Enhanced Removal of Dissolved Effluent Organic Matter in Wastewater Using Lignin-Based Biochar Supported Fe–Cu Bimetallic Oxide Catalyst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of the Lignin-Based BC-Supported FeCu@BC Catalyst
2.3. Characterization of the Lignin-Based BC-Supported FeCu@BC Catalyst
2.4. Batch Experiment
2.4.1. Effect of Catalyst Dosage on HA Removal
2.4.2. Effect of pH on HA Removal
2.4.3. Effect of Initial Concentration on HA Removal
2.4.4. Effect of Inorganic Ions on HA Removal
2.4.5. Effect of Dissolved Oxygen Concentration on HA Removal
2.4.6. Reusability and Stability of the FeCu@BC Catalyst
2.5. Sample Acquisition and Analysis
2.5.1. Treatment and Determination of Dissolved Organic Matter
2.5.2. 3D-EEM Analysis
2.5.3. Quenching Experiment
2.5.4. DBPs Determination
2.5.5. Other Analytical Measurements
2.6. DFT Calculation Methods
2.7. Data Analysis
3. Results and Discussion
3.1. Composition and Characterization of FeCu@BC
3.1.1. Surface Morphology and Elemental Analysis of FeCu@BC
3.1.2. BET Analysis
3.1.3. XRD Analysis
3.1.4. FTIR Analysis
3.1.5. XPS Analysis
3.2. Removal Performance of FeCu@BC for HA under Different Reaction Conditions
3.2.1. FeCu@BC Catalyst Dosage
3.2.2. pH
3.2.3. The Effect of Initial Concentrations
3.2.4. Effect of DO Concentration on HA Removal
3.2.5. Influence of Coexistence of Inorganic Ions
3.3. Identification of Active Species
3.4. Changes in the Fluorescence Characteristics and Molecular Weight of HA
3.5. The Possible Catalytic Oxidation Mechanism
3.6. Variation in the Type and Yield of DBPs
3.7. Reusability, Stability, and Applicability of FeCu@BC
3.8. Performance Comparison
3.9. Limitations and Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.F.; Yu, M.D.; He, X.S.; Zheng, M.X.; Xi, B.D.; Sun, Y.Y.; Fu, X.M.; Su, J. Fate of dissolved organic matter substructure in a full-scale wastewater treatment plant by using size exclusion chromatography multi-excitation-emission matrix analysis. J. Clean. Prod. 2021, 328, 129677. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.W.; Wang, Y.Y. Integrating membrane aerated biofilm reactors with biological nitrogen removal processes: A new paradigm for achieving sustainable wastewater treatment plants. Chem. Eng. J. 2023, 475, 146025. [Google Scholar] [CrossRef]
- Wang, Y.R.; Mauricius, M.D.S.; Ding, X.X.; Jérôme, L.; Bertrand, G.; Allen, S.S.; Jean-Philippe, C. Impact of EfOM in the elimination of PPCPs by UV/chlorine: Radical chemistry and toxicity bioassays. Water. Res. 2021, 204, 117634. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, T.; Guo, M.H.; Li, D.; Gou, N.; Cao, X.; Qiu, X.P.; Li, X.L.; Zhang, Y.Z.; Sheng, G.P.; et al. Impact of heavy metals on the formation and properties of solvable microbiological products released from activated sludge in biological wastewater treatment. Water. Res. 2020, 179, 115895. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Li, Z.W.; Jiang, L.; Liu, H.; Zhang, Y.P.; Sun, Y.X. Kinetics and mechanisms of bacteria disinfection by performic acid in wastewater: In comparison with peracetic acid and sodium hypochlorite. Sci. Total. Environ. 