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Abstract: With the extensive application of sensor technology in scientific ocean research, ocean
resource exploration, underwater engineering construction, and other fields, underwater target
positioning technology has become an important support for the ocean field. This paper proposes a
robust positioning algorithm that combines the disadvantages of distributed estimation and particle
swarm optimization, which can solve the large localization error problem caused by uncertainties in
underwater acoustic communication and sampling processes. Considering the presence of ranging
anomalies and sampling packet loss in underwater acoustic measurements, a weighted coupling
filling method is used to correct the outliers in an underwater acoustic ranging signal. Based on
the mapping model from the element array to the underwater acoustic responder, an unconstrained
optimization algorithm for one-time localization estimation of underwater acoustic targets was
established. Based on the one-time localization estimation results of underwater acoustic targets,
an improved multi-particle swarm optimization estimation based on interactive search is proposed,
which improves the accuracy of underwater target localization. The numerical results show that
the positioning accuracy of the proposed algorithm can be effectively enhanced in cases of distance
measurement errors and azimuth measurement errors. Compared with the positioning error before
optimization, the positioning error can be reduced after optimization. Additionally, the experiment
was carried out in the underwater environment of Hangzhou Qiandao Lake, which verified the
positioning performance of the proposed algorithm.

Keywords: underwater acoustics; multi-source sensors; robust positioning; intelligent optimization;
experimental testing

1. Introduction

With the continuous improvement of land resource mining technology, people are
gradually turning to more abundant marine resources [1]. For marine resource exploration,
data are meaningless without knowing the location of underwater targets. Therefore,
location-based underwater target services provide special support for many ocean explo-
ration tasks [2], such as underwater remote sensing [3], underwater observation [4], and
underwater navigation [5]. Accurately estimating the position of autonomous underwater
vehicles (AUVs) has become a major issue in vehicle mission execution [6]. Underwater
acoustics usually play an important role in the field of underwater positioning [7]. Accord-
ing to the baseline length, underwater acoustic positioning technology is usually divided
into long baseline (LBL) positioning [8], short baseline (SBL) positioning [9], and ultra-short
baseline (USBL) positioning [10]. Compared with LBL and SBL positioning systems, a
USBL positioning system composed of an underwater acoustic transducer and underwater
responder can achieve distributed positioning requirements for underwater targets such
as AUVs [11]. However, there are many uncertainties in the underwater environment,
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such as signal fluctuations caused by water flow and signal losses caused by faulty equip-
ment [12,13]. Therefore, it is necessary to design an integrated positioning algorithm with
higher robustness.

Many scholars have conducted innovative research on underwater acoustics measure-
ments [14]. To address the issue of uncertainties in complex underwater environments,
Du et al. established a state model and measurement model based on inertial navigation,
and corrected the measurement errors between multiple sensors [15]. With the increase in
underwater operation time, measurement models based on inertial navigation have accu-
mulated errors, which leads to unreliable error correcting. In order to reduce the impact of
measurement noises on positioning accuracy, a global positioning algorithm for underwater
robots based on factor graphs and maximum correlation coefficients was proposed [16].
For the spatial measurement problem, Sklivanitis et al. proposed a rank-based distance
complementarity algorithm to solve the spatial measurement problem [17]. With the popu-
larization of machine learning algorithms, a robust data processing method based on online
support vector regression was implemented to handle measurement noises, thereby ob-
taining continuous and consistent localization results [18]. Considering the serious impact
of measured uncertainties on underwater positioning accuracy, Saeed et al. formulated
the problem of missing pairs of distance and outliers as an optimization problem for semi
quadratic minimization, and further proposed a closed form convergent iterative solution
that adapts to outliers [19]. Considering the impact of the actual underwater environment
on acoustic signals, it is necessary to handle underwater measurement noises.

