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Abstract: To fulfill the demand for high-precision underwater acoustic positioning at full sea depth,
an ultra-short baseline (USBL) positioning method with the square array based on the least squares
estimating signal parameters via rotational invariance techniques (LS-ESPRIT) algorithm is presented
in this paper. A combination of beam tracking and beamforming is employed to improve the accuracy
of direction-of-arrival (DOA) estimation and, consequently, enhance overall positioning accuracy.
In order to mitigate the issue of position jumping resulting from phase ambiguity in traditional
four-element cross arrays, we have improved the stability of the positioning algorithm by utilizing a
multi-element square array and employing the LS-ESPRIT algorithm for DOA estimation. Further-
more, the signal detection method integrating the correlation coefficient and ascending/descending
chirp signals is employed to enhance the reliability of the location algorithm. Simulation analysis
and experimental results demonstrate that the proposed algorithm effectively enhances positioning
accuracy and improves the problem of jumping in positioning results.

Keywords: full sea depth ultra-short baseline; square array; beam tracking; beamforming; correlation coefficient

1. Introduction

Manned submersibles are essential equipment for conducting deep-sea scientific
research and investigation and are an important tool for deep-sea exploration and exploita-
tion. Various submersibles operating in the deep sea require real-time positioning, and the
marine environmental characteristics require that the positioning of deep-sea manned sub-
mersibles rely on sound waves [1–4]. Underwater acoustic positioning offers indispensable
technical support for precise operations such as the underwater detection and navigation
control of submarines.

Underwater acoustic positioning technology can be classified into three types based
on the length of the receiving array baseline: the long baseline positioning system, the short
baseline positioning system, and the ultra-short baseline positioning system. The ultra-short
baseline positioning system possesses the advantages of simple composition, convenient
installation, effortless operation, and maneuverability. It is in line with the operation char-
acteristics of large-depth submersibles with large operation ranges [5–7]. The ultra-short
baseline positioning system typically demands more than three receiving transducers to
form a receiving transducer array and is fixed at the bottom of the surface ship. The acoustic
beacon installed on the submersible transmits an acoustic signal, and each transducer in
the ultra-short baseline positioning array receives the acoustic beacon signal. Distance and
orientation are established by calculating the time difference and phase difference between
the signal transmitted and the signal received by different transducers, and, subsequently,
the absolute position of the acoustic beacon is obtained by sound velocity correction and
coordinate transformation [8–10].
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The conventional ultra-short baseline positioning approach employs four primi-
tive planar arrays. In order to solve the phase ambiguity problem caused by the array
spacing exceeding half wavelength, a series of algorithms are designed and improved.
Yu Min et al. [11] proposed an eight-element, high-precision, ultra-short baseline position-
ing system based on the narrowband signal phase difference. A pair of arrays with an
aperture of less than half a wavelength was employed to solve the ambiguity, and a pair of
arrays with a large aperture was utilized to improve the positioning accuracy. This method
greatly increases the number of array elements, increases the complexity of producing the
transducer, and decreases its reliability. Zheng Cuie et al. [12] proposed the utilization
of phase anti-ambiguity from double pulse signals to improve the positioning accuracy,
reduce the number of array elements, and yet increase the complexity of the transmitter.
Zheng Enming et al. [13] also employed small-space array elements to solve ambiguity and
large-space array elements to improve positioning accuracy when optimizing traditional
array elements. Luo Qinghua [14] introduced the Kalman filter into the ultra-short baseline
positioning technology to improve positioning accuracy. Zhu Yu et al. [15] put forward
a cross-spectrum, direction-finding approach based on phase splicing. This algorithm
requires a high signal-to-noise ratio, and its performance deteriorates significantly when
the signal-to-noise ratio is low. The azimuth estimation algorithms for array signals include
multiple signal classification algorithms [16], subspace fitting algorithms [17,18], rotation
invariant subspace algorithms [19,20], etc. The multiple signal classification algorithm and
subspace fitting algorithm are optimization search problems, and the accuracy of azimuth
estimation is related to the search step. The rotation invariant subspace algorithm does not
require searching and has analytical solutions. In this paper, the 6*6 element square array
is adopted, and beam tracking and beamforming are utilized to improve the processing
gain. The reliability of the location algorithm is improved through applying a signal de-
tection method using a correlation coefficient and ascending/descending chirp detection.
The LS-ESPRIT (least squares and rotation-invariant subspace) algorithm is employed
to estimate the spectrum and obtain the wave azimuth estimation results. This method
makes the ultra-short baseline positioning system have a long operating distance, have a
high positioning accuracy, and have a stable performance when some elements fail while
avoiding phase ambiguity. The specific contributions of this paper are as follows:

(1) The initial orientation of the current incoming wave is estimated by exploiting the
positioning results of the previous 1 ping and the current attitude of the array. Then
the phase shift beamforming is carried out to improve the signal processing gain.

(2) According to the pulse compression results, the correlation coefficient is calculated to
detect the arrival time of the signal. The non-system signal is eliminated according to
the chirp gap to improve the reliability of the algorithm.

(3) The multi-primitive square array is adopted, and the LS-ESPRIT algorithm is utilized
to estimate the wave square position to improve the positioning accuracy and to
improve the positioning result hopping problem.

2. Theoretical Analysis

The ultra-short baseline positioning system calculates the position of the sound source
by measuring the time delay and phase difference of the sound wave generated by the
sound source reaching the receiving array. This system is composed of two components:
an underwater sound beacon and a surface signal receiving and processing unit, as shown
in Figure 1. The underwater acoustic beacon emits sound signals controlled by high-
precision, synchronized, clock-triggering signals. The propagation time delay is calculated
by calculating the time difference between the signal received by the transducer array
and the synchronization pulse. The overall azimuth estimation is achieved by estimating
the direction of arrival of two perpendicular linear arrays. This section elaborates on the
method in terms of sound signal generation and reception and signal processing.
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2.1. Generation and Reception of Acoustic Signals

The generation equation of linear frequency modulation signal (LFM) emitted by a
sound beacon is shown in Equation (1).

s(t) = cos(2π(at + b)t +φ) (1)

Here, coefficients a and b are the parameters that control frequency modulation and φ
is the initial phase of the signal.

According to the definition of the LFM signal and frequency change mode, the LFM
signal can be classified into the up-frequency-modulation signal and the down-frequency-
modulation signal. The up-frequency-modulation signal is shown in Equation (2), and the
down-frequency-modulation signal is shown in Equation (3).

s(t) = cos
(

2π

(
Fmax − Fmin

2T
t + Fmin

)
t +φ

)
(2)

s(t) = cos
(

2π

(
Fmin − Fmax

2T
t + Fmax

)
t +φ

)
(3)

Here, coefficient Fmax is the highest frequency of the LFM signal, Fmin is the lowest
frequency of the LFM signal, T is the frequency modulation period, and φ is the initial
phase of the signal.

The distribution of the receiving transducer array elements used in this paper is shown
in Figure 2. There are 6 elements in each row and column, totaling 36 elements. The spacing
between elements is 0.45λ, and the black element located in the bottom right corner serves
as the reference element.
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Figure 2. Receiving hydrophone array diagram. The black and blue dots represent hydrophones,
while the black dots also represent the origin position of the coordinates.

There exist three coordinate systems: the carrier coordinate system, the local coor-
dinate system, and the World Geodetic System (WGS-84) coordinate system. The origin
of the carrier coordinate system is USBL, with the positive x-axis oriented towards the
starboard, the positive y-axis oriented towards the bow, and the positive z-axis perpen-
dicularly upward to the vessel. The origin of the local coordinate system is located at the
center of the vessel’s GPS, with the positive x-axis directed eastward, the positive y-axis
directed northward, and the positive z-axis directed upward towards the sky. The WGS-84
coordinate system represents latitudes and longitudes on a global scale.

2.2. Signal Processing

The principle of orthogonal demodulation is shown in Figure 3.
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Here, fc is the central frequency of the LFM signal, I(t) is the in-phase channel, and
Q(t) is the quadrature channel.