2023, 878, 162606. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Xu, Z.X.; Chu, W.H.; Ju, F.; Jin, W.; Li, P.; Xiao, R. Residual chlorine persistently changes antibiotic resistance gene composition and increases the risk of antibiotic resistance in sewer systems. Water. Res. 2023, 245, 120635. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.F.; Chen, M.; Wei, D.B.; Du, Y.G. Research progress of disinfection and disinfection by-products in China. J. Environ. Sci. 2019, 81, 52–67. [Google Scholar] [CrossRef]
- Chen, T.T.; Wang, R.; Zhang, A.H.; Xu, T.; Xiao, R.; Chu, W.H.; Yin, D.Q. Peroxymonosulfate/chloride disinfection versus sodium hypochlorite disinfection in terms of the formation and estimated cytotoxicity of CXR-type disinfection by-products under the same dose of free chlorine. Chem. Eng. J. 2020, 391, 123557. [Google Scholar] [CrossRef]
- Xue, B.U.; Yang, Q.; Jin, Y.S.; Zhu, Q.; Lan, J.Q.; Lin, Y.S.; Tan, J.S.; Liu, L.H.; Zhang, T.; Chirwa, E.M.N.; et al. Genotoxicity assessment of haloacetaldehyde disinfection byproducts via a simplified yeast-based toxicogenomics assay. Environ. Sci. Technol. 2023, 57, 16823–16833. [Google Scholar] [CrossRef]
- He, H.; Sun, N.N.; Li, L.F.; Ai, J.; Zhou, H.; Yang, X.Y.; Yang, X.F.; Wang, D.S.; Zhang, W.J. Effects of dissolved organic matter removal and molecular transformation in different water treatment processes on formation of disinfection byproducts. Water. Res. 2023, 245, 120626. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Wang, Y.; Xue, N.; Yu, C.; Meng, Y.J.; Gao, B.Y.; Li, Q.L. The effect of DOM on floc formation and membrane fouling in coagulation/ultrafiltration process for treating TiO2 nanoparticles in various aquatic media. Chem. Eng. J. 2017, 16, 429–437. [Google Scholar] [CrossRef]
- Wang, P.; Ding, S.K.; Xiao, R.; An, G.G.; Fang, C.; Chu, W.H. Enhanced coagulation for mitigation of disinfection by-product precursors: A review. Adv. Colloid Interface Sci. 2021, 296, 102518. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q.; Wu, Y.H.; Fang, P.S.; Bai, Y.; Chen, Z.; Xu, Y.Q.; Wang, Y.H.; Tong, X.; Luo, L.W.; Wang, H.B.; et al. Performance of different pretreatment methods on alleviating reverse osmosis membrane fouling caused by soluble microbial products. J. Membr. Sci. 2022, 641, 119850. [Google Scholar] [CrossRef]
- Li, J.Y.; Zheng, B.H.; Chen, X.; Li, Z.; Xia, Q.; Wang, H.; Yang, Y.; Zhou, Y.Y.; Yang, H. The Use of Constructed Wetland for Mitigating Nitrogen and Phosphorus from Agricultural Runoff: A Review. Water 2021, 13, 476. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jeong, Y.J.; Cho, I.S.; Lee, C.G.; Park, S.J.; Alvarez, P.J.J. The inhibitory mechanism of humic acids on photocatalytic generation of reactive oxygen species by TiO2 depends on the crystalline phase. Chem. Eng. J. 2023, 476, 146823. [Google Scholar] [CrossRef]