Many scholars have conducted extensive research on distributed positioning algo-
rithms under various underwater measurement conditions [20]. In order to achieve local-
ization and time synchronization in underwater sensor networks, Gong et al. proposed an
AUV assisted linear localization algorithm based on time of arrival (TOA) [21]. However,
TOA measurements require strict time synchronization to effectively reduce underwater
positioning errors. Chen et al. designed an extended Kalman filtering algorithm based
on time difference of arrival (TDOA) for AUV localization, which did not require strict
clock synchronization between beacons and AUVs [22]. In order to improve the accuracy
of target localization, Yu et al. proposed a least squares localization algorithm based on
TOA and angle of arrival (AOA) [23]. Considering the positioning errors of sensor nodes
caused by ocean currents, winds, and other factors, Wang et al. proposed a time difference
underwater target positioning algorithm based on the weighted total least squares method,
which combined prior information from measurement noise variance and self-positioning
error variance [24]. Luo et al. proposed underwater data-driven localization estimation
using local spatiotemporal nonlinear correlation, which reduced the sensitivity of uncer-
tain noise in the localization solution process [25]. Considering the uncertainty of the
actual underwater environment, it is necessary to reduce the impact of ranging and angle
measurement errors on the accuracy of underwater positioning.

Since positioning accuracy is the primary issue, intelligent optimization algorithms
can be used to further enhance the performance of underwater target localization [26].
Singh et al. proposed a single anchor node target localization method based on H-best
particle swarm optimization (HPSO) [27]. In order to provide effective initial values, Wang
et al. combined least squares estimation with a genetic algorithm (LSEGA), effectively
improving the positioning accuracy [28]. Due to the influence of ocean currents on un-
derwater measurement noises, Hu et al. proposed a localization algorithm that integrates
prior knowledge of maximum a posteriori estimation and particle swarm optimization [29].
In addition, intelligent positioning optimization under different measurement types can
also effectively improve the accuracy of underwater positioning. Zhou et al. designed
a TDOA/AOA data fusion localization method based on a simulated annealing (SA) al-
gorithm to solve the localization problem of underwater targets in large sea areas [30].
Considering that a single SA algorithm cannot obtain the optimal position of underwater
targets, Li et al. combined an SA algorithm with a particle swarm optimization algorithm
to improve the performance of traditional underwater acoustic localization algorithms [31].



J. Mar. Sci. Eng. 2024, 12, 185 3 of 16

In order to obtain the optimal positioning results of underwater targets, it is necessary to
integrate intelligent optimization algorithms.

Underwater target positioning is the foundation of various tasks, including navigation
and collaboration. Considering that a single positioning algorithm cannot achieve optimal
positioning performance, it is necessary to consider the advantages of integrating different
algorithms, including distributed and intelligent optimization. Among them, the main
problems are as follows:

(1) Due to the impact of various uncertainties such as ocean noise on acoustic signals,
they will inevitably affect the accuracy of underwater target positioning. Therefore, it
is necessary to process the errors in underwater acoustic measurements in order to
provide a basis for subsequent underwater target calculation.

(2) Considering the issue of distributed positioning algorithms being too sensitive to
underwater acoustic measurement noise, especially when there are errors in pitch or
azimuth measurements, it is necessary to consider various uncertainties in underwater
acoustic measurement and establish a distributed solution model.

(3) Simple positioning algorithms cannot achieve optimal output on a global scale, so it is
necessary to introduce artificial intelligence optimization algorithms into distributed
positioning solution models to reduce the impact of various uncertain measurements
on underwater positioning accuracy.

(4) In view of the above research, these stimulate the current work and provide inspiration
for the proposed positioning algorithm underwater, which can solve the unstable
positioning performance caused by sparse measurement, especially in the case of
outliers. The contributions of this article are as follows.

(5) A padding method with weights coupled depending on the geometric distance and
azimuth between the underwater target and the transmission transducer is pro-
posed to deal with measurement noises. Additionally, a threshold detection and
measurement correction approach based on time series is suggested to reduce the
measurement noise.

(6) Considering the sensitivity of measurement noise to the distributed solution, the
underwater target localization problem under uncertainties, including distance and
azimuth measurements with a single transmission transducer, is transformed into a
constrained total least squares problem.

(7) For improving the positioning performance of underwater targets, an improved
multi-particle swarm algorithm with an interaction-based search is used to search for
more accurate positions near the initial values. In addition, it is equally important to
compare the positioning performance with the existing related algorithms based on
simulation and platform experiments.

