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Abstract: Studying the mechanical characteristics of hydrate-bearing sediments (HBS) contributes
to the comprehensive understanding of the mechanical behavior in environments with natural gas
hydrate (NGH) occurrences. Simultaneously, the distribution patterns of hydrates significantly
influence the strength, deformation, and stability of HBS. Therefore, this paper employs particle
flow code (PFC) to conduct biaxial discrete element simulations on specimens of HBS with different
hydrate distribution patterns, revealing the macroscale–mesoscale mechanical properties, evolution
patterns, and destructive mechanisms. The results indicate that the strain-softening behavior of
HBS specimens strengthens with the increase in hydrate layer thickness, leading to higher peak
strength and E50 values. During the gradual movement of the hydrate layer position (Ay) from both
ends to the center of the specimen (Ay = 0.40 mm → Ay = 20 mm), the strain-softening behavior
weakens. However, when Ay = 20 mm, the specimen exhibits evident strain-softening behavior again.
Moreover, with an increase in the angle between the hydrate layer and the horizontal direction (α)
greater than 20◦, the peak strength of the specimen increases, while E50 shows an overall decreasing
trend. The influence of axial loads on the hydrate layer in specimens varies with α, with larger contact
forces and fewer cracks observed for higher α values.

Keywords: natural gas hydrate; distribution patterns; biaxial shear; discrete element simulation;
mechanical properties

1. Introduction

Natural gas hydrate (NGH), a crystalline cage-shaped solid complex formed via the
interaction of water molecules and methane in situations of higher pressure and lower
temperature, emerges as a promising clean alternative energy source when compared to
traditional fossil fuels. Its distinct advantages, including high energy density, substantial
reserves, and environmentally friendly characteristics, position NGH as a noteworthy
prospect for the future [1–4]. However, the production of NGH poses significant risks
to geological formations. The dissociation of NGH during production has the potential
to initiate large-scale seafloor destabilization, resulting in adverse effects on geological
structures [5–7]. Furthermore, the uncontrolled release of methane gas from NGH into the
atmosphere has the potential to exacerbate the greenhouse effect, intensifying environmen-
tal concerns [8–10]. Consequently, to ensure the secure and efficient exploitation of NGH
and to promote their commercialization, a critical necessity arises for the comprehensive
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study of their mechanical properties. This scholarly endeavor is indispensable for advanc-
ing our understanding and developing strategies for the responsible utilization of NGH
across various sectors.

In the pursuit of expediting the commercial exploitation of NGH, scientists have
carried out an abundance of experiments examining the mechanical characteristics of
these NGH both in field settings and controlled laboratory environments, employing
diverse testing methodologies. Wu Qi et al. [11] undertook triaxial shear experiments on
HBS, revealing a close interconnection between shear and deformation properties and
hydrate saturation, as well as net surrounding pressure. Hyodo et al. [12] meticulously
executed a series of indoor triaxial shear tests on synthetic HBS, exploring the intricate
effects of hydrate saturation, temperature, and net confining pressure on the strength and
deformation attributes. Li et al. [13] in a complementary effort, conducted a series of indoor
triaxial shear experiments to scrutinize the mechanical properties of HBS under horizontal
layering conditions. Winters et al. [14], in turn, subjected HBS drilled from the Mackenzie
Delta to rigorous testing, focusing on acoustic and shear properties. Yoneda et al. [15]
extended the discourse by conducting triaxial compression tests on sandy and clayey
pulverized HBS, employing pressure coring in the eastern part of the Nankai Trough,
Japan. Luo et al. [16] contributed to this volume of work by contrasting the mechanical
characteristics of in situ cores of HBS in the South China Sea with laboratory-prepared
specimens, employing triaxial shear tests. Their findings indicated remarkable similarities
in stress–strain characteristics and strength properties, confirming the capability of hydrate
particles to enhance bonding between sediment particles. These studies collectively play a
pivotal role in advancing our understanding of the intricate mechanical properties inherent
in HBS. However, the current stage of development in relevant testing equipment and
technology, compounded by the challenging storage conditions of hydrates in reservoirs,
impedes the execution of a multitude of tests.