- Yang, H.J.; Lee, C.G.; Lee, J.C. Utilizing animal manure-derived biochar in catalytic advanced oxidation processes: A review. J. Water. Process. Eng. 2023, 56, 104545. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.B.; Li, A.; Song, Z.L.; Ren, R.J.; Zuo, K.C.; Qi, F.; Ikhlaq, A.; Ismailova, O. Superior performance of catalytic ozonation on molecular-level transformation of effluent organic matter and self-cleaning property in catalytic ozonation membrane reactor. Appl. Catal. B Environ. 2023, 338, 122076. [Google Scholar] [CrossRef]
- Feng, H.L.; Zhang, Z.J.; Kuang, Q.Y.; Chen, S.H.; Huang, D.; Zhou, X.W. The transformation of dissolved organic matter and formation of halogenated by-products during electrochemical advanced oxidation pretreatment for shale gas produced water. J. Hazard. Mater. 2023, 455, 131614. [Google Scholar] [CrossRef]
- Ashish, S.; Arya, V. Effects of pharmaceuticals on membrane bioreactor: Review on membrane fouling mechanisms and fouling control strategies. Sci. Total. Environ. 2021, 808, 152132. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, C.; Yang, B.G.; Ding, C.; Mao, S.; Shi, M.X.; Hong, X.Y.; Wang, F.Y.; Xia, M.Z. The efficient degradation of high concentration phenol by Nitrogen-doped perovskite La2CuO4 via catalytic wet air oxidation: Experimental study and DFT calculation. Sep. Purif. Technol. 2023, 322, 124310. [Google Scholar] [CrossRef]
- Teng, C.Y.; Zhou, K.G.; Liao, L.J.; Zhang, X.K.; Zhao, K.Q.; Korvayan, J.W.; Peng, C.H.; Chen, W. Coordination-driven Cu-based Fenton-like process for humic acid treatment in wastewater. Sci. Total Environ. 2022, 838, 156462. [Google Scholar] [CrossRef]
- Cai, J.B.; Li, H.; Feng, K.; Cheng, Y.C.; He, S.; Masaki, T. Low-temperature degradation of humic acid via titanium zirconium oxide@copper single-atom activating oxygen: Mechanism and pathways. Chem. Eng. J. 2022, 450, 138239. [Google Scholar] [CrossRef]
- Rajendra, G.; Anurag, G. Performance of heterogeneous catalytic wet oxidation for the removal of phenolic compounds: Catalyst characterization and effect of pH, temperature, metal leaching and non-oxidative hydrothermal reaction. J. Environ. Chem. Eng. 2017, 5, 468–478. [Google Scholar] [CrossRef]
- Wang, H.Y.; Li, G.Q.; Zhang, S.T.; Li, Y.; Zhao, Y.L.; Duan, L.U.; Zhang, Y.F. Preparation of Cu-Loaded Biomass-Derived Activated Carbon Catalysts for Catalytic Wet Air Oxidation of Phenol. Ind. Eng. Chem. Res. 2020, 59, 2908–2920. [Google Scholar] [CrossRef]
- Wang, A.Q.; Hou, J.; Xu, Q.C.; Wu, J.; Xing, B.S. Green synthesis of zero valent iron using tannins to activate persulfate for sulfamethoxazole degradation. Environ. Pollut. 2023, 336, 122418. [Google Scholar] [CrossRef]
- Hassan, M.N.A.; Nabil, S.R.; Sherien, E.; Adewale, A. Copper ferrite immobilized on chitosan: A suitable photocatalyst for the removal of ciprofloxacin, ampicillin and erythromycin in aqueous solution. Catal. Commun. 2023, 182, 106745. [Google Scholar] [CrossRef]
- Zhang, P.; Song, D.B.; Xue, J.X.; Hao, Y.L.; Shang, X.F.; Wang, C.P.; Tang, J.C.; Sun, H.W. Sulfidated zero valent iron as a persulfate activator for oxidizing organophosphorus pesticides (OPPs) in aqueous solution and aged contaminated soil columns. Chemosphere 2021, 281, 130760. [Google Scholar] [CrossRef]
