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Abstract: In order to harness a greater share of wind energy resources, offshore wind energy projects
are venturing into deep-sea locations. In this progression, the issue of grid integration control
becomes increasingly challenging. Traditional Model Predictive Control (MPC) has been introduced
in offshore wind energy grid integration control due to its merits, such as not requiring modulators,
dispensing with decoupling, incorporating constraint handling, and facilitating online optimization.
However, it heavily relies on a model and consequently experiences a substantial loss of control
effectiveness in the face of system parameter variations. In light of this, this study presents an
active-disturbance-rejection-based three-vector sequence model predictive control approach. This
method effectively mitigates the influence caused by changes in system parameters, endowing
the system with self-disturbance rejection capabilities and enhancing its fault recovery abilities.
The method employs self-disturbance control to track voltage reference values and employs the
concept of sequence control to eliminate weighting factors in the cost function. Furthermore, it
employs three-vector control to achieve error-free operation. The simulation results confirmed that
the proposed method effectively minimizes voltage and power transients. It demonstrated superior
control effectiveness and shorter response times, enabling the system to rapidly restore to a stable
operational state following disturbances.

Keywords: offshore wind farms; model predictive control; active disturbance rejection control

1. Introduction

The crises of energy security, extreme weather events, and others have deepened the
awareness of the importance and urgency of energy transition in an increasing number of
countries [1]. Global renewable energy installations have achieved historically remarkable
growth, constituting 83% of the total new electricity generation capacity. Offshore wind
power development has been particularly conspicuous and is increasingly playing an
important role in promoting economic growth and enhancing energy security [2].

With the large-scale development of offshore resources and the quest for greater wind
energy resources, offshore wind energy projects are gradually expanding into deeper off-
shore regions. The overall project planning exhibits a shift from nearshore to offshore,
from shallow waters to deep waters, and from small-scale demonstrations to large-scale
concentrated development. Furthermore, offshore wind energy is highly susceptible to
environmental factors, resulting in pronounced output variability and unpredictability [3].
When integrated into the grid, this unpredictability directly impacts grid safety and reliabil-
ity. As offshore wind farms transition toward large-scale and long-distance development,
the challenges of grid integration become increasingly severe [4].

Currently, offshore wind farms commonly employ a dual-closed-loop control strategy
of alternating current voltage and alternating current for their output [5]. The control
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objectives for wind turbine generators are their active and reactive power outputs. The
grid-side converter of the wind power converter adopts a dual-closed-loop control scheme
for direct current bus voltage and alternating current, providing a constant direct current
voltage for the generator-side converter. The generator-side converter operates in maximum
power point tracking mode, regulating the generator torque to enable variable-speed
operation of the wind turbine, thereby capturing maximum wind energy.

References [6–8] initially introduced a control method that utilizes converters to
support the voltage and frequency of the wind farm. This approach employs the grid-side
converter of the wind turbine generator to control the voltage and frequency at the grid
connection point, with the direct current bus voltage controlled by the generator-side
converter. Reference [9] proposed a distributed voltage–frequency control method based
on a phase-locked loop. This method also employs the generator-side converter to control
the direct current bus voltage, whereas the grid-side converter utilizes distributed Q/f
droop control to uniformly distribute reactive power.

The aforementioned control methods all employ traditional PI controllers. However,
traditional PI controllers exhibit poor performance, especially during transient fault periods.

In order to address this issue, many experts and scholars have begun to incorporate
Model Predictive Control (MPC) into the control strategies of converter stations. The
primary characteristic of this control type is the use of a system model to predict the future
behavior of the controlled variables. The controller utilizes this information, in accordance
with predefined performance criteria, to determine the optimal switching signals. MPC
eliminates the need for modulators and decoupling, accommodates constraints, and allows
for online optimization.

In reference [10], predictive direct torque control based on a fixed-frequency model
is applied for control, with the grid-side converter using predictive direct power control
based on a finite-set model. References [11,12] propose a direct model predictive control
scheme that integrates instantaneous power calculations for a three-level back-to-back
converter with a permanent magnet synchronous generator wind turbine system. In
references [13–15], a double-sampling advanced predictive range Finite Control Set Model
Predictive Control (FCS-MPC) for a four-bridge-arm Neutral Point Clamped (NPC) inverter
is designed to achieve high-performance operation at low switching frequencies. The results
indicate the advantage of double sampling in low-switching-frequency operation.

