nutrition is improved. The feeding period is also reduced, and
this reduces labor, since the entire process is carried out under automation. Aquaculture
presents several challenges, including preserving water quality, maintenance costs, food,
and space. Due to this, biofloc technology, which uses food not consumed to convert it
into organic matter, has been chosen. This allows the reuse of the food. The patterns are
analyzed by obtaining data from the sensors, and an AI model is proposed to generate
learning models and decisions for proper food management [39].

Data has been provided on the application of AI in aquaculture applied in feeding
mechanisms, drones, aerial robotic systems, robotic fish, disease prevention, mobile phone
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applications, open sea fishing, and blockchain in shrimp supply [40,41]. In [42], it is men-
tioned that automated learning or machine learning aims to solve difficulties using algorithms
and learning data to create mathematical models to optimize the aquaculture system. There
are various models implemented in aquaculture, including decision tree (DT) [43], Naive
Bayes [44], support vector machine (SVM) [45], artificial neural network (ANN) [46], K-
neighbor nearest (KNN) [47], deep learning (DL) [48], and ensemble learning (EL) [49]. In [50],
supervised, unsupervised, and semi-supervised learning is mentioned, and the four types
of machine learning structures are mentioned. Supervised learning is used for classification
and regression as a learning method with a model that maintains the object’s value. Citing
the theory of machine learning and its advantages, several theories have been implemented
in aquaculture, for example, the detection of fish biomass [51,52], calculation of fish size [53]
and weight [54–56], individual counting [57], fish recognition [58], age detection [59], sex
detection [60], fish species classification [61–63], feeding behavior [64], univariate predic-
tion [65,66], and multivariate prediction [67], with high accuracy. Regarding artificial vision
processes, the documents that make intelligent diagnoses of possible fish diseases will be
addressed, ensuring their well-being and health and thus preventing the death of the species.
One of the main factors causing approximately 50% of the overall loss of fish production
is disease, as it spreads rapidly and on a large scale in a short time [68]. Fish parasites can
adversely affect humans to the extent of transmitting diseases such as salmonella [69]. These
diseases are caused by bacteria, viruses, or contamination of their habitat, and conventional
methods are slow, expensive, and require the dissection of fish tissue. Because of this, it is
imperative to apply new technologies that can prevent and diagnose diseases in real time,
which will keep fish disease-free and prevent the spread of diseases. Research in expert
systems that began in the 70s and has had an increase in its application until the 90s has
achieved progress in diagnosing disease in fish [70], although it should be mentioned that
the precision in the diagnosis depends on experts most of the time. For the analysis of fish
images, greater precision has been required, and more accurate images have been obtained
by eliminating noise in the visual information. This generally includes blurring of the image
area, a drop of water on the lens, or a section of the fish outside the angle of the camera lens.
Appropriate techniques to solve these problems have been detailed based on contour methods
and recovery of missing information through segmentations of representative contours by
applying weighted least squares iteratively to recover information from missing or poorly
segmented contour segments [71]. Smart aquaculture promotes decreased labor and supply
costs, increased operational efficiency, greater productivity, and food certainty.

Due to the aforementioned, innovation is demonstrated in obtaining information
corresponding to the preservation of fish and the diagnosis of diseases. Table 4 provides
the methods currently used to obtain segmentation images, listing the steps that each of
the described methodologies followed to extract information about the health of the fish in
its aquatic environment.

The information in Table 5 compiles the methods applied for labeling the information
obtained from the biological entity and which will later be used by the AI for data processing
and application of the K means methodology. It can be seen that the weighted least squares
method generates 95% efficiency and the deep neural network method generates 98%, these
two being the procedures that represent the greatest reliability in their results. Table 5 shares
the methodology for obtaining the image, the AI for data analysis processing, reference
points, labeling, and process efficiency.
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Table 4. Artificial vision methodology for image processing in aquaculture system.

Work Object Obtaining the Image Advantages

[71]
Fish on
fishmonger
ramps

Contour segmentation: Does not require high volumes of datasets.
Coarse to acceptable level segmentation. Prior knowledge of the shape of the fish.
Continuous iterative contour segmentation. More samples are needed for shape modeling.
Application of pre-trained shape models. Segmentation can be performed on low-quality

images.
No human effort is required.