- Jun, L.; Yi, R.; Fang, Z.J.; Bo, L. Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles. Chem. Eng. J. 2017, 324, 63–73. [Google Scholar] [CrossRef]
- Luo, H.H.; Yu, L.Q.; Xue, K.H.; Liu, C.; Ding, R.J.; Zhu, H.F.; Zhang, Y.P. Multilevel hollow hierarchical heterostructure with DB-IEF and space-confined effect for enhanced bifunctional PHE/HER activity. Sep. Purif. Technol. 2023, 330, 125373. [Google Scholar] [CrossRef]
- Yang, Q.; Zhong, Y.F.; Zhang, Z.Q.; Dang, Z.; Li, F.B.; Zhang, L.J. Simultaneous degradation of sulfamethazine and reduction of Cr(VI) by flexible self-supporting Fe-Cu-Al2O3 nanofibrous membranes as heterogeneous catalysts: Insights into synergistic effects and mechanisms. Sep. Purif. Technol. 2023, 472, 144984. [Google Scholar] [CrossRef]
- Xin, S.S.; Huo, S.Y.; Xin, Y.J.; Gao, M.C.; Wang, Y.H.; Liu, W.J.; Zhang, C.L.; Ma, X.M. Heterogeneous photo-electro-Fenton degradation of tetracycline through nitrogen/oxygen self-doped porous biochar supported CuFeO2 multifunctional cathode catalyst under visible light. Appl. Catal. B Environ. 2022, 312, 121442. [Google Scholar] [CrossRef]
- Li, Y.X.; Xu, D.F.; Lin, H.Z.; Wang, W.H.; Yang, H. Nutrient released characteristics of struvite-biochar fertilizer produced from concentrated sludge supernatant by fluidized bed reactor. J. Environ. Manag. 2022, 325, 116548. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.Y.; Xu, D.F.; Li, B.; Wu, D.; Yang, H. Enhanced removal efficiency of nitrogen and phosphorus from swine wastewater using MgO modified pig manure biochar. J. Environ. Chem. Eng. 2023, 325, 116548. [Google Scholar] [CrossRef]
- Jin, X.; Du, X.H.; Liu, G.G.; Jin, B.H.; Cao, K.H.; Chen, F.Y.; Huang, Q. Efficient destruction of basic organo-nitrogenous compounds in liquid hydrocarbon fuel using ascorbic acid/H2O2 system under ambient condition. J. Hazard. Mater. 2023, 459, 132242. [Google Scholar] [CrossRef]
- Chio, C.L.; Sain, M.; Qin, W.S. Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sust. Energ. Rev. 2019, 107, 232–249. [Google Scholar] [CrossRef]
- Song, J.N.; Jin, P.K.; Jin, X.; Wang, X.C. Synergistic effects of various in situ hydrolyzed aluminum species for the removal of humic acid. Water Res. 2018, 148, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.X.; Liang, J.L.; Jiang, L.; Shen, Q.S.; Zhang, Q.; Liu, C.C.; Ji, F.Y. A comparative study of free chlorine and peroxymonosulfate activated by Fe(II) in the degradation of iopamidol: Mechanisms, density functional theory (DFT) calculations and formation of iodinated disinfection by-products. Chem. Eng. J. 2022, 435, 134753. [Google Scholar] [CrossRef]
- Chinese National Environmental Protection Agency. Water and Wastewater Monitoring Methods, 4th ed.; Chinese Environmental Science Publishing Press: Beijing, China, 2002. [Google Scholar]