Due to its reliance on model-based system state predictions, MPC is susceptible
to model bias (e.g., arising from inaccurate modeling and incorrect component parame-
ters) [16–21]. In fact, system parameters can change during wind turbine operation, such
as coil inductance, load resistance, and so on. When the system model exhibits bias, the
accuracy of future predictions diminishes, resulting in a significant reduction in control
effectiveness. To address this issue, scholars have introduced robust MPC with error com-
pensation, as illustrated by [22]. This method incorporates the error between measured
and predicted variable values in the prediction, compensating for the deviations in state
tracking caused by parameter mismatch. This approach relies on the system model but com-
pensates for model uncertainties by adding compensation values. However, the calculation
of these compensation values is not straightforward.

Another proposal involves using a model-free or data-driven approach, as discussed
in [23,24]. These methods leverage historical data instead of model information, thereby
minimizing the impact of model deviations on the controller’s performance. Neverthe-
less, these solutions either demand high computational loads to generate control outputs
or are influenced by a very slow variable update mechanism, occasionally resulting in
unstable operations.

To address the above problems, this paper proposes a three-vector sequential model
predictive control method that can effectively suppress the effects caused by the changes of
system parameters and endow the system with self-disturbance rejection capabilities and
verifies the method on the control of an offshore wind farm via a double-ended VSC-HVDC
grid-connected system. The main contributions of this paper include:



J. Mar. Sci. Eng. 2024, 12, 21 3 of 17

• A three-vector sequential model predictive control method based on active disturbance
rejection is proposed for the grid-connected wind-side VSC converter station of off-
shore wind farms. Replacing the PID controller utilized for tracking reference values
in traditional MPC control with an ADRC controller effectively mitigates the impact
of unpredictable disturbances on system performance. This modification endows the
system with disturbance rejection capabilities, enhancing its robustness and resilience.

• Within one cycle, the three-vector control achieves error-free control, resolving the
drawbacks of traditional MPC, which does not accomplish precise tracking and has
longer computation times. Moreover, for the multi-objective control of offshore wind
farms, a sequential model predictive control approach has been applied, addressing
both multi-objective control and the challenge of weight coefficient selection.

• The proposed method is tested with conventional MPC in various scenarios and its
dynamic performance is analyzed and compared.

The main contents of this paper: Section 2 introduces the offshore wind farm side
converter station topology and the wind farm side converter station prediction model;
Section 3 describes the principle and the design process of the proposed control method;
Section 4 is the comparative validation and analysis of the proposed method and the
traditional method; and Section 5 concludes the paper.

2. Topology and Prediction Model of Offshore Wind Farm-Side Converter Station

Figure 1 illustrates the topological structure of offshore wind farm integration into the
grid via a dual-end Flexible DC Transmission System (VSC-HVDC). The system comprises
the offshore wind farm, the VSC-HVDC transmission system, and the alternating current
grid. The VSC-HVDC transmission system includes the Wind-Farm-Side Voltage-Source
Converter (WF-VSC), the Grid-Side Voltage-Source Converter (GS-VSC), and the undersea
DC transmission lines. To ensure the grid integration and power absorption of the offshore
wind farm output, as well as the safe operation of the VSC-HVDC transmission system,
it is crucial to maintain power balance. Therefore, the primary functions of the WF-VSC
are to sustain the power balance on the wind farm side and ensure the voltage magnitude
stability of the direct current bus.
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Figure 1. Schematic diagram of offshore wind farm connected to the grid through VSC-HVDC.

The topology of the WF-VSC is shown in Figure 2.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 4 of 19 
 

 

The topology of the WF-VSC is shown in Figure 2. 

 
Figure 2. Topology diagram of converter station on the wind farm side. 

The theoretical model of the WF-VSC in the two-phase αβ stationary coordinate sys-
tem is given by Equation (1): 

3 ( )
2

w
w w w

w
w w w

dc
w s w w dc

di
L u i R v
dt
di

L u i R v
dt

duC S i S i i
dt

α
α α α

β
β β β

α α β β

 = − −

 = − −



= + −


 (1) 

where wu α  and wu β  represent the components of the injected AC bus voltage at the α 
and β axes for the wind farm, wi α  and wi β  denote the components of the injected AC bus 

current at the α and β axes for the wind farm, dcu  signifies the DC bus voltage, wdS  and 

wqS  are the switching functions, and wv α  and wv β  stand for the components of the AC-
side voltage at the converter station in the α and β axes. 