The remainder of this paper is organized as follows. In Section 2, we give the derivation
processes of the proposed robust positioning algorithm in detail. Following that, the
numerical evaluations and experimental analyses are carried out in Section 3. Section 4
gives the conclusions.

2. Robust Positioning Estimation for Underwater Acoustics Targets

This paper proposes a positioning method for underwater targets integrating data
processing and multi-particle swarm algorithm, as shown in Figure 1. Firstly, a padding
method with coupled weights and a measurement correction method were utilized to
obtain the processed measurements. Secondly, an unconstrained optimization problem
for underwater target positioning was obtained using the regularization term. Thirdly,
the optimal estimation of the underwater target was attained through an improved multi-
particle swarm algorithm with an interaction-based search.
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Figure 1. A structure diagram of the proposed positioning algorithm. 
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Figure 1. A structure diagram of the proposed positioning algorithm.

Various factors, including the underwater environment, underwater acoustic velocity,
sensor installation accuracy, and positioning algorithms, affect the positioning performance
of underwater acoustics targets. The following assumptions were made:

Assumption 1. Due to the time-varying speed and curved propagation path of underwater sound,
the small experimental area does not consider the gradient and curvature of sound speed.

Assumption 2. Due to environmental limitations, the installation error between the USBL and
surface vessel cannot be accurately calibrated. Therefore, the USBL installation error and acoustic
beacon will not be considered.

Assumption 3. Due to the oblique ranging of USBL acoustic signals through time of arrival,
any small asynchrony will affect the accuracy of oblique ranging, and strict time synchronization
is assumed.

2.1. Underwater Signal-Location Mapping Based on Padding and Correcting

At time t, assuming the depth ht of the underwater target ut = [xt, yt, ht]
T carrying the

transponder is known, where t = 1, 2, · · · , T, there is a single transmission transducer a on
the ocean surface at coordinates [0, 0, 0]T . Underwater target ut can receive signals from a
transmission transducer that is located at the origin. The geometric distance dt between the
underwater target ut and the transmission transducer a can be expressed as

dt = ∥a − ut∥ =
√

x2
t + y2

t + h2
t (1)

where ∥·∥ refers to the two-norm. Furthermore, the azimuth θt between the underwater
target ut and the transmission transducer a can also be expressed as

θt = tan−1
(

yt

xt

)
(2)
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Squaring both sides of Formula (1) obtains d2
t = x2

t + y2
t + h2

t . Considering Formulas
(1) and (2) both contain the squares of the unknown terms xt and yt, their corresponding
matrices are denoted as

AtXt = bt (3)

where At =

[
1 1

tan2 θt −1

]
, Xt =

[
xt
yt

]T

, bt =

[
d2

t − h2
t

0

]
.

Considering the underwater propagation process of a hydroacoustic signal is easily
interfered by ocean noises and other signals, the actual ranging value d̃t between the under-
water target ut and the transmission transducer a can be modeled as d̃t = dt + ∆dt at the mo-
ment t, where ∆dt is the ranging noise. Moreover, the actual azimuth value θ̃t between the
underwater target ut and the transmission transducer a can be modeled as θ̃t = θt + ∆θt at
moment t, where ∆θt is the angle measurement noise. Since the distance measurement d̃t and
azimuth measurement θ̃t between the underwater target ut and the transmission trans-
ducer a may suffer from outliers or empty measurements, a padding method with weights
coupled is established via the distance measurement and the azimuth measurement.

Considering the dynamics of the underwater environment and the robustness of
the sensors, there are occasional problems with empty measurement data. This prob-
lem will further lead to the non-continuity of underwater target tracking. Thus, the
empty measurements are estimated from the known measurements. It is assumed that
the distance measurement d̃t is empty and the azimuth measurement θ̃t is known at
time t. A specific relationship between d̃t and θ̃t can be found according to Formula

(3). Therefore, the padded distance measurement d̃t is calculated as d̃t =
T−1
∑

i = 1
i ̸= t

w̃θ
i d̃i,

where w̃θ
i = wθ

i

/
T−1
∑

i=1
wθ

i is denoted as the normalized weight of wθ
i = e−|θ̃i−θ̃t |. When the

azimuth measurement θ̃t is empty and the distance measurement d̃t is known, the azimuth

measurement θ̃t is padded as θ̃t =
T−1
∑

i = 1
i ̸= t

w̃d
i θ̃i, where w̃d

i = wd
i

/
T−1
∑

i=1
wd

i is denoted as the

normalized weight of wd
i = e−|d̃i−d̃t |.