In order to overcome the limitations of existing indoor experimental techniques, schol-
ars have carried out a series of numerical simulation studies in different dimensions.
Zhu et al. [17] used the Tough + Hydrate to construct a 3D model of a hydrate reservoir,
which proved the important impact of reservoir fluctuations and physical properties on gas
hydrate recovery and emphasized the need to use more realistic 3D models for production
dynamics prediction. Bosikov et al. [18] established a preliminary 4D geological model
via 4D simulation and analyzed the characteristics of the geological model to evaluate
multi-stage hydraulic fracturing parameters. And to study the mechanical properties of
hydrate sediments, many scholars use the PFC to conduct numerical simulation studies.
Jiang et al. [19–22] pioneered the establishment of a mesoscopic bonding model elucidating
the mechanical characteristics of NGH. This model aims to reflect the intricate contact
mechanical responses occurring between sediment particles under the influence of bonding.
Subsequently, a comprehensive suite of discrete element simulation experiments comple-
mented this foundational work. Wang et al. [23] introduced a PFC-based methodology to
simulate the generation of pore-filling hydrates, meticulously exploring the mechanical
properties under diverse conditions of confining pressure and saturation. Yu et al. [24],
utilizing PFC, delved into the impact on the mechanical performance in triaxial compres-
sion experiments of soil shape and hydrate growth mode. Zhao et al. [25], leveraging PFC,
conducted a meticulous analysis examining the impact of hydrate horizontal layering dis-
persion on the initial stress and failure stress of HBS. Their work yielded valuable insights
into the damage law governing sediments containing NGH. Jiang et al. [26] employed
PFC to investigate the effects of hydrate content and loading rate on various parameters,
such as strength, stiffness, cohesion, and internal friction angle, within HBS. Their discrete
element simulation [27] further explored shear strength, volumetric strain, and the evolu-
tionary patterns of shear bands under different dynamic loading conditions. While these
examinations have furnished an initial comprehension of the macroscopic and mesoscopic
shear properties of HBS under triaxial shear conditions, it is imperative to acknowledge
that different distributions of hydrates within HBS can significantly alter their mechanical



J. Mar. Sci. Eng. 2024, 12, 20 3 of 21

properties [28–30]. A more in-depth comprehension of how the distribution patterns of
hydrates influence the mechanical characteristics of HBS holds considerable promise in
advancing the realization of long-term stable commercial production of NGH.

In consideration of the insights, to delve deeper into the impact of hydrate distribution
patterns on the mechanical properties of HBS, this study employed the PFC for biaxial
discrete element numerical simulations of specimens with varied arrangements of hydrate
distribution patterns. The research focused on investigating the macroscale–mesoscale
shear mechanical properties of the specimens, unveiling the destructive mechanisms. These
research findings hold significant guidance for a more accurate understanding of the
mechanical properties of HBS and provide insights for the management and mitigation of
seabed geological hazards.

2. Discrete Element Method for PFC
2.1. Particle Contact Model

The mechanical characteristics of HBS are subject to various influencing factors. Be-
yond the well-established factors such as hydrate saturation and stress conditions, it can
be significantly altered by the pattern of hydrate accumulation. Figure 1 illustrates the
mesoscale distribution patterns of hydrates in three prevalent sediment structures: the
filling pattern, the skeleton pattern, and the bonding pattern [31,32]. For this study, the
hydrate accumulation pattern is of paramount importance. The hydrate most extensively
distributed in nature is carefully selected as the basis for constructing the HBS model [33].
This choice is made to ensure the representation of the most common and prevalent hydrate
distribution in natural settings. Consequently, the model adopted in this paper employs
the hydrate distribution pattern that is most observed in nature, providing a realistic
foundation for the investigation of the mechanical characteristics of HBS.
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Figure 1. Bonding types of HBS.

Taking into account the shape impact of sandy soil and the bonding influence between
hydrate particles and soil particles, a linear contact model for rolling resistance and a
bonding contact model in parallel were employed between sediment particles and between
hydrate and soil particles, respectively [34]. As depicted in Figure 2, The linear contact
model for rolling resistance incorporates the impact of rolling resistance on the foundation
of the linear contact model, including the normal contact part, tangential contact segment,
and anti-rolling contact segment. The complete rolling resistance linear contact model
involves the normal contact force Fn, tangential contact force Fs, and anti-rolling moment
MT, and its calculation formula is expressed as follows [35]:

Fc = Fn + Fs (1)

MT = MT − kr∆θr (2)

where ∆θr is relative angle increment and kr is rolling resistance stiffness.
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The relationship between contact force and displacement for the parallel bonding
model is illustrated in Figure 2. It is evident that the contact force and displacement in the
parallel bonding model depend on the contact stiffness and relative displacement between
particles. Here, Fn and Fs denote the constituents of the contact force in the normal and
tangential directions, respectively. Mb represents the torque, Mt represents the contact
bending moment, δs represents the tangential displacement of the contact, θb is the rotation
angle of the contact, and θt represents the torsion angle of the contact. The utmost normal
contact force and maximum shear contact force on the contact surface can be computed
based on the contact force and contact moment. Contact moment is as follows [35]:

σ
max

=
Fn

A
+

∣∣Mb
∣∣R

I
(3)

τ
max

=
Fs

A
+ β

MtR
J

(4)

where I, A, and J represent the cross-sectional moment of inertia, the cross-sectional area,
and the cross-sectional polar moment of inertia, calculated using the following equations,
respectively: I = 0.5πR4, A = πR2, and J = 0.25πR4. R is the particle radius; τmax and
σmax represent the maximum shear contact force and the maximum normal contact force,
respectively; and β is the torque distribution coefficient, and the parameter is 1 by default.
This is to simplify the model so that particles in the system fully transmit forces and torques
to adjacent particles without energy loss or additional resistance. R is the equivalent radius
of the contact. At the point where the normal stress equals the normal contact strength, the
normal contact fails due to the influence of tensile stress. Upon reaching the shear strength,
the shear contact undergoes failure, and the failure condition adheres to the Moore–Cullen
strength criterion.