The grid voltage may introduce harmonics. To overcome the influence of these har-
monics on the controller and maintain system stability, the virtual flux technique is em-
ployed. Based on this, the WF-VSC power is calculated using the virtual flux technique 
method to achieve control. Combining with Formula (1), according to the definition of 
virtual flux linkage, the integration of the wind-farm-side voltage yields the following 
equation: 

w w w

w w w

u dt v dt Li

u dt v dt Li

α α α α

β β β β

ϕ

ϕ

 = = +


= = +

 
 

 (2) 

where αϕ  and βϕ  represent the components of the virtual flux linkage φ in the α and β 
coordinates and L stands for the filtering inductance. According to instantaneous power 
theory, the instantaneous active and reactive power of the VSC system in the coordinate 
system are as follows: 

( )
( )

P i i
Q i i

α β β α

α α β β

ω ϕ ϕ
ω ϕ ϕ

= −
 = +

 (3) 

where ω is the angular frequency of the AC grid voltage. According to Formula (3), the 
values of active and reactive power are obtained and their derivatives with respect to the 
time for the active and reactive power rates of change are as follows: 

Figure 2. Topology diagram of converter station on the wind farm side.



J. Mar. Sci. Eng. 2024, 12, 21 4 of 17

The theoretical model of the WF-VSC in the two-phase αβ stationary coordinate system
is given by Equation (1): 

L diwα
dt = uwα − iwαR − vwα

L
diwβ

dt = uwβ − iwβR − vwβ

C dudc
dt = 3

2 (Swαisα + Swβiwβ)− idc

(1)

where uwα and uwβ represent the components of the injected AC bus voltage at the α and
β axes for the wind farm, iwα and iwβ denote the components of the injected AC bus current
at the α and β axes for the wind farm, udc signifies the DC bus voltage, Swd and Swq are the
switching functions, and vwα and vwβ stand for the components of the AC-side voltage at
the converter station in the α and β axes.

The grid voltage may introduce harmonics. To overcome the influence of these harmon-
ics on the controller and maintain system stability, the virtual flux technique is employed.
Based on this, the WF-VSC power is calculated using the virtual flux technique method to
achieve control. Combining with Formula (1), according to the definition of virtual flux
linkage, the integration of the wind-farm-side voltage yields the following equation:{

φα =
∫

uwαdt =
∫

vwαdt + Liwα

φβ =
∫

uwβdt =
∫

vwβdt + Liwβ
(2)

where φα and φβ represent the components of the virtual flux linkage φ in the α and
β coordinates and L stands for the filtering inductance. According to instantaneous power
theory, the instantaneous active and reactive power of the VSC system in the coordinate
system are as follows: {

P = ω(φαiβ − φβiα)
Q = ω(φαiα + φβiβ)

(3)

where ω is the angular frequency of the AC grid voltage. According to Formula (3), the
values of active and reactive power are obtained and their derivatives with respect to the
time for the active and reactive power rates of change are as follows:{

dP
dt = ω(φα

diβ

dt + dφα

dt iβ − φβ
diα
dt − dφβ

dt iα)
dQ
dt = ω(φα

diα
dt + dφα

dt iα + φβ
diβ

dt +
dφβ

dt iβ)
(4)

The instantaneous rate of change in grid voltage under ideal conditions can be
expressed as: {

dφα

dt = −ωφβ
dφβ

dt = ωφα

(5)

Using the Euler method for active and reactive power, the predicted values are
as follows: {

dP
dt = P(k+1)−P(k)

TS
dQ
dt = Q(k+1)−Q(k)

TS

(6)

The model for predictive power control of the wind-farm-side converter station at
time tk+1 is as follows:[

Pα(k + 1)
Pβ(k + 1)

]
=

[
Pα(k)
Pβ(k)

]
+

ωTs

L

[
ωφ2

α + ωφ2
β − φαvwβ + φβvwα

ωφ2
β + ωφ2

α − φβvwα + φαvwβ

]
(7)

where Pα(k + 1), Pβ(k + 1), Pα(k), and Pβ(k) are the grid-side instantaneous current val-
ues at time (k + 1)Ts and kTs in the αβ coordinate system and Ts denotes the system
control period.
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The AC-side voltage at the offshore wind farm converter station is related to the
state of the power system components, with a total of eight system switch states. The
correspondence between the converter AC-side voltage and switch states is depicted in
Table 1.