Furthermore, considering the underwater targets’ motion is sequential, the measure-
ments at time t are similar to the measurements at times t − 1 and t − 2. Consequently,
the distance measurements d̃t−1 and d̃t−2 are used to judge whether the distance measure-
ment d̃t has an outlier at moment t, and the distance measurements d̃t are corrected. The
expression for the distance correction value d̂t is

d̂t =

{
d̃t−1 + sign

(
δdt

t−1
)
·
∣∣∣δdt−1

t−2

∣∣∣ ,
∣∣∣δdt−1

t−2

∣∣∣ < ρ
∣∣δdt

t−1

∣∣
d̃t , else

(4)

where δdt−1
t−2 = d̃t−2 − d̃t−1; δdt

t−1 = d̃t−1 − d̃t; ρ denotes the threshold parameter; and
sign(·) denotes the sign function. Similarly, the azimuth measurement θ̃t is judged and
corrected, which is expressed as

θ̂t =

{
θ̃t−1 + sign

(
δθt

t−1
)
·
∣∣∣δθt−1

t−2

∣∣∣ ,
∣∣∣δθt−1

t−2

∣∣∣ < γ
∣∣δθt

t−1

∣∣
θ̃t , else

(5)

where δθt−1
t−2 = θ̃t−2 − θ̃t−1; δθt

t−1 = θ̃t−1 − θ̃t; and γ denotes the threshold parameter.
Obviously, the above correction approach for distance and azimuth measurements can be
used only in the case of t > 2. Therefore, the measurements of t = 1 and t = 2 are not
corrected here.
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2.2. The Optimal Positioning Problem for Underwater Targets

Formula (1) is rewritten according to the distance correction d̂t in the prior section,
which are expressed as

x2
t + y2

t = d2
t + 2dt∆d̂t + ∆d̂2

t − h2
t (6)

where ∆d̂t = d̂t − dt. Ignoring the squared term ∆d̂2
t in the above formula, the above

formula can be approximated as

x2
t + y2

t = d2
t − h2

t + 2dt∆d̂t (7)

By introducing the azimuth correction θ̂t into Formula (2), which is rewritten as

x2
t

(
tan θt + tan ∆θ̂t

1 − tan θt tan ∆θ̂t

)2

− y2
t = 0 (8)

where ∆θ̂t = θ̂t − θt, when the above formula is extended and the squared term tan2 ∆θ̂t is
ignored, the above formula can be approximated as

x2
t tan2 θt − y2

t + 2x2
t tan θt tan ∆θ̂t + 2y2

t tan θt tan ∆θ̂t = 0 (9)

It is clear that the distance correction error ∆d̂t and the azimuth correction error ∆θ̂t in-
crease the uncertainty not only in matrix At, but also in matrix bt. Thus, the matri-
ces Ãt and b̃t with uncertainties can be, respectively, modeled as{

Ãt = At + ∆At

b̃t = bt + ∆bt
(10)

where ∆At =

[
0 0

2 tan θt tan ∆θ̂t 2 tan θt tan ∆θ̂t

]
; ∆bt =

[
2dt∆d̂t

0

]
.

The noise components of ∆At and ∆bt are observed to contain different noise variances
based on their individual expressions. As a result, the distance correction error ∆d̂t and tan-

gent tan ∆θ̂t of the azimuth correction error are organized as uncertainty δt =
[
∆d̂t, tan ∆θ̂t

]T
.

With the composition of uncertainty δt, matrices ∆At and ∆bt can be rewritten as

∆At =
[
F1

t δt, F2
t δt
]

∆bt = F3
t δt

(11)

where F1
t =

[
0 0
0 2 tan θt

]
; F1

t = F2
t ; and F3

t =

[
2dt 0
0 0

]
. Next, the uncertainty δt is converted

to φt using φt = H−1δt, where H is the matrix after the Cholesky decomposition of E
(
δtδ

T
t
)
.