2.2. Model Construction

Within this investigation, the PFC 2D software version 5.0 is employed to simulate
biaxial shear tests conducted on HBS. PFC 2D software is a discrete element simulation,
which is a particle-level modeling. It can flexibly set the boundary conditions of biaxial
shear tests, conduct multi-scale simulations from micro to macro, and visualize the simula-
tion results to facilitate parameterization and sensitivity analysis. Compared with similar
programs such as DEM (Discrete Element Method), it also has the advantages of multi-
physics coupling, good flexibility and scalability, graphical interface, and visualization. The
generated sediment specimen model in this paper takes the form of a rectangular structure
with a height of 60 mm, a width of 30 mm, and an aspect ratio of 2.0. The actual sediment
and hydrate particles exhibit intricate shapes and diminutive sizes. However, the higher the
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quantity of particles, the more complex their shapes, and the smaller their sizes in discrete
element simulations, the higher the computational cost. In view of the consideration of
limited computational resources, sediment particles, and hydrate particles are simplified to
be simulated as disc particles in DEM simulation [26]. (Disc particles in discrete element
simulations cannot be crushed during biaxial shear.) Notably, prior research conducted by
Belheine et al. [36] and Evans et al. [37] demonstrated that scaling particle size in discrete
element simulations effectively captures specimen mechanical behavior. In consideration
of computational resource limitations, the discrete element specimens in this paper are
also subjected to scaling. The grain sizes of sediments, ranging from 0.727 to 1.136 mm,
are scaled based on the Toyoura sand grain size distribution [12], as depicted in Figure 1.
Ding et al. [38] conducted a study revealing that in the two-dimensional filling process, a
particle size ratio greater than 6.48 for the selected sand to hydrate allows hydrate particles
to fill the tiniest pores in the sediments. Consequently, this study sets the particle size
of hydrate particles to 0.1 mm (approximately one-seventh of the minimum sediment
particle diameter).

HBS emerge via the orchestrated transport of methane gas via designated conduits
into the pores of a shallow deep-sea soil framework with an initial bearing capacity. To
better conform to the natural formation patterns of HBS, the model in this investigation
triggers the generation of hydrate particles within the pores of consolidated sediments,
following an isotropic consolidation pressure of 1 MPa. Moreover, due to the substantial
disparity in particle size between hydrate and sediment particles, interparticle contact
proves challenging, resulting in the suspension of numerous hydrate particles within the
pore space of the sediments. In this simulation, an intricate methodology is employed to
address this challenge. Initially, the particle size of sediment particles is expanded, and the
pore space of the sediment is contracted, facilitating comprehensive contact among hydrate
particles. Following the re-establishment of interparticle contacts, the sediment particles are
then reverted to their original size. The detailed preparatory method is outlined as follows:

In the designated rectangular range, a sediment specimen lacking NGH is randomly
generated based on the particle size grading curve depicted in Figure 3. The positions
of the sediment particles are fixed, and their sizes are expanded, typically by a factor of
1.5. Following this, a consolidating pressure of 1 MPa is imposed to ensure the adequate
consolidation of the sediment specimen. Simultaneously, hydrate particles are randomly
generated in the pore space until it is entirely filled. If the generated particles fall short
of meeting the required saturation degree, calculated by Equation (5), the particle size of
sediment particles is reduced. This process is iterated until the sediment specimen achieves
the desired saturation degree. The corresponding contact model is then established by
defining contact points between particles. Specifically, the parallel adhesion model is
employed between NGH particles and between NGH particles and sediment particles.
Additionally, utilizing the rolling resistance model between sediment particles. The details
of the contact model can be referenced from the literature [39]. To complete the specimen,
flexible boundaries are constructed on both sides of the sediment specimen, as depicted
in Figure 4. Subsequently, the immobilization of sediment particles is removed, and their
diameters are restored to their original dimensions until all particles attain equilibrium.

Nhydrate =
A × n × Smh

πr2
h

(5)

where Nhydrate is the quantity of hydrate particles, Smh is the hydrate saturation of the HBS,
A is the area of the rectangular sediment specimen, n is the porosity, and rh is the radius of
the hydrate particles.
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2.3. Flexible Boundary

In the practical implementation of biaxial shear tests on HBS, the specimen’s exterior
is typically enveloped with a latex membrane to withstand circumferential pressure, while
rigid loading plates are applied to the top and bottom surfaces to exert axial force. As illus-
trated in Figure 4, discrete element simulation software utilizes disc particles (membrane
particles) with identical radii bonded to each other for constructing flexible boundaries.
In this study, the radius of the membrane particles is set at 0.1 mm. The contact model
between particles employs the linear contact bonding model, ensuring the transmission of
force between membrane particles without torque. This configuration emulates the flexible
pressurization role of the latex membrane in biaxial tests conducted in a chamber.