Table 1. Converter voltage vectors.

Voltage Vector Switch State uα uβ

U0 0, 0, 0 0 0
U1 1, 0, 0 2 × udc/3 0
U2 1, 1, 0 udc/3

√
3 × udc/3

U3 0, 1, 0 −udc/3
√

3 × udc/3
U4 0, 1, 1 −2 × udc/3 0
U5 0, 0, 1 −udc/3 −

√
3 × udc/3

U6 1, 0, 1 udc/3 −
√

3 × udc/3
U7 1, 1, 1 0 0

uα and uβ represent the voltage vectors in the two-phase stationary reference frame.

3. Active-Disturbance-Rejection-Based Three-Vector Sequence Model Predictive
Control Method

3.1. Sequential Model Predictive Control

To maintain the stability of DC voltage during wind power fluctuations and faults, the
DC voltage error is added to the cost function to construct a new cost function. In traditional
multi-objective cost functions, coupling is achieved through the determination of weighting
coefficients (λ), and the selection of these coefficients is subject to various constraints,
making the choice of specific coefficients quite complex. Currently, the determination of
weighting coefficients λ is based on academic or engineering experience, and it is uncertain
whether they are reasonable. Therefore, in this paper, the concept of sequential model
predictive control is applied to split the single cost function into a dual cost function.
This not only achieves the multi-objective control of power and DC bus voltage but also
eliminates the weighting coefficients in the cost function.

This control algorithm employs two independent cost functions to filter switch states
through sequential calculations, thus eliminating weighting factors in the cost functions.
Each independent cost function is responsible for controlling a single objective. Figure 3
illustrates the framework of the sequential model predictive control system.
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Figure 3. Block diagram of the sequential model predictive control system.

Sequential model predictive control initially filters the finite set of system switch states
(N in total) in the first step based on the first-level cost function. This selection yields M
preferred switch states that minimize the first-level cost function. Subsequently, these M
preferred switch states are used as inputs for the second-level cost function in the second
step, ultimately identifying the optimal switch state that aligns with the system control
objectives. This strategy emphasizes the priority order during the control process, with the
first-level cost function addressing the primary control objective, whereas the second-level
cost function is designed based on the secondary control objectives.

In this context, the first-level cost function is designed to achieve the control objective
of mitigating fluctuations in active or reactive power and the second-level cost function
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aims to reduce DC bus voltage fluctuations under offshore wind turbine power fluctuations
and fault conditions.

First-level cost function:

J1n =
∣∣∣Pre f (k + 1)− Pn(k + 1)

∣∣∣+ ∣∣∣Qre f (k + 1)− Qn(k + 1)
∣∣∣ (8)

where Pn(k + 1) and Qn(k + 1) are the power prediction values at time (k + 1)Ts and
Pre f (k + 1) and Qre f (k + 1) represent the power reference values at moment (k + 1).

Second-level cost function:

J2m = |u∗
dc − udc−m| (9)

where udc−m represents the AC voltage value of the converter station under the selected
preferred switch states from the first-level cost function.

Figure 4 illustrates the proposed sequential model predictive control algorithm workflow:

• Obtain grid-side electromotive force and AC-side current through system sampling
and, consequently, acquire system power reference values.

• Determine the region where the target voltage vector resides and select two adjacent
non-zero vectors and one zero vector.

• Calculate the action time for each vector and synthesize the virtual voltage
control vector.

• Successively predict the system power at time (k + 1)Ts corresponding to all switch
states and input them into the first-level cost function J1n. Choose the two switch
states that minimize it as preferred switch states.

• If J21 = J22, select the switch state corresponding to J1n as the optimal switch state.
Otherwise, choose the switch state corresponding to the smaller value between J21
and J22 as the optimal switch state.
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3.2. Three-Vector Control

Traditional model predictive control begins the control process at time kTs and subse-
quently completes a series of operations, including AD sampling, electrical signal Clark
transformation, power prediction, and the traversal and optimization of the cost function.
This sequence of control operations cannot be executed instantaneously. Additionally,
as the number of control objectives increases, the computational workload substantially
rises. The control process introduces a delay for one control cycle, resulting in a significant
control error. Furthermore, traditional model predictive control employs only one voltage
vector for control within a single period, often leading to discrepancies with actual vectors
and, as a result, imprecise tracking. This discrepancy results in substantial power fluctua-
tions. Therefore, in this paper, three-vector model predictive control is adopted to achieve
error-free operation without the need for traversal and optimization, significantly reducing
errors during the control process.