[72]

Contour segmentation: High precision and stability.
Separates the outline of the fish from the
background image.

People’s prior knowledge determines sample
values.

Change the image to grayscale.
Apply K means and segment the image.
Adopt mathematical morphology to establish the
limit of the fish.

[31] Bank of fish

Image segmentation. Accurate and effective.
Easy to understand and analyze.
Prior knowledge of the characteristics of the fish.

The image obtained replaces the original. Complex noise reduction.
Execution time reduction.

[73] Underwater
environments

Image segmentation: No human intervention is required.
RGB image fusion. Fast and effective, 4.27 s.
Application of the adaptive contrast histogram
equalization method.

Beats algorithms like Otsu, Chan, and Vese.

Edge detection algorithm.
Fusion of the image of points 2 and 3, body and
edge.

[74] Underwater
environments

Principal Component Analysis (PCA). The applied model obtains an accuracy of 98.64
Spatial Pyramid Programming (SPP).

Table 5. Artificial intelligence with labeled automatic and K means algorithms for data processing
through artificial vision with contour segmentation methodology to improve aquaculture processes.

Reference Object Method Measure Points Efficiency Limitations

[71] Fishmonger Weighted
least squares

Size Tail–body Greater than 95% The method is optimal
for flatfish; for other
types of fish, more
K-means would have to
be applied.

Length
Body
inflection
and mouth

583 masks

[72] -

Otsu
algorithm/
histogram
peaks

Disease
diagnosis

Default
cluster
center

-
The result depends on
adequately choosing the
right cluster center.

Calculate
the distance
of each
sample from
the default
cluster

-

The use of other methods
is required to ensure the
correct choice of the
cluster.

This technique was
applied only to carp.
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Table 5. Cont.

Reference Object Method Measure Points Efficiency Limitations

[31] Bank of fish
Adaptive
fast
clustering

Color Grayscale
databases

56% lower execution
time of Adaptive Fast
Clustering algorithm
compared to K-means

This technique was
applied only to carp.

The result depends on
adequately choosing the
right cluster center.

Image pixel loss

Behavior

Default
grayscale
cluster
center

71% lower execution
time of fast adaptive
clustering algorithm
compared to fuzzy
clustering algorithm

[73]
Underwater
environ-
ments

Active
contour

Identify the
sea
cucumber.

- 120 samples
This technique was
applied only to sea
cucumbers.

[74] Underwater
environments

Deep neural
network

Fish Identifi-
cation - 98.64% -Color
Texture

6. Discussion

This article frames current technologies and their application in aquaculture, especially
in preserving the physicochemical parameters necessary to conserve the habitat of the
biological entity and thus provide certainty in its production. The most used sensors in
aquaculture systems control variables such as pH, temperature, NO2, NO3, DO, and SL. It
is shown that 60% of aquaculture systems use free access cards. Process execution times
are reduced, and data are monitored 24 h daily. Wireless connections are used in 90% of
systems and connect to a cloud server. In recent years, maritime industrial production has
increased worldwide, impacting the overexploitation of lakes, lagoons, and seas throughout
the planet. In [75], it is mentioned that monitoring water is an essential process to provide
certainty in controlling the parameters of aquaculture processes, allowing decisions to
be made promptly and in real time. In this case study, a system was implemented based
on open-source hardware that measures temperature, pH, and dissolved oxygen through
sensors for each parameter, and a database was obtained that allows relating the control of
the aquaculture environment with the growth of the cultivated species. The application of
the aforementioned system demonstrated that it is precise, reliable, and accurate in water
measurement processes. In [76], the authors propose a closed-loop control that includes a
Raspberry Pi card, Python programming, an ammoniacal nitrogen sensor, and solenoid
valves to carry out a process of removing ammoniacal nitrogen resulting from the excretion
of fish and that contributes to the proliferation of diseases and deaths in the biological
entity. It was shown to have energy and water savings of more than 95%, which allows for
optimizing the preservation of fish in aquaculture systems and promoting water quality
in fish farms. Intelligent systems based on sensors, in conjunction with automatic control
through AI, will obtain the necessary diagnoses to gather information about the health of
the fish. Artificial vision, in conjunction with artificial intelligence, will provide a real-time,
non-invasive diagnosis of the biological entity and will be a technique that will promote the
care of the fish to maximize its production. Artificial vision will also be able to detect some
changes in the fish biomass, but it has limitations concerning image acquisition mainly in
that there is no database to make comparisons between one image and another, so it can be
necessary to provide initially programmed parameters, give a greater quantity and quality
of images with high resolution so that there is systematic training, and achieve a higher
level of precision in its processes. To obtain a better artificial vision technique, it is necessary
to apply the K means methodology for use by AI, add a database with images that serve
as a comparison between those that have already been obtained and those that are going
to be obtained, apply a contour segmentation methodology, and capture higher-quality
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images of the fish being analyzed. The findings show that 60% of the research used the
technique of obtaining the image through contour segmentation because large amounts
of data are not required to obtain image processing. In addition, the fast adaptive data
clustering method is 56% shorter in execution time compared to K-means.