When the signal direction cannot be determined initially, the ultra-short baseline
positioning system employs Discrete Fourier Transform (DFT) beamforming [21] to search
the direction and then switches to the tracking state. In the tracking state, the processing
gain is improved by phase-shift beamforming on each row and column of data. Owing
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to the application of broadband signals in the system, there may be certain loss in the
effectiveness of processing gain. Afterwards, the pulse compression will be applied to the
received signal. To facilitate comprehension, the formula has been simplified here and the
results of pulse compression are directly represented using data without beamforming.
The pulse compression results of a single channel are as follows:

uo(t) = a
√

Bτ
sin[πB(t − td)]

πB(t − td)
e−j2π fctd + n(t) (4)

Here, a represents the signal amplitude, B represents the signal bandwidth, τ repre-
sents the signal pulse width, td represents the signal transmission delay, and n(t) represents
the noise after pulse compression. Generally, the position of the signal is determined based
on the ratio of the compressed pulse result to the noise. When the interference signal
is stronger than the system signal, it may occur that the pulse compression result of the
interference signal is stronger than that of the system signal. This will result in an incorrect
position estimation of the signal. Therefore, the signal detection in this article employs the
correlation coefficient [22] method:

|uo(p)|√√√√ 1
τ

τ+p∫
p

|s(t)|2dt

> Tp (5)

Here, s(t) represents the signal after beamforming, p represents the detection position,
and Tp represents the detection threshold. By dividing by the effective amplitude of the
signal, the detection threshold of the correlation coefficient can effectively mitigate the
influence of interference signals. The position of the maximum value within time τ after
detecting the threshold point position represents the signal position. Taking the data within
the main peak of the pulse compression results as the input signal for the LS-ESPRIT
algorithm, the autocorrelation results are as follows:

R = E
[

XXH
]

(6)

Here, X is the data within the main peak of the pulse compression result and [•]H
represents the conjugate transpose operation of a matrix. The power method [23] is
employed to decompose the autocorrelation results, thereby obtaining the signal subspace
Us. Decomposing each linear array into two sub-arrays allows us to obtain the signal
subspace Us1 and Us2, as shown in Figure 4.
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According to the least squares algorithm, the basic principle of LS-ESPRIT is as follows:

Us2 = Us1Ψ (7)

From the mathematical knowledge of least squares (LS), we can see that the method
of least squares solution of the above equation is equivalent to Equation (8).

min∥∆Us2∥2 s.t. Us1Ψ = Us2 + ∆Us2 (8)

Expanding upon Equation (8), the following equation can be obtained:
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f (Ψ) = ∥Us1Ψ − Us2∥2 = UH
s2Us2 − UH

s2Us1Ψ − ΨHUH
s1Us2 + ΨHUH

s1Us1Ψ (9)

Taking the derivative of the above equation Ψ and making it equal to zero, we obtain
the equation as follows:

d f (Ψ)

dΨ
= −2UH

s1Us2 + 2UH
s1Us1Ψ = 0 (10)

When the dimension of the signal subspace of subarray 1 is equal to the number of
signal sources, then the solution of the above equation is unique, and the least square
solution of the above equation can be obtained as follows:

ΨLS = (UH
s1Us1)

−1
UH

s1Us2 = (Us1)
+Us2 (11)

By conducting feature decomposition on the aforementioned equation to obtain M
eigenvalues, the corresponding arrival angles of M signals can be derived. When there is
merely one sound source, the largest eigenvalue is the eigenvalue corresponding to the
signal of the sound source. The angle between the incident signal and the normal of the
linear array is as follows:

θm = arcsin(φmλ/(2πd)) (12)

The spatial arrival directions θx and θy of the sound source can be calculated from
two vertical linear arrays. Estimating the time delay difference utilizing the pulse com-
pression results of the ascending/descending chirp separately. By comparing it with the
reference delay difference and by eliminating the influence of Doppler on the delay, the
resulting specific calculation formula is as follows:

Ddoppler = ((P2 − P1)/ f s − τ − Tdelay)c/2 (13)

Here, Ddoppler is the Doppler slant distance compensation, P1 is the peak position of
down-frequency-modulation pulse compression, P2 is the peak position of up-frequency-
modulation compression, τ is the LFM signal pulse width, Tdelay is the time delay from
the end of the up-frequency-modulation signal to the beginning of the down-frequency-
modulation signal, and c is the sound speed.