The control strategy of the three vectors is to achieve the optimal combination of
two adjacent non-zero vectors and one zero vector to control the switching devices and
reach the system’s optimal state. By using the method of space voltage vectors, the optimal
voltage vector combination can be obtained. It only requires accurate determination of the
region where the voltage vector is located. Then, based on the space voltage vector, the
drive signals for the six switches can be determined. This represents an improvement from
model predictive control with errors to model predictive control without errors.

From Figure 5, it can be observed that when the target voltage is u1, in the case of
the traditional control strategy, the voltage control vector U1 closest to u1 should be used,
resulting in a control error of e2. On the other hand, when employing the three-vector
control strategy, the nearest non-zero vectors, U1 and U2, and a zero vector are combined
to form a virtual voltage vector for control, resulting in zero control error.
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Taking the first sector as an example, the control error is given by:{
Vαj = (Vα0t0 + Vα1t1 + Vα2t2)
Vβj = (Vβ0t0 + Vβ1t1 + Vβ2t2)

(10)

where Vαj and Vβj are the αβ components of the synthesized virtual voltage vectors, j = I, II,
III, IV.

Assuming that the target voltage vector is in sector I at this time, define the inverse of
the cost function of the zero vector V0 of the synthetic virtual voltage vector to be G0 and
the action time to be t0, the inverse of the cost function of the voltage vector V1 to be G1,
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and the action time to be t1 and the inverse of the cost function of the voltage vector V2 to
be G2, and the action time to be t2.

The action times of each voltage vector are inversely proportional to the cost functions,
that is: 

t0 = Ts
G0

G0+G1+G2

t1 = Ts
G1

G0+G1+G2

t3 = Ts
G2

G0+G1+G2

(11)

3.3. Active-Disturbance-Rejection-Based Model Predictive Control

Traditional model predictive control for tracking the DC-side power reference value
uses conventional PID control. However, when the rectifier changes load, the system
experiences a long transient operation time. To expedite the system’s return to a stable
state, this paper adopts ADRC to track the DC-side voltage reference value. The Active
Disturbance Rejection Control (ADRC) controller is derived from PID and offers several
advantages, such as minimal steady-state error, short settling time, and independence
from system models. It effectively mitigates the impact of unpredictable disturbances on
system performance, endowing the system with self-disturbance rejection capabilities and
enhancing robustness. The ESO (Extended State Observer) identifies unknown system
models and total disturbances and subsequently adds disturbance compensation to the
input signal, enabling the system to acquire self-disturbance rejection capabilities. The ESO
is the most critical component of ADRC, and the selection of its parameters is crucial. The
following sections will provide a detailed explanation of ESO parameter design.

Because the rectifier operates under unit power factor conditions, the system maintains
a balance between AC-side and DC-side power, resulting in the system power model as:

P = Pdc
P = 3

2 (eαiα + eβiβ)

Pdc =
U2

dc
RL

+ C dUdc
dt Udc

(12)

In the equation, eα, eβ, iα, and iβ represent the system-side electromotive force and
current in the dq coordinate system, P and Pdc represent the power on the AC and DC
sides, C represents the capacitance on the DC side, and RL represents the resistance on the
DC side.

Since the system operates under unit power factor conditions, simplifying yields:

dU2
dc

dt
=

−2U2
dc

RLC
+

3eαiα

C
(13)

Let y = U2
dc, u = id, f =

−2U2
dc

RLC , b0 = 3ed
C :

.
x1 = f + b0u

x2 = f
.
x2 = h
y = x1

(14)

Based on the above equation, this paper combines internal system parameters and
external load disturbances into the total disturbance term of the system. The system only
requires a first-order ADRC to achieve the desired target tracking control. First, the ESO
parameter design is carried out and from the formula we have:{ .

x̂ = Ax̂ + Bu + L(y − ŷ)
ŷ = Cx̂

(15)
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where x̂ and ŷ are estimates of x and y, A, B, and C are system state equation coefficient
matrices, and L is the parameter matrix for system disturbances L = [l1, l2]

T . Since the
power model in this paper corresponds to a first-order system, the ESO used in this paper
only requires a first-order extended state observer. The ESO parameter matrix is given as:

[ .
x̂1.
x̂2

]
=

[
−l1 1
−l2 0

][
x̂1
x̂2

]
+

[
b0 l1
0 l2

][
u
y

]
[

x̂1
x̂2

]
=

[
1 0
0 1

][
x̂1
x̂2

] (16)

Using the characteristic equation of the parameter matrix, we can solve for l1 and l2:

sI − Â =

[
s + l1 −1

l2 s

]
(17)

Typically, the poles are kept at the observer bandwidth:

s2 + l1s + l2 = (s + ωc)
2 (18)

From this, we obtain: l1 = 2ωc, l2 = ω2
c .