Therefore, matrices ∆At and ∆bt can be further transformed into{
∆At =

[
F1

t Hφt, F2
t Hφt

]
∆bt = F3

t Hφt
(12)

The estimation problem of the underwater target’s position squared Xt can be solved
by constrained total least squares as follows:

min
φt ,Xt

∥φt∥2

s.t.
[
At bt

][Xt
−1

]
+ Λtφt = 0

(13)
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where Λt =

(
2
∑

q=1
Xt(q)Ft

q − Ft
3

)
H. When matrices At and bt are the ill-conditioned matrix,

their subtle errors can cause significant fluctuations in the solutions. Thus, the regularized
term is introduced, and the above formula can be converted as follows:

min
φt ,Xt

∥φt∥2 + λ∥Xt∥2

s.t.
[
At bt

][Xt
−1

]
+ Λtφt = 0

(14)

where λ refers to the regularized parameter. The above constrained optimization problem
is transformed into an unconstrained optimization problem, which is expressed as

min
[

Xt
−1

]T[
At bt

]T(
Λ+

t
)T

Λ+
t
[
Xt −1

][At
bt

]
+ λXT

t Xt (15)

where Λ+
t is the pseudo inverse matrix of Λt.

2.3. Positioning Algorithms Integrated with Intelligent Optimization

The most important feature of the particle swarm optimization (PSO) algorithm is
the simpler and fewer adjustment parameters. However, the classical PSO algorithm can
fall into the local optimum and has a slow convergence velocity. In order to improve the
global search capability, the convergence velocity, and the localization accuracy, this paper
proposes an improved multi-particle swarm algorithm, whose improvement steps focus on
interactive searching and mutation.

Step 1: Particle swarm initialization. Considering the low search effectiveness after
random initialization, the position and velocity of the particles are initialized by combining
the least squares preliminary estimation of the underwater target’s position squared Xt.
Then, the initial position Xs(0) and velocity Vs(0) of the particles can be generated by

Xs(0) = X̂t + U(α, β)

Vs(0) = κ(Vmax − Vmin) + Vmin

(16)

where X̂t denotes the initial value according to the least squares algorithm; U(α, β) de-
notes the random number between α and β; κ is a random number between 0 and 1;
and Vmax and Vmin refer to the maximum and minimum of the particle velocity, respectively.

Step 2: Fitness function. The goodness of the fitness function determines the posi-
tioning performance of underwater targets. So as to improve the positioning accuracy of
underwater targets, we choose the fitness function as

f (Xs(k)) = gs(k) + λXT
s (k)Xs(k) (17)

where gs(k) =

[
Xs(k)
−1

]T[
At bt

]T(
Λ+

t
)T

Λ+
t
[
Xs(k) −1

][At
bt

]
. The smaller the fitness

function value, the more optimal the particle position.
Step 3: Particle velocity and position update. To ensure the diversity of particle

swarm and improve the search efficiency of particle swarm, we divide it into high-quality
particles and low-quality particles based on the fitness value. If f (Xs(k)) ≤ fmean, the parti-
cle s is classified as a high-quality particle Xhigh

s ; otherwise, the particle s is classified as a
low-quality particle Xlow

s , where fmean is the average of the total particle swarm’s fitness. Si-
multaneously, different search processes are designed according to the particle subgroups.

Obviously, the fitness of a low-quality particle that deviates from the local optimal
solution or the global optimal solution is larger. As a consequence, we expect low-quality
particles to tend to global searches, which are used to traverse the entire search region. The
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update strategies of a low-quality particle’s position Xlow
s (k) and velocity Vlow

s (k)Vlow
s (k) are

denoted as
Vlow

s (k + 1) = Vlow
s (k) + 2C1

(
2 − 2k

kmax

)2(
Pg − Xlow

s (k)
)

Xlow
s (k + 1) = 2

(
1 − k

kmax

)
Xlow

s (k) + Vlow
s (k + 1)

(18)

where C1 is a random number between 0 and 1; Pg refers to the global optimum of the
particle swarm; and kmax refers to the maximum iteration number.