As the flexible boundary lacks the capability to maintain the target perimeter pressure
value via servo control, unlike the rigid boundary, an equivalent concentrated force must be
applied to each membrane particle on the flexible boundary to sustain the desired perimeter
pressure. However, due to the linear contact bonding model connecting the membrane
particles while undergoing the loading process, the position of the membrane particles
changes with the loading and transmits force accordingly. Therefore, at each computational
step, the real-time updating of the position of membrane particles is necessary to adjust
the concentrated force applied to maintain the required target perimeter pressure for the
simulation. Taking the example of two particles, A and B, as depicted in Figure 4, the
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contact between the particles is treated as a continuous membrane, and the length of the
membrane corresponds to the contact length, denoted as L, which represents the distance
between the centers of the two membrane particles. Hence, the force FAB applied to the
flexible membrane can be expressed as follows:

FAB =
σw × L

2
(6)

where σw is the set target envelope pressure.

2.4. Mesoscale Parameters
2.4.1. Materials and Methods

This article refers to the triaxial shear test scheme of HBS by Kajiyama et al. [40] and
carries out biaxial verification tests of HBS specimens under different hydrate saturation
and different confining pressure conditions. The experimental temperature is 4 ◦C. The
average porosity of natural gas hydrate used was 32%, the average saturation was 38.7%
and 54.3%, and the confining pressures selected were 1 MPa and 3 MPa, respectively. This
test uses the KD-II high-pressure and low-temperature hydrate mechanical properties
testing system of the School of Energy, Shandong University of Science and Technology
(as shown in Figure 5). The experimental equipment includes fine sand, electronic scales,
deionized water, methane gas, sample press, and constant temperature, constant humidity
curing box (as shown in Figure 6), etc.
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Figure 6. Specimen preparation.

Before starting the test, clean the instrument and check the air tightness of the device.
The specific test steps are as follows:

(1) Specimen preparation. The specific process (shown in Figure 6) is that first, the
mass of the sand in the specimen is calculated to be 181.49 g based on the size of the



J. Mar. Sci. Eng. 2024, 12, 20 8 of 21

specimen used in the test: Φ 50 mm × 100 mm and the porosity. And according to the
particle size of sand, as shown in Figure 3, 181.49 g of sand is assigned. Then, according
to the NGH saturation required for the test, the corresponding required deionized water
volumes were calculated to be 24.19 mL and 33.94 mL, respectively. Mix the weighed sand
and the measured deionized water evenly and put them into the mold. The layers are
compacted to make a sand sample of the required size, and the prepared sand sample is
placed in a constant temperature and humidity box (the temperature is set to −4 ◦C) and
refrigerated for 24 h. Put the refrigerated specimen into a heat-shrinkable tube, install it
in the triaxial pressure chamber, seal the upper and lower ends of the specimen with two
O-rings, and calibrate the LVDT.

(2) Gas saturation method for the synthesis of NGH. Drop the confining pressure
kettle, fill the pressure chamber with silicone oil, turn on the temperature control system,
raise the temperature in the pressure chamber to 15 ◦C, and keep it for 30 min. After the
ice in the test piece is completely melted, turn on the confining pressure controller to test,
respectively. Apply peripheral pressures of 1 MPa and 3 MPa to the specimen, then set the
confining pressure to tracking mode, and at the same time, open the air inlet valve and
introduce methane gas into the specimen to increase the pore pressure. During this process,
it is ensured that the peripheral pressure is always higher than the pore pressure, and the
difference is the effective confining pressure. When the pore pressure reaches 10 MPa, close
the air inlet valve. Then, the temperature of the pressure chamber is lowered from 15 ◦C
to 4 ◦C via the temperature control system, so that the NGH can be fully synthesized in a
low-temperature and high-pressure environment. When the pore pressure does not change,
it is considered that the natural gas hydrate in the specimen has been fully synthesized.

(3) Loading process. The shear rate was set to 1 mm/min, and the test data were
recorded every 2 s during the shearing process. The test was stopped when the strain of
the specimen reached 15%.

(4) Unload the test piece. After the test is completed, the pressure in the system is
safely released, the silicone oil in the confining pressure chamber is discharged into the oil
cylinder, and the discharged gas is collected uniformly into the recovery device.

2.4.2. Mesoscopic Parameter Determination

In the realm of indoor experiments, the direct acquisition of mesoscale parameters
such as the contact modulus, cohesion, and tensile strength of particles remains elusive.
Furthermore, there is a current absence of reliable data pertaining to the contact bonding
parameters specific to HBS. Consequently, the establishment of a correlation relating the
mesoscale parameters of particles to the macroscopic mechanical parameters of HBS is of
paramount significance. This study amalgamates results from indoor triaxial shear tests [40],
referencing parameter values from prior research [21,41]. Employing the iterative “trial-
and-error” approach, the mesoscale parameters of the contact bonds were meticulously fine-
tuned in discrete element specimens. The contact modulus for the linear contact bonding
model between membrane particles is precisely specified at 7 × 106 Pa, representing the
typical modulus of a latex membrane, while the strength is set at 1 × 10300 Pa to ensure
the resilience of the flexible membrane during the loading process. Simultaneously, other
mesoscale mechanical parameters of the particle and contact models are comprehensively
detailed in Tables 1 and 2.