In ADRC, the signal, after passing through TD, combines with the reference value that
has a transient process and the signal is compensated dynamically by ESO to form a series
control system. This paper deals with a first-order system, so the ADRC and ESO used in
this paper are both first-order systems. Therefore, state error feedback control here only
requires a relatively simple proportional control, akin to PD control.

The controller state equation is:

u =
u0 − x̂2

b0
(19)

where u0 = kp(U∗
dc − x̂1), kp is the current closed-loop bandwidth. Figure 6 depicts the

flowchart of the active disturbance rejection control.
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Figure 6. Flowchart of active disturbance rejection control.

Combining the aforementioned sections, the proposed control process of the three-
vector sequential model predictive control in terms of active disturbance rejection is de-
picted as shown in Figure 7. Initially, measurements of the electric current from the offshore
wind farm are obtained. Subsequently, voltage vectors are selected and computed, syn-
thesizing the ideal voltage vector. Notably, the traditional MPC’s power reference value
tracker using PID control is substituted with ADRC control. These input components are
integrated into the predictive model and selection is conducted through a dual-layer cast
function. Ultimately, the ideal switching signals are obtained for the control of the system.
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4. Discussion

To verify the effectiveness of the proposed three-vector ADRC-SMPC, a simulation
model was established in MATLAB/Simulink. Electrical response curves for various electri-
cal objectives were compared for offshore wind farms connected to a double-ended flexible
DC transmission network under different operating conditions using both traditional MPC
and three-vector ADRC-SMPC control. The simulation parameters are shown in Table 2.

Table 2. System Simulation Parameters.

Parameters Value

Rated power of wind farms P/MW 300
DC voltage Udc/kV 100

Length of DC transmission lines/km 80
DC capacitance C/µF 30

Cable line inductors L/mH 100
Sampling period Ts/µs 50

Case 1: Normal working conditions
Under normal operating conditions, the DC bus voltage is stable at 100 kV and the

reactive power is 0 VAR. The control results for the three-vector ADRC-MPC and the
three-vector ADRC-SMPC with DC bus voltage added to the value function are shown
in Figures 8 and 9. The outcomes reveal that both the three-vector ADRC-MPC and the
sequential three-vector ADRC-MPC effectively manage voltage and power. Active power
is consistently controlled at 300 MW, whereas the reactive power remains around 0 var.
However, the sequential three-vector ADRC-MPC, including the direct current bus voltage
in the cost function, results in a narrower fluctuation range in the direct current bus voltage
during control, thereby exhibiting superior control effectiveness.
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Figure 8. Voltage response curves for two control modes.
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Case 2: Sudden voltage drop in offshore wind farm due to fault
Under normal operating conditions, the DC bus voltage remains stable at 100 kV.

However, at t = 1 s, a fault occurs in the offshore wind farm, causing a sudden drop in
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the wind turbine output voltage. The fault is cleared at t = 1.1 s. The simulation results
for traditional MPC and the control proposed in this paper are shown in the Figures 10
and 11. The results indicate that when faults occur in the offshore wind farm, changes in
the system model parameters result in the suboptimal performance of traditional MPC
control. During faults, there is a significant fluctuation in the direct current bus, reaching
up to 30% in voltage overlimit. Both active and reactive power experience considerable
abrupt changes. After fault clearance, the return to a stable state is sluggish, requiring 0.5 s
to reach a new steady state. The fault recovery capability is weak in this scenario.
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Figure 11. Response curves of offshore wind farms during voltage dips due to faults under
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In contrast, the proposed three-vector ADRC-MPC demonstrates superior control
performance. It maintains minimal fluctuations in the direct current bus during faults,
with voltage overlimit peaking at only 2%. Additionally, the abrupt changes in active and
reactive power during faults are significantly smaller, around 30% of those observed under
traditional MPC control. The recovery to stability after a fault is rapid and achieved in just
0.1 s, indicating a strong fault recovery capability.