Since the fitness of a high-quality particle is smaller, which is more locally optimal, it is
expected that a high-quality particle can completely search in its local region. Meanwhile, to
avoid the high-quality particle focusing on the local search excessively, the global optimum
of the particle and the optimum of the low-quality particle subgroup are integrated into
the high-quality particle’s position and velocity updating strategy, which are expressed as

Vhigh
s (k + 1) = wVhigh

s (k) + C2

(
Pbs − Xhigh

s (k)
)
+ C3

(
Pu − Xhigh

s (k)
)

Xhigh
s (k + 1) = Xhigh

s (k) + Vhigh
s (k + 1)

(19)

where C2 and C3 are random numbers between 0 and 1.5; Pbs refers to the individual
optimum of the particle s; Pu refers to the optimum of the low-quality particle subgroup;
and w is the inertia weight.

Step 4: Mutation. During particle optimization, particles may fall into local optimals
caused by the particle swarm optimal solution. For particles falling into local optimums
to jump out of local optimums, we need to judge whether the particle Xs(k) is in a local
optimum, which is denoted as{

H0
s : abs(( f (Pg)− f (Xs(k)))( f (Pg)− f (Xs(k − 1)))) ≤ δ

H1
s : abs(( f (Pg)− f (Xs(k)))( f (Pg)− f (Xs(k − 1)))) > δ

(20)

where δ is the threshold, set as 10−4. If H1
s is satisfied, the particle s is not in the local

optimum; otherwise, the particle s is in the local optimum. The particle in the local optimum
is mutated [32], which is denoted as

Xs(k) = Pg + 0.5
(

Xhigh
m (k)− Xhigh

n (k)
)

(21)

where Xhigh
m (k) and Xhigh

n (k) are two randomly selected particles from high-quality particles,
respectively.

Step 5: Iteration. If the particle fitness f (Xs(k)) is less than the individual optimal
fitness f (Pbs), Pbs is replaced with Xs(k). If the optimal fitness of all individuals is less
than the global optimal fitness f (Pg), the global optimum Pg is updated. If the itera-
tion number is larger than the maximum iteration number, iteration is stopped and the
global optimum Pg is output as the optimal estimation X̃t of Xt; otherwise, return to Step
3. Ultimately, according to the azimuth measurement, X̃t is converted to the position
estimation û of the underwater target, which is expressed as

û =

[√
X(1)sign(cos θ),

√
X(2)sign(sin θ), h

]
(22)

In summary, the detailed flow of the proposed algorithm is described in Algorithm 1.
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Algorithm 1: Robust positioning estimation for underwater acoustics target

Input: d̃t; θ̃t−1;
Outputs: û;
Deploy a transmission transducer a
For t = 1 : T Do
Pad empty ranges;
Pad empty angles;
If t > 2 Then
Correct d̃t by Equation (4);
Correct θ̃t by Equation (5);
Calling Subroutine Optimized positioning algorithm;
End If
End For
Subroutine Optimized positioning algorithm
Primary estimation by LS;
Obtain ∆At and ∆bt under uncertainties;
Construct the optimization function by Equation (15);
While k = 1 : kmax until the iteration ends
Particle swarm initialization by Equation (16);
Calculate fitness values;
If f (Xs(k)) > fmean Then
Update position Xlow

s and velocity Vlow
s ;

Else
Update position Xhigh

s and velocity Vhigh
s ;

End If
If H0

s is satisfied Then
Particle mutation by Equation (21);
End If
k = k + 1;
End While
Output estimation û by Equation (22).