- Wang, X.Y.; Wang, W.Y.; Wang, W.P.; Dong, L.; Zhai, T.Y.; Gao, Z.J.; Wang, K.; Wang, S.; Kong, F.L. Enhanced effect and mechanism of nanoFe-Ca bimetallic oxide modified substrate on Cu(II) and Ni(II)removal in constructed wetland. J. Hazard. Mater. 2023, 456, 131689. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Qin, Y.X.; Zhang, L.Z.; An, T.C. Hydrothermal Carbon-Mediated Fenton-Like Reaction Mechanism in the Degradation of Alachlor: Direct Electron Transfer from Hydrothermal Carbon to Fe(III). ACS Appl. Mater. Interfaces 2017, 9, 17115–17124. [Google Scholar] [CrossRef]
- Deng, J.M.; Zhang, C.; Zhao, J.; Cheng, Y.J.; Hou, K.J.; Zhang, L.H.; Fan, C.Z. Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine. Sep. Purif. Technol. 2018, 202, 130–137. [Google Scholar] [CrossRef]
- Xie, Y.R.W.; Guan, D.; Deng, Y.F.; Sato, Y.G.; Luo, Y.; Chen, G.H. Factors hindering the degradation of pharmaceuticals from human urine in an iron-activated persulfate system. J. Environ. Sci. 2024, 135, 130–148. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.Q.; Shi, X.L.; Liu, Z.B.; Yan, Z.H.; Sun, Z.R. In situ etched graphite felt modified with CuFe2O4/Cu2O/Cu catalyst derived from CuFe PBA for the efficient removal of sulfamethoxazole through a heterogeneous electro-Fenton process. Appl. Catal. B Environ. 2023, 331, 122722. [Google Scholar] [CrossRef]
- Panagiota, T.; Nathalie, N.K.; Stefanos, M.; Katerina, K.; Urania, M.S.; Catherine, D.S. CuZn and ZnO Nanoflowers as Nano-Fungicides against Botrytis cinerea and Sclerotinia sclerotiorum: Phytoprotection, Translocation, and Impact after Foliar Application. Materials 2021, 14, 7600. [Google Scholar]
- Çakmak, G.; Öztürk, T. Continuous synthesis of graphite with tunable interlayer distance. Diam. Relat. Mater. 2019, 96, 134–139. [Google Scholar] [CrossRef]
- An, Y.L.; Ma, X.Y.; Chen, W.F.; Li, W.; Yang, S.Y.; Chen, R.C.; Wang, X.C. The impact of inorganic ions on the solar photolysis of chlorinated dissolved organic matter from different sources: Spectral characteristics, disinfection byproducts and biotoxicities. J. Hazard. Mater. 2023, 451, 131135. [Google Scholar] [CrossRef]
- Zhong, W.L.; Peng, Q.; Liu, K.; Tang, X.K.; Zhang, Y.J.; Xing, J.J. Building Cu0/CuFe2O4 framework to efficiently degrade tetracycline and improve utilization of H2O2 in Fenton-like system. Chem. Eng. J. 2023, 474, 145522. [Google Scholar] [CrossRef]
- Lai, C.; Huang, F.L.; Zeng, G.M.; Huang, D.L.; Qin, L.; Cheng, M.; Zhang, C.; Li, B.S.; Yi, H.; Liu, S.Y.; et al. Fabrication of novel magnetic MnFe2O4/bio-char composite and heterogeneous photo-Fenton degradation of tetracycline in near neutral pH. Chemosphere 2019, 224, 910–921. [Google Scholar] [CrossRef]
- Wang, L.L.; Lan, X.; Peng, W.L.; Wang, Z.H. Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: A review. J. Hazard. Mater. 2021, 408, 124436. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, Y.H.; Zhou, Y.Q.; Zhang, Y.L.; Xu, H.; Jang, K.S.; Dolfing, J.; Spencer, R.G.M.; Jeppesen, E. Terrestrial dissolved organic matter inputs drive the temporal dynamics of riverine bacterial ecological networks and assembly processes. Water Res. 2024, 249, 120955. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Liu, C.; Xu, B.B.; Qi, F.; Chu, W. Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2: Combination of adsorption and catalysis oxidation. Appl. Catal. B Environ. 2016, 199, 447–457. [Google Scholar] [CrossRef]