Table 1. Numerical model’s mesoscale parameters for particles.

Round Particles Sediment Particles NGH Particles

Density/g·cm−3 2.65 0.9
Normal stiffness/N·m−1 4 × 109 4 × 108

Normal tangential stiffness ratio 4/3 4/3
Particle size/mm 0.727~1.136 0.10

Friction coefficient 0.5 0.2
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Table 2. Mesoscale parameters of the contact model in the numerical model.

Contact Model Between Sediment Particles Between NGH and
Sediment Particles Between NGH Particles

Normal stiffness/N·m−1 - 16 × 109 16 × 109

Normal tangential stiffness ratio - 4/3 4/3
Tensile strength/MPa - 2 × 106 2 × 106

Bond strength/MPa - 2 × 106 2 × 106

Friction angle/◦ - 38 38
Rolling friction coefficient 0.5 - -

The DEM to simulate the biaxial shear test of HBS is implemented as follows: Initially,
a constant circumferential pressure is exerted onto the specimen of the hydrate deposit
using a flexible boundary. Once the computational model achieves equilibrium, servo
technology within PFC 2D is utilized to impose identical horizontal velocities (1 mm/min)
on the upper and lower walls of the specimen, facilitating the application of axial load. The
test is halted when the axial strain of the specimen reaches 15%.

Figure 7 presents a comparative analysis between the outcomes of the discrete element
simulation and the triaxial shear test. It is evident from the comparison that the numerical
simulation in this study exhibits a commendable consistency with the results obtained
from the indoor test. Therefore, the discrete element simulation utilized in this context
adeptly captures the characteristics of HBS, rendering it a valuable tool for the scrutiny
of their mechanical characteristics. The latter segment of the observed fluctuations in the
stress–axial strain curves is more pronounced in this study. This intensity arises due to the
compression process, wherein the increasing particle density leads to subtle displacements
or misalignments, resulting in more noticeable fluctuations in the stress curves monitored
on the observation wall.
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2.5. Test Scheme

The distribution patterns of hydrates in the HBS specimens are illustrated in Figure 8.
The numerical simulation comprises two sets of sediment specimens without hydrate
layering distribution (Figure 8a,b) and three sets (Figure 8c–e) with distinct hydrate layering
distribution patterns. These patterns involve parameters such as hydrate layer thickness
RH, hydrate layer distribution position Ay, and the angle of the hydrate layer concerning
the horizontal direction α. The specific simulation details are provided in Table 3. The HBS
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specimen is generated using the sampling method outlined in Section 2.2, with a hydrate
saturation set to 50% (the typical range in the reservoir of the Nankai Trough of Japan is
40% to 80%). The surrounding pressure is set at 6 MPa [42]. The loading velocity is set at
1 mm/min, and the test concludes once the axial strain of the specimen hits 10%.
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Figure 8. Distribution patterns of hydrate in HBS specimen. (a) Sediment sample, (b) Sediment
sample containing hydrate, (c) Sediment sample containing RH sediment with different hydrate layer
thicknesses, (d) Ay sediment sample containing different hydrate layer positions, (e) Sediment sample
containing different hydrate layer thicknesses. Hydrate layer inclination angle α sediment sample.

Table 3. Simulation scheme.

Groups Confining Pressure/MPa Saturation/% RH
1/mm Ay

2/mm α 3/◦

a 6 50 0 0 0
b 6 50 60 0 0
c 6 50 10/20/30/40/50 0 0
d 6 50 20 0/10/20/30/40 0
e 6 50 20 - 10/20/30/40/50

1 RH is the thickness of hydrate layer. 2 Ay is the distribution position of hydrate layer. 3 α is the angle between
the hydrate layer and the horizontal direction.

3. Macroscale–Mesoscale Shear Mechanical Properties
3.1. Stress and Deformation Characteristics

The stress–strain curves of HBS specimens exhibit varied distribution patterns, de-
lineated in Figure 9. Notably, Figure 9a demonstrates that the stress curve corresponding
to the specimen featuring 50% hydrate saturation has been above the stress curve of the
specimen devoid of hydrate across the entire loading process. This disparity implies aug-
mentation in the modulus of elasticity induced by the existence of hydrates. Moreover, the
peak stress exhibited by the hydrate-containing specimen ascends appreciably, attributable
to the bonding effect engendered between hydrate particles and sediment constituents. At
the same time, specimens devoid of hydrate do not have a clear peak stress and a distinct
post-peak phase in contrast to the presence of hydrate, and the stress–strain curves have
transitioned from strain-softening to strain-hardening in specimens.
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Figure 9. Stress–strain curves of specimens with different hydrate distribution patterns.