3. Experimental Results and Performance Evaluation
3.1. Numerical Positioning Performance under Simulation Environment

We carried out the simulation evaluations related to the proposed positioning algorithm
with the use of numerical simulations. The underwater area was 300 m × 300 m × 30 m. The
transmission transducer a was deployed at the origin. The underwater target moved along
a helix trajectory with a 30 m depth during the sampling time. The positioning errors of
the underwater target were averaged through 20 Monte-Carlo simulations. The distance
measurement errors changed from 0.5% dt to 2% dt. The azimuth measurement errors
obeyed the Gaussian distributions with mean 0 and changed variance. Other parameter
settings are shown in Table 1. The proposed positioning algorithm was compared with
three algorithms: LS [23], HPSO [27], and LSEGA [28]. The LS algorithm belongs to the
distributed algorithm, while the HPSO and LSEGA algorithms belong to the intelligent
optimization algorithm.

Figure 2 shows the positioning error comparison of the algorithm before and after
the optimization. With the distance measurement error as 0.5% dt and the azimuth mea-
surement error variance as 0.12, the average positioning errors of the proposed positioning
algorithm before and after optimization were 5.29 m and 4.69 m, respectively. These results
demonstrate the proposed positioning optimization algorithm can effectively improve the
positioning accuracy of underwater targets. As the sampling time increased, the positioning
error before and after the optimization became gradually larger. The primary reason is that
the underwater target was gradually moving away from the transmission transducer, which
led to increasing ranging errors. The distance measurement results directly determine the
positioning performance.
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Table 1. Parameter settings.

Parameters Value

Sampling time T 100 s
Distance measurement error 0.5% dt to 2% dt
Azimuth error variance 0.12 to 0.162

Particle number S 100
Maximum iteration kmax 100
Maximum velocity Vmax 5
Minimum velocity Vmin −5
Regularization parameter λ 0.05
Distance threshold parameter ρ 0.2
Azimuth threshold parameter γ 0.2
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Figure 3 shows the positioning results of different positioning algorithms. With the
distance measurement error as 0.5% dt and the azimuth measurement error variance as
0.12, the average positioning errors of LS, HPSO, LSEGA, and the proposed positioning
algorithm were 5.59, 5.48, 5.28, and 4.69 m, respectively; the minimum positioning errors
were 1.06, 1.44, 0.99, and 0.36 m, respectively. These results demonstrate that the proposed
algorithm is superior to other algorithms in tracking underwater targets. For the LS, HPSO,
and LSEGA algorithms, they had unsatisfactory positioning results during the entire
positioning process. The proposed algorithm not only has data processing for distance
measurements and azimuth measurements, but also adds an intelligent optimization
positioning algorithm, which effectively improves the positioning accuracy and stability
for underwater targets.

Figure 4 shows a positioning error comparison of different algorithms under different
ratios of distance measurement errors. With the azimuth measurement error variance as
0.12, the average positioning errors of the LS, HPSO, LSEGA, and proposed algorithms
changed from 5.37, 5.63, 5.38, and 4.72 m to 5.86, 6.41, 6.21, and 5.26 m as the ratio of
the distance measurement errors increased from 0.5% to 2%. These results indicate the
proposed positioning algorithm has superior positioning results under different distance
measurement errors. The HPSO algorithm has random search primaries, resulting in
poor positioning performance. For the LS and LSEGA algorithms, the major reason why
they had similar positioning results is limited measurement data. However, the pro-
posed algorithm not only handles the measurement data, but also provides positioning
process optimization.
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Figure 5 shows the positioning performance comparison of different positioning
algorithms under different azimuth measurement error variances. With the ratio of distance
measurement errors as 0.5%, the average positioning errors of the LS, HPSO, LSEGA, and
proposed algorithms changed from 5.39, 5.64, 5.37, and 4.97 m to 8.22, 8.89, 8.64, and
7.64 m as the azimuth measurement error variance increased from 0.12 to 0.162. Obviously,
the proposed positioning algorithm still had superior positioning performance than the
others under the increasing variance in azimuth measurement errors. Moreover, the
azimuth measurement accuracy also strongly determines the positioning performance
of different algorithms. Regarding the LS, HPSO, and LSEGA algorithms, the proposed
positioning algorithm is affected by the azimuth measurement errors at a lower level,
which is mainly due to the optimization of the azimuth measurement results added in the
proposed positioning algorithm.
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Figure 5. Positioning performance comparison of different positioning algorithms under different
azimuth measurement error variances.