According to the distance r and the angle between the incident signal, the x-axis normal
θx, and the angle between the y-axis normal θy, the three-dimensional space coordinates in
the carrier coordinate system are calculated as follows:

x = r sin(θx) (14)

y = r sin(θy) (15)

z = −
√
(r2 − x2 − y2) (16)

The attitude information of the ultra-short baseline array can be obtained in real-time
through attitude sensors. Then, the local coordinates can be obtained by attitude transfor-
mation of the carrier coordinates [24]. Sound propagation correction can be achieved by
combining Snell’s law with the obtained sound velocity profile [25,26]. Finally, by utiliz-
ing the GPS to obtain the position of the mother ship and the GPS installation deviation,
coordinate transformation is carried out to obtain the absolute position of the target.

Above all, the steps of the algorithm in this paper are shown in Algorithm 1.
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Algorithm 1: USBL positioning method of square array based on LS-ESPRIT

Step 1: Quadrature demodulation.
Step 2: If it is in the search state, DFT beamforming is performed to search the signal and then
enter the tracking state. If no signal is found, go to step 1. In the case of tracking state, phase shift
beamforming is performed by utilizing the DFT beamforming result or tracking azimuth at the
previous 1 ping position.
Step 3: Pulse compression.
Step 4: Detecting signals through correlation coefficients and calculating propagation delay.
Step 5: The LS-ESPRIT algorithm is used to estimate DOA.
Step 6: Calculate the relative position of the target according to the time delay and orientation and
transform the attitude.
Step 7: Sound speed correction.
Step 8: Coordinate transformation.

3. Experimental Verification
3.1. Simulation Verification

The simulation employs a synchronous mode. The time difference of synchronous
trigger signal between transmitting and receiving end and the time difference of acoustic
signal transmitting response trigger signal are not considered. The first two dimensions of
the source coordinate represent the horizontal relative position of the source in relation to
the receiving end, and the third dimension indicates the relative depth.

(1) Test 1—impact of the incident angle on localization accuracy: Four incident angles
of the vertical normal between the source and the receiver array were chosen as 0◦, 15◦, 30◦,
and 45◦. Fifty Monte Carlo experiments were conducted at each angle, and the simulation
signal-to-noise ratio was 17 dB. The simulation results are shown in Figures 5–9.
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The statistical results are shown in Table 1. From the simulation results, it can be
seen that the positioning error gradually increases with the increase in the open angle
between the sound source and the receiving array, which is consistent with the algorithm.
The algorithm proposed in reference [11] achieves a maximum positioning accuracy of
0.041% R when the incident angle is 0◦, and 0.0585% R when the elevation angle is ±45◦.
The algorithm proposed in this paper achieves a maximum positioning accuracy of 0.0243%
R when the incident angle is 0◦, and 0.037% R when the incident angle is ±45◦. In compari-
son with the algorithm proposed in reference [11], the overall positioning accuracy of the
algorithm proposed in this paper is superior.
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Table 1. Positioning accuracy.

Source Coordinates Algorithm
RMSE (m)

Positioning Accuracy (%R)
X-Axis Y-Axis Z-Axis

(−100, 80, −11,000) Algorithm in reference [11] 3.4824 3.5471 0.0661 0.0433
Proposed algorithm 1.5315 1.5791 0.0230 0.0217

(−2084, 2084, −11,000) Algorithm in reference [11] 3.5373 4.5790 1.1139 0.0520
Proposed algorithm 1.5583 1.8699 0.4373 0.0242

(−4490, 4490, −11,000) Algorithm in reference [11] 3.6624 5.0260 2.1624 0.0556
Proposed algorithm 1.7012 2.1838 1.1896 0.0249

(−7778, 7778, −11,000) Algorithm in reference [11] 5.4217 5.9891 5.0455 0.0681
Proposed algorithm 2.7301 2.7086 2.7184 0.0319

(2) Test 2—Impact of the signal-to-noise ratio on localization accuracy: The source
location was selected (−7778, 7778, −11,000) and 50 Monte Carlo experiments were con-
ducted with SNR ranging from 5 dB to 25 dB for each signal-to-noise ratio. The positioning
accuracy in [11] and the algorithm proposed in this paper is shown in Figure 10.
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From the above simulation results, it can be seen that when the signal-to-noise ratio is
greater than 13 dB, as the signal-to-noise ratio increases, the positioning accuracy of the
algorithm in reference [11] and the algorithm in this paper gradually improves. In Figure 10,
the positioning accuracy of the algorithm in reference [11] is not shown when the signal-to-
noise ratio is lower than 13 dB, as it is excessively poor. Overall, the positioning accuracy
of the algorithm in this article is better than that of the algorithm in reference [11].