The stress–strain curves, exemplified in Figure 9b, are greatly affected by the hydrate
layer thickness on the HBS specimens. Notably, the curve has a discernible change rule that
enlargement in RH leads to notable enlargement in peak strength alongside an increasingly
pronounced strain-softening behavior within the specimens. This observed phenomenon
can be attributed to distinct underlying mechanisms. At lesser RH, the prevailing interaction
forces among sediment particles (primary effects are friction) and the concurrent presence
of interparticle self-locking phenomena contribute to maintaining or even enhancing the
overall strength of the specimen. This engenders an elevation in the specimen’s peak
strength, while the strain-softening behavior is not obvious. Conversely, as the RH increases,
the impact of the interparticle bonding breakdown on the corresponding stress–strain curve
also intensifies. Moreover, the more the bonding is destroyed, the more the strength
of the specimen decreases and the more noticeable the strain-softening behavior of the
specimen is.

Delineated in Figure 9c, the strain-softening behavior of the specimen diminishes
during the gradual movement of the hydrate layer from both ends of the specimen to
the middle (Ay = 0, 40 mm → Ay = 20 mm). Notably, the specimen again shows obvious
strain softening behavior when Ay = 20 mm. Because when the hydrate layer is confined
to both ends of the specimen, the hydrate layer is directly affected by the axial load, and
the interparticle bonding breaks down faster, consequently diminishing the specimen’s
supporting capacity. However, as the hydrate layer is translocated toward the midsection,
its upper and lower segments comprise loosely packed sediment particles. And the distal
end, distanced from the primary axial load (far force end), inadequately transmits axial
force to the hydrate layer, primarily burdening the section proximal to the axial load
(near force end). This transmission, however, experiences attenuation due to the near
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force end’s influence on the sand layer, resulting in a deceleration of interparticle bonding
destruction and, subsequently, a weakening of the strain-softening behavior of the specimen.
Furthermore, at Ay = 20 mm, an obvious distinction arises from scenarios where the
hydrate layer is solely present on one side of the specimen’s horizontal centerline. Here, the
hydrate layer concurrently comes under axial loads at both ends and induces accelerated
interparticle bonding destruction, consequently intensifying the strain-softening behavior
of the specimen.

Specifically, the stress–strain curves of the specimens manifest evident strain softening
behavior when α is equal to 10◦, as depicted in Figure 9d. When α ≥ 20◦, the stress–
strain curve of the specimen shows obvious strain hardening behavior, and as the loading
continues, the curve shows strain softening behavior. This is because the presence of α
subjects the hydrate layer to uneven axial loading. The portion of the hydrate layer near
the ends of the specimen experiences a greater influence from the axial load, leading to
the initial breakdown of interparticle bonding. Conversely, the section farther from the
ends is less affected. Under the influence of bonding between particles, the specimen
retains a certain strength, resulting in a stress–strain curve exhibiting pronounced strain
hardening behavior. However, as loading continues, extensive bonding breakdown occurs
in the hydrate layer particles farther from the ends, causing the specimen to exhibit strain-
softening behavior.

3.2. Strength Characteristics

Figure 10 illustrates the variations curves in mechanical parameters of sediment
specimens containing hydrate layers of varying thicknesses. Both the peak strength and the
secant modulus E50 of the HBS (In this study, due to the inelastic nature of HBS, obtaining
the initial modulus E0 encounters difficulty. In this test, the secant modulus E50 is employed
to portray the stiffness of the specimen. E50 is defined as the incline from the origin to the
point on the stress–strain curve corresponding to half of the ultimate strength.) exhibit a
discernible increase relative to the RH. For instance, as RH escalates from 10 mm to 20 mm,
the peak strength ascends from 0.932 MPa to 0.983 MPa (a 5% increase), while E50 rises
from 424 MPa to 467 MPa (a 10% increase). Subsequently, with further increments in RH
from 20 mm to 30 mm, the peak strength rises to 1.021 MPa (a 3.8% increase), accompanied
by E50 reaching 478 MPa (a 2.3% increase). Similarly, elevating RH to 40 mm and 50 mm
resulting in specimen strengths of 1.101 MPa and 1.164 MPa, along with E50 values of
562 MPa and 617 MPa, correlates with respective peak strength increments of 11.8% and
5.7%, the E50 increments of 5.7% and 9.8%. This is due to the fact that the larger the RH
is, the stronger the bonding of the hydrate in the specimen is, subsequently augmenting
shear capacity and resistance to deformation, resulting in a larger peak strength and E50 for
the specimen.