Figure 6 shows the computation time of different positioning algorithms. The com-
putation time is the average of 50 Monte Carlos. With the distance measurement error as
0.5% dt and the azimuth measurement error variance as 0.12, the average computation
times of LS, HPSO, LSEGA, and the proposed positioning algorithm were 0.05, 0.13, 0.25,
and 0.41 s, respectively. Since the LS algorithm belongs to the distributed algorithm, the
computation time was the lowest. The HPSO and LSEGA algorithms utilize the intelligent
optimization algorithm, resulting in longer computation times. The proposed algorithm
had the highest computational time, which is primarily attributable to the additional data
processing stage and intelligent positioning optimization. Compared to other algorithms,
the proposed positioning algorithm had the best positioning accuracy despite the increase
in computation time. As processors continue to advance, longer computation times can be
effectively reduced.
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3.2. Experimental Positioning Performance in Underwater Environments

For testing the positioning performance of the proposed algorithm, we carried out the
experimental test in Hangzhou Qiandao Lake, as shown in Figure 7. The ultra-short baseline
used was a Sonardyne Type 8024 high-frequency ultra-short baseline, with a frequency
of 35–55 KHz, matched with Sonardyne Type 7986 acoustic beacon, with an operating
range of 500 m and a measurement accuracy of 0.5% slant distance. The transponder
received the acoustic signal from the transmission transducer and acquired the distance
and azimuth. The measured data were transmitted to the base station located on the ship
for positioning calculations.
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Figure 8 shows the positioning experiment data and positioning results of the un-
derwater target. Figure 8a shows the variation in distance measurements between the
transmission transducer and the transponder during the entire sampling time. As the
sampling time increased, the distance measurements gradually increased, which indirectly
suggested the underwater measured point with the transponder was gradually moving
away from the ship with the transmission transducer. Figure 8b shows the variation in the
azimuth measurements between the transmission transducer and the transponder during
the entire sampling time. During the entire sampling time, the azimuth measurements
were alternatively transformed in positive and negative directions. Figure 8c shows the
depth variation of the underwater measured point during the entire sampling time, and the
whole variation was similar to the variation in distance measurements. Figure 8d shows the
location estimation of the underwater measured point using the proposed algorithm in this
experiment. The position estimation of the underwater measured point was continuously
changing without unexpected variations during the entire sampling time, indicating the
proposed algorithm has better localization robustness.
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Figure 8. Positioning experiment data and positioning results of the underwater target. (a) The
distance between transducer and transponder; (b) The azimuth between transducer and transponder;
(c) The changed depth of measured point; (d) The estimated locations of measured point.

4. Conclusions

This paper proposes a robust positioning estimation for underwater acoustics tar-
gets with the use of multi-particle swarm optimization, which is utilized for underwater
target localization under numerous uncertainties. The proposed positioning algorithm
uses the relationship between measurements to pad and correct the measurements, and
then solves the unconstrained optimization problem using improved multi-particle swarm
optimization to position the underwater target. Compared with the LS, HPO, and LSEGA
algorithms, the simulation results indicate the proposed algorithm has better positioning ac-
curacy and robustness. The positioning error of the proposed algorithm after optimization
was reduced by 0.60 m, which demonstrates the feasibility and superiority of the improved
multi-particle swarm algorithm. As the azimuth measurement error variance increased
to 0.162, the average positioning errors of LS, HPSO, LSEGA, and the proposed algorithm
increased by 2.83 m, 3.25 m, 3.27 m, and 2.67 m. Similarly, the increased distance measure-
ment errors also increased the positioning algorithm errors. Furthermore, we performed
positioning experiments for the underwater measured point in Hangzhou Qiandao Lake,
aiming to test the proposed algorithm’s reliability. These results illustrate the proposed
positioning algorithm has superior positioning performance with a single transmission
transducer, although it adds some computational time.

Due to the fact that underwater sound velocity measurement is the foundation of
underwater target localization, subsequent research will introduce intelligent algorithms to
correct sparse effective sound velocity and integrate sensors, including inertial measure-
ment units and Doppler velocimeters, to construct a combined navigation and positioning
system. High order filtering algorithms will be used to enhance the performance of under-
water target positioning.
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