- Yu, J.J.; Xu, H.; Yang, X.F.; Sun, H.Y.; Jin, Z.Y.; Wang, D.S. Floc formation and growth during coagulation removing humic acid: Effect of stirring condition. Sep. Purif. Technol. 2022, 302, 122084. [Google Scholar] [CrossRef]
- Huang, Y.C.; Lai, L.D.; Huang, W.F.; Zhou, H.Y.; Li, J.; Liu, C.; Lai, B.; Li, N.W. Effective peroxymonosulfate activation by natural molybdenite for enhanced atrazine degradation: Role of sulfur vacancy, degradation pathways and mechanism. J. Hazard. Mater. 2022, 435, 128899. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.D.; Zeng, H.; Deng, Y.C.; Xiong, S.; Li, L.; Zhou, Z.P.; Wang, J.J.; Tang, L. Dual modulation on peroxymonosulfate activation site and photocarrier separation in carbon nitride for efficient photocatalytic organics degradation: Efficacy and mechanism evaluation. Appl. Catal. B Environ. 2023, 336, 122918. [Google Scholar] [CrossRef]
- Ma, Y.X.; Zhao, K.; Wang, D.D.; Guo, J.F.; Wei, X.; Yang, W.J.; Zhao, J.Q.; Li, Z.Y. MnFe2O4 composited polyvinylidene fluoride catalytic ultrafiltration membrane via peroxymonosulfate activation for humic acid treatment: Exploration of synergistic mechanisms. Sep. Purif. Technol. 2023, 332, 125708. [Google Scholar] [CrossRef]
- Senesi, N. Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals. Anal. Chim. Acta 1990, 232, 77–106. [Google Scholar] [CrossRef]
- Fan, B.; Zhou, B.N.; Chen, S.; Zhu, F.X.; Chen, B.; Gong, Z.M.; Wang, X.L.; Zhu, C.Y.; Zhou, D.M.; He, F.; et al. Preparation of Fe/Cu bimetals by ball milling iron powder and copper sulfate for trichloroethylene degradation: Combined effect of FeSx and Fe/Cu alloy. Crystengcomm 2023, 460, 132402. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, L.L.; Zhang, X.Y.; Liu, Z.L.; Li, T.L.; Wang, H.T. Green synthesis of FeCu@biochar nanocomposites through a mechanochemical method for enhanced tetracycline degradation via peroxymonosulfate activation. Sep. Purif. Technol. 2024, 328, 125077. [Google Scholar] [CrossRef]
- Shen, Y.H.; Xiao, Y.X.; Zhang, H.J.; Fan, H.J.; Li, Y.; Yan, Z.L.; Zhang, W.H. Synthesis of magnetic biochar-supported Fe-Cu bimetallic catalyst from pulp and paper mill wastes for the Fenton-like removal of rhodamine B dye. Chem. Eng. J. 2023, 477, 146823. [Google Scholar] [CrossRef]
- Li, C.Q.; Yang, S.S.; Bian, R.Z.; Tan, Y.; Zhang, X.W.; Zheng, S.L. Efficient catalytic degradation of bisphenol A coordinated with peroxymonosulfate via anchoring monodispersed zero-valent iron on natural kaolinite. Chem. Eng. J. 2022, 448, 137746. [Google Scholar] [CrossRef]
- Li, B.; Li, C.X.; Wang, Y.; Xu, W.Y.; Cui, K.P.; Zhan, X.Y.; Deng, R.; Zhang, X. In-situ preparation of yeast-supported Fe0@Fe2O3 as peroxymonosulfate activator for enhanced degradation of tetracycline hydrochloride. Chemosphere 2023, 324, 138340. [Google Scholar] [CrossRef] [PubMed]