Figure 11 showcases the mechanical parameter curves of sediment specimens contain-
ing hydrate layers of different distribution positions. It can be seen that the demonstrates
analogous mechanical parameter characteristics due to the symmetrical nature of the hy-
drate layer’s positioning at Ay = 0, 40 mm, and Ay = 10, 30 mm, thereby warranting only
focus on the alterations observed when the hydrate layer resides at Ay = 0, 10, 20 mm.
When the hydrate layer relocates from Ay = 0 mm to Ay = 10 mm, closer to the specimen’s
center from the bottom, both the peak strength and E50 exhibit an increase. The peak
strength elevates from 1.031 MPa to 1.114 MPa, increments of 8.1%, while E50 increases
from 432 MPa to 502 MPa, increments of 16.2%. However, as the hydrate layer relocates
from Ay = 10 mm to Ay = 20 mm, i.e., the hydrate layer changes from close to the middle of
the specimen to the middle, both the peak strength and E50 witness a decline. Specifically,
the peak strength reduces to 0.983 MPa, marking a 12.2% decrease, while E50 decreases to
471 MPa, marking a 6.2% decline. From the analysis of 3.1, the hydrate layer is in different
positions, and the influence produced by the axial load is also different in size; it is evident
that as the hydrate layer distances itself from the near force end, the impact of the axial
load diminishes. Consequently, this results in a slower destruction of hydrate bonding,
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enhancing the specimen’s shear capacity and resistance to deformation. This, in turn,
correlates with amplified peak strength and E50 values.
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Figure 10. Mechanical parameter curves of sediment specimens containing hydrate layers of different
thicknesses.
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Figure 12 illustrates the mechanical parameter curves of sediment specimens con-
taining hydrate layers of different angles. Distinct disparities in peak strength and the
change in E50 are evident between α = 10◦ and α ≥ 20◦. An analysis of Figures 9 and 12
reveals that, at α = 10◦, the stress–strain curve change rule of the specimen closely mirrors
that of a horizontally placed hydrate layer. Conversely, for α ≥ 20◦, an observable trend
emerges wherein the peak strength of specimens elevates with increasing α, while E50
exhibits an overall declining trajectory with escalating α values. For instance, as α rises
from 20◦ to 30◦, the peak strength escalates from 0.898 MPa to 0.989 MPa, increments
of 10.1%. In contrast, E50 experiences a substantial decline from 519 MPa to 412 MPa, a
decrease of 20.7%. Similarly, as α increases from 30◦ to 40◦, while no significant alteration
occurs in the peak strength and E50. But as α increases from 40◦ to 50◦, the peak strength
increases to 1.057 MPa, representing a 6.9% increase. E50 experiences a substantial decline



J. Mar. Sci. Eng. 2024, 12, 20 14 of 21

to 367 MPa, a decrease of 12.8%. This is because, with the increase in α, the enhanced
bonding within the hydrate contributes to heightened shear resistance and increased peak
strength. However, the presence of α in conjunction with axial loading introduces uneven
stress distribution within the hydrate layer when the existence of α is not negligible. Conse-
quently, sections closer to both ends of the specimen experience accelerated destruction of
the bonding, resulting in reduced deformation resistance. So, the specimen’s E50 decreases
as α increases.
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3.3. Typical Damage Law of HBS

The deformation and damage processes within HBS are characterized by the develop-
ment and change in deviatoric stress, axial strain and volumetric strain, and the emergence
and progression of shear bands at the macroscale and mesoscale, respectively. Macro-
scopically, investigating the influence of axial load on the deformation and damage of
HBS specimens needs to observe strain behavior rules such as axial strain and volumetric
strain. Conversely, at the mesoscopic level, understanding the impact of axial load on the
deformation of HBS specimens needs to examine particle displacement, the distribution of
contact force chains, and the evolution of crack extension laws [27]. Specifically, Figure 13
illustrates typical damage law observed in sediment specimens containing hydrate layers
of different thicknesses. The observations reveal the hydrate-free part exhibits considerable
particle displacement, with most particles displaced between 6 and 8 mm (as shown in
Figure 13a). It has significant differences in particle displacement (0~12 mm) of the hydrate
layer, exhibiting a notable displacement gradient that facilitates shear band formation. This
shear band represents a macroscopic manifestation of localized deformation characteristics
within HBS. Furthermore, an increase in RH accentuates the rise of the shear band. This
can be attributed to the shear band can be depicted as a region featuring active particle
motion and substantial relative displacement at the mesoscopic level. As the shear strength
of HBS amplifies, there is an increased demand for internal particle interaction forces to
counteract deformation. Consequently, this necessitates a larger area of active particle
motion, culminating in the more distinct manifestation of a pronounced shear band.
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Figure 13. Typical damage law of sediment specimen sediment containing hydrate layers of different
thicknesses.

In Figure 13b, upon the transfer of contact forces from the hydrate-free portion to the
hydrate layer within the specimen, noticeable deflection occurs in the strong force chain
responsible for a larger force transmission. This deflection is particularly conspicuous
within the hydrate layer, accentuating further with the increase in the RH. Additionally,
in Figure 13c, observation from crack extension cloud diagrams demonstrates a direct
relationship between increased RH and the formation of more pronounced shear bands.
Correspondingly, higher RH values can result in heightening crack quantity near the shear
bands, presenting a more regular distribution pattern of cracks. Moreover, the crack
evolution law curves depicted in Figure 14 illustrate consistent trends across specimens
containing hydrate layers of differing thicknesses, i.e., as the axial strain increases, the more
the quantity of cracks, and the larger the RH is, the larger the crack rate is, and the more the
quantity of cracks is.
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Figure 14. Crack evolution law curves of sediment specimens containing hydrate layers of different
thicknesses.