Case 3: Sudden increase in DC bus voltage
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Under normal operating conditions, the DC bus voltage remains stable at 100 kV.
However, at t = 1.5 s, there is a sudden increase in voltage to 114 kV. The simulation results
for traditional MPC and three-vector ADRC-MPC control are shown in Figures 12 and 13.
The results indicate that when there is a sudden increase in DC bus voltage, the three-vector
ADRC-MPC reaches the new stable value faster than traditional MPC by approximately
0.1 s. Under the proposed three-vector ADRC-MPC control, neither voltage nor power
exhibited overshoot during the transition to the new steady state, resulting in a smoother
transient response. Moreover, the three-vector ADRC-MPC control demonstrated minimal
abrupt changes in power and shorter transient times in controlling power.
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Figure 12. Voltage response curves under two control modes during DC bus voltage surge.
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Figure 13. Response curves for DC bus voltage surge under two controls: (a) PID-MPC and
(b) ADRC-SMPC (The graph shows the given values in orange, the actual values in blue).

Case 4: Three-phase short circuit fault at the wind farm sending end
Under normal operating conditions, the DC bus voltage remains stable at 100 kV. When

t = 1 s, a three-phase symmetrical fault occurs at the wind-farm-sending-end connection
point. It is cleared at t = 1.1 s. The simulation results for traditional MPC and three-vector
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ADRC-MPC are shown in Figures 14 and 15. The results indicate that after the three-phase
short circuit fault, three-vector ADRC-MPC achieves faster stabilization in both DC bus
voltage and active power control compared with traditional MPC by approximately 0.15 s.
Once stabilized, the voltage and active power fluctuations are also smaller, demonstrating
a better fault recovery capability.
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Figure 14. Voltage response curves under two control modes in the case of a three-phase short-circuit
fault at the wind farm terminal.
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Figure 15. Power response curves under two control modes in the case of a three-phase short-circuit
fault at the wind farm end: (a) PID-MPC and (b) ADRC-SMPC (The graph shows the given values in
orange, the actual values in blue).

Case 5: Load resistance change
Under normal operating conditions, the direct current (DC) bus voltage stabilizes at

100 kV. At t = 1 s, when the load resistance decreases to 80% of its original value, the system
enters a transient state. The simulated results of traditional MPC and the proposed three-
vector ADRC-SMPC control are depicted in Figures 16 and 17. The steady-state performance
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of both methods is relatively consistent. However, a noticeable difference arises after 1 s.
When employing the three-vector ADRC-SMPC control proposed in this study, the abrupt
variation in the direct current bus voltage is markedly smaller compared with traditional
MPC. Additionally, the time required to restore stability is significantly reduced, allowing
the system to rapidly return to a steady-state operation, thereby achieving the objective of
self-disturbance rejection.
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5. Conclusions

The paper introduces a novel approach called the three-vector ADRC-SMPC control
method that replaces the conventional PID controller used in the traditional MPC control
for reference value control with an ADRC controller. This method effectively suppresses
the effects caused by system parameter changes, endowing the system with disturbance
rejection capabilities. Additionally, by incorporating the sequential MPC control concept, it
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not only achieves multi-objective control but also overcomes the challenges associated with
selecting weight coefficients.

Under normal operating conditions or during faults that do not significantly alter
system parameters, there is little difference in the control performance between traditional
PID-MPC and the proposed three-vector ADRC-SMPC. However, the three-vector ADRC-
SMPC approach introduced here exhibits a significantly reduced time to restore stability
and a superior ability to recover from faults. The addition of sequential MPC in the value
function results in a further reduction in bus voltage fluctuations. Nevertheless, when
faults occur that induce changes in system parameters, traditional PID-MPC control proves
to be ineffective. In contrast, the three-vector ADRC-SMPC control demonstrates minimal
abrupt changes, superior control performance, shorter control duration, and a rapid return
to steady-state operation after disturbances, successfully achieving the objective of self-
disturbance rejection.
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Nomenclature

MPC Model Predictive Control
ADRC Active Disturbance Rejection Control
FCS-MPC Finite Control Set Model Predictive Control
HVDC High-voltage direct current
WF-VSC Wind-Farm-Side Voltage-Source Converter
GS-VSC Grid-Side Voltage-Source Converter
SMPC Sequential Model Predictive Control
ESO Extended State Observer
NPC Neutral Point Clamped
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