One of the goals of water monitoring through AI is that it can analyze and prevent
changes in water quality that affect fish habitat. Real-time information allows you to
make the necessary decisions to preserve the ideal parameters of the aquaculture system.
Likewise, AI plays an important role in analyzing different mass data that require efficient
management and the identification of trends and models that are generally not detected
using conventional techniques. This provides results that prevent abnormal events such
as sudden changes in water quality. An early reaction prevents the spread of diseases,
the presence of pathogenic microorganisms, and contamination, and provides certainty in
aquaculture production.

The combined use of the methodologies mentioned in this article can maximize
the certainty of the information since more incredible details of the information on the
biological entity and its environment will be provided. After analyzing several publications,
it is proposed that the ideal system should be composed of pH, DO, NO2, NH3, and
temperature sensors to capture the required data to provide information to the AI. The
K means methodology and the contour segmentation of artificial vision will be able to
analyze water quality patterns and prevent any anomaly in its habitat or disease that could
harm aquaculture production. The systematic review found that, using a least squares
methodology and body-to-tail segmentation of the fish, an efficiency of 95% was obtained.
On the other hand, applying neural networks and segmentation based on the fish’s physical
characteristics, a result of 98% was obtained. Therefore, by combining neural networks and
body-to-tail segmentation, an efficiency greater than 98% could be achieved.

7. Conclusions

The trend in the future will focus on the improvement of intelligent systems, mainly
on the optimization of the methodologies that are applied through AI. The timely forecast
in the control of water quality and the prevention of diseases in fish will optimize economic
and environmental resources to achieve certainty in production for human consumption.
Likewise, artificial vision will provide AI with data for the timely detection of any fish
condition, preventing the spread of a disease in the aquatic environment. The importance
of aquaculture production forms the backbone of the social and economic development
of the world through the exploitation of fishing resources. This represents a guaranteed
food source for the coming years and impacts poverty reduction and the proliferation
of direct and indirect jobs. However, there is an urgent need for continuous scientific
contributions that will challenge improving the control and preservation of the aquatic
environment by properly managing water resources to avoid negative environmental
impacts, inadequate exploitation of flora and fauna, and adequate management of fishery
production. This will allow sustainable development by conserving natural resources and
meeting the food needs of future generations since, according to the FAO, the aquaculture
sector currently represents 50% of the world’s diet. Aquaculture production had an average
annual growth of 6% from 2001 to 2018, producing more than 82 million tons. It is one
of the animal proteins that increased its consumption by 2.1% compared to other animal
proteins. Aquaculture provides the most consumed protein worldwide and is primarily of
interest to NGOs and CSOs. It also includes food and nutritional certainty and stands out
as being goal 14 within the 2030 Agenda for Sustainable Development. One main challenge
is the proper and sustainable management of marine resources. Food security for the
population will be one of the main challenges technology must solve by implementing the
devices mentioned in this scientific review. The combined application of AI methodologies,
machine learning, and image capture is the intelligent solution to preserving the marine
entity for human consumption, and these technologies will also serve in the responsible
and appropriate management of maritime resources.
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