Figure 15 displays typical damage law observed in specimens featuring sediment from
hydrate layers situated at varying distribution locations. Figure 15a and the corresponding
contact force chain cloud diagrams (Figure 15b) illustrate intriguing observations during
the progression from Ay = 0 mm to Ay = 10 mm and subsequently from Ay = 10 mm
to Ay = 20 mm. Notably, the displacement gradient of particles within the specimen
becomes progressively less pronounced during the Ay = 0 mm → Ay = 10 mm transition,
accompanied by a gradual decline in the maximum value of the contact force chain within
the hydrate layer (from 1.8 kN to 1.0 kN). Conversely, a contrasting trend emerges during
the Ay = 10 mm → Ay = 20 mm transition, where the displacement gradient of particles
becomes more apparent, accompanied by a gradual increase in the maximum value of the
contact force chain within the hydrate layer (from 1.0 kN to 1.4 kN). From Figure 15c, it is
noticeable that the displacement gradient of the hydrate layer in the specimen becomes
more pronounced, resulting in a more distinct shear band formation. Moreover, in the
vicinity of the shear band, the quantity of cracks increases, and their distribution becomes
more regular.

Simultaneously, by examining the crack evolution law curves presented in Figure 16 for
the specimens, it becomes evident that specimens exhibiting diverse distribution locations
exhibit analogous trends. Specifically, the crack rate and the number of cracks in the
specimens display a decreasing tendency during the Ay = 0 mm → Ay = 10 mm phase.
Subsequently, during the Ay = 10 mm → Ay = 20 mm phase, there is an observable increase
in both the crack rate and the number of cracks in the specimens. In summary, the typical
damage law observed in specimens containing hydrate layers of different distribution
locations is intricately linked to the axial loads experienced by the hydrate layer at both
the near and far force ends. And, as the axial load at the near force end increases, the
particle displacement gradient within the specimen becomes more pronounced, leading to
the conspicuous formation of shear bands. Moreover, the maximum value of the contact
force chain experiences an elevation, resulting in a more regular distribution of cracks, a
higher cracking rate, and an increased quantity of cracks.
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Figure 15. Typical damage law of sediment specimens containing hydrate layers of different distribu-
tion positions.

Analyzing the typical damage law of specimens containing hydrate layers of different
angles reveals distinct displacement gradient regions within the specimens, basically
overlapping with the hydrate layer, as shown in Figure 17. Concurrently, it is noticed that
the particle displacement in the section of the hydrate layer proximal to the specimen ends
surpasses that in the section distal to the ends. Furthermore, as the angle α increases, the
portion of the hydrate layer distal to the specimen ends gradually exhibits concavity toward
the inner region of the hydrate layer. Moreover, from Figure 17b and the corresponding
crack extension diagrams (Figure 17c), it is evident that the portion of the specimen’s
hydrate layer with higher contact force (proximal to the specimen ends) exhibits fewer
cracks, while the section with lower contact force (distal to the specimen ends) shows a
greater quantity of cracks. The aforementioned outcomes signify that the typical damage
law of sediment specimens containing hydrate layers with different angles is closely related
to the uneven distribution of axial pressure exerted on the hydrate layer. Furthermore,
the sections of the hydrate layer experiencing greater axial load exhibit higher contact
forces and a lower quantity of cracks. Moreover, from the crack evolution law curves of
the specimens depicted in Figure 18, it is evident that the curves exhibit a similar trend.
Specifically, the quantity of cracks increases with the rise in α. However, when α is less than
50◦, the curves essentially overlap without significant differences due to the variation in
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angles. Nonetheless, at α equals 50◦, there is a notable decrease in the number of cracks
compared to the other four angles.
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4. Conclusions

In this investigation, the discrete element simulation method is utilized to explore the
shear mechanical characteristics at the macroscale and mesoscale in specimens containing
hydrate-bearing sediment under different hydrate layering patterns, including hydrate
layer thickness (RH), hydrate layer distribution position (Ay), and the angle between the
hydrate layer and the horizontal direction (α). The following key conclusions are drawn:

(1) The strain-softening behavior of HBS specimens strengthens with the increase in
RH, leading to higher peak strength and E50 values.

(2) Due to the presence of α, the stress–strain curve of HBS specimens exhibits signifi-
cant strain hardening behavior, and as continued loading, the curve transitions to strain
softening behavior.

(3) With the increase in RH, the formation of shear bands in specimens becomes more
pronounced, accompanied by a higher quantity of cracks near the shear bands and a more
regular distribution of cracks.

(4) During the process of Ay = 0 mm → Ay = 10 mm, the displacement gradient of
particles in the specimen becomes less distinct, and the peak value of the contact force
chain in the hydrate layer gradually decreases (1.8 kN → 1.0 kN).

(5) When α varies, the typical failure pattern of HBS specimens is closely related to
the uneven forces exerted on the hydrate layer. The part of the hydrate layer experiencing
a greater axial load exhibits larger contact forces and fewer cracks, while the part with a
smaller axial load has smaller contact forces and a higher quantity of cracks.
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