- Xin, S.S.; Ma, B.G.; Zhang, C.L.; Ma, X.M.; Xu, P.; Zhang, G.S.; Gao, M.C.; Xin, Y.J. Catalytic activation of peroxydisulfate by alfalfa-derived nitrogen self-doped porous carbon supported CuFeO2 for nimesulide degradation: Performance, mechanism and DFT calculation. Appl. Catal. B Environ. 2021, 294, 120247. [Google Scholar] [CrossRef]
- Li, D.; Li, H.M.; Long, M.Y.; Bai, X.J.; Zhao, Q.Q.; Wen, Q.; Song, F. Synergetic effect of photocatalysis and peroxymonosulfate activation by MIL-53Fe@TiO2 on efficient degradation of tetracycline hydrochloride under visible light irradiation. Crystengcomm 2022, 24, 4283–4293. [Google Scholar] [CrossRef]
Parameters | Average Value | Unit (mg/L) |
---|---|---|
COD | 48.21 | mg/L |
BOD5 | 13.65 | mg/L |
TP | 0.18 | mg/L |
TN | 12.32 | mg/L |
NH4+-N | 5.62 | mg/L |
TSS | 12.60 | mg/L |
Cl− | 46.34 | mg/L |
NO32− | 6.47 | mg/L |
SO42− | 36.52 | mg/L |
Conductivity | 1952 | μS/cm |
pH | 7.62 | - |
Inorganic Ions | Concentration Gradients (mg/L) | Reagent | |||
---|---|---|---|---|---|
Cl− | 5 | 10 | 20 | 50 | NaCl |
NO32− | 1 | 2 | 5 | 10 | NaNO3 |
NH4+ | 0.5 | 1 | 2 | 5 | NH4Cl |
SO42− | 5 | 10 | 20 | 50 | Na2SO4 |
PO43− | 0.1 | 0.2 | 0.5 | 1.0 | Na2PO4 |
Aeration Flow Rate (L/min) | Volume (L) | Do Concentration (mg/L) |
---|---|---|
0.0 | 0.1 | 0.68 |
0.3 | 0.1 | 1.25 |
0.6 | 0.1 | 1.75 |
0.9 | 0.1 | 2.01 |
Catalyst | Contaminant Type | Removal Efficiency | Author |
---|---|---|---|
FONC@PAC | Tetracycline | 0.02 mmol/g/min | [60] |
Kaolinite/zero valent ironc | Bisphenol A | 0.28 mmol/g/min | [61] |
Yeast-supported Fe0@Fe2O3 | Tetracycline | 0.21 mmol/g/min | [62] |
CuFeO2/NPC | Nimesulide | 0.07 mmol/g/min | [63] |
MIL-53Fe@TiO2 | Tetracycline | 0.03 mmol/g/min | [64] |
FeCu@BC | Humic acid | 0.35 mmol/g/min | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Kong, F.; Wu, H.; Zhai, C.; Li, Y.; Wang, S.; Yang, H. Enhanced Removal of Dissolved Effluent Organic Matter in Wastewater Using Lignin-Based Biochar Supported Fe–Cu Bimetallic Oxide Catalyst. J. Mar. Sci. Eng. 2024, 12, 183. https://doi.org/10.3390/jmse12010183
Wang W, Kong F, Wu H, Zhai C, Li Y, Wang S, Yang H. Enhanced Removal of Dissolved Effluent Organic Matter in Wastewater Using Lignin-Based Biochar Supported Fe–Cu Bimetallic Oxide Catalyst. Journal of Marine Science and Engineering. 2024; 12(1):183. https://doi.org/10.3390/jmse12010183
Chicago/Turabian StyleWang, Wenpeng, Fanlong Kong, Huazhen Wu, Chunyan Zhai, Yang Li, Sen Wang, and Hong Yang. 2024. "Enhanced Removal of Dissolved Effluent Organic Matter in Wastewater Using Lignin-Based Biochar Supported Fe–Cu Bimetallic Oxide Catalyst" Journal of Marine Science and Engineering 12, no. 1: 183. https://doi.org/10.3390/jmse12010183
APA StyleWang, W., Kong, F., Wu, H., Zhai, C., Li, Y., Wang, S., & Yang, H. (2024). Enhanced Removal of Dissolved Effluent Organic Matter in Wastewater Using Lignin-Based Biochar Supported Fe–Cu Bimetallic Oxide Catalyst. Journal of Marine Science and Engineering, 12(1), 183. https://doi.org/10.3390/jmse12010183