(3) Test 3—Positioning stability: A circle with a depth of 1000 m and a radius of 1000 m
centered on the origin was selected, with an angle step of 10◦, and the signal-to-noise ratio
was set as 12–13 dB. The simulation results are shown in Figures 11–14.
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Channel 4 and 2.

From the above simulation results, it can be seen that there is a jump in the calculation
of phase difference in reference [11], which is mainly due to an error in the calculation of
fuzzy numbers. When the noise is high, the phase difference error of small aperture ele-
ments is considerable, which subsequently influences the ambiguity of the phase difference
of large aperture elements, resulting in jumps in the positioning results. The positioning
results of the algorithm presented in this article will not suffer from the issue of jumping
positioning results.

3.2. Anechoic Pool Experiment Verification

The hydrophone base array employed in this study is shown in Figure 15. Figure 15a shows
the entire hydrophone base array obtained in the laboratory, while Figure 15b shows a photo-
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graph captured after the hydrophone base array has been deployed at the pond experiment site.
The hydrophone array is rigidly fixed on the platform, through which the array is lowered into
the water to a depth of 6 m, and the pitch angle is adjusted by altering the position of the sound
source. The positioning signals are collected 100 times at the pitch angle of 0◦, 15◦, 30◦ and 45◦,
the positioning result is solved, and the positioning accuracy is calculated.
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Figure 15. Anechoic pool experiment. (a) Hydrophone array diagram; (b) Installation of hydrophone
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When the pitch angle is 0◦, 15◦, 30◦ and 45◦, the positioning results are shown in
Figure 16, and the average positioning error of the positioning results is shown in Figure 17.
As can be seen from Figure 16, the overall positioning error can be controlled within 8‰.
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3.3. Marine Experimental Verification

The hydrophone array utilized in this paper is firmly fixed on the supporting vessel,
as shown in Figure 18. The test was verified in a sea area with a depth of about 2000 m.
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Figure 18. Installation diagram of a hydrophone array supporting a ship.

In order to verify the efficacy of the ultra-short baseline positioning system developed
in this article, the ultra-short baseline (H-USBL) positioning system of Harbin Engineering
University was chosen as a reference for the results.

The positioning array employed in this paper and the positioning array of Harbin
Engineering University were utilized to locate the submerged vehicle, and the ranging results
and positioning results obtained by comparison are shown in Figures 19 and 20. It can be
seen from Figures 19 and 20 that the positioning results of the positioning array employed in
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this paper fit the positioning results of the positioning array of Harbin Engineering University
with few wild points, which proves the effectiveness of the proposed method.
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Figure 20. Comparison diagram of carrier coordinate systems’ positioning results.

In order to verify the stability of the algorithm in this article and reduce the strength
of the sound source signal in this system, the signal from Harbin Engineering was stronger
than that of this system. The collected baseband signal is shown in Figures 21–23.

It can be seen that the correlation amplitude of the interference signal has exceeded
that of the LFM signal. In this way, if the position of the signal is only determined by the
signal-to-noise ratio of the correlation results, it is prone to find the wrong position of the
signal. From the correlation coefficient results, it can be seen that the output of the LFM
signal is more than twice that of the interference signal, and the signal position can be
accurately found through the correlation coefficient.
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4. Conclusions

In response to the demand for high-precision underwater acoustic positioning at full
sea depth, this paper designs a 6 * 6 square array and proposes a positioning algorithm
based on the LS-ESPRIT algorithm, which integrates beam tracking and beamforming to
estimate the direction of arrival. This method enables the ultra-short baseline positioning
system to possess a long operating distance, high positioning accuracy, and avoid phase
ambiguity. The simulation results demonstrate that the algorithm proposed in this paper
has higher positioning accuracy compared to the algorithm in reference [11], with no phase
ambiguity. It exhibits excellent positioning performance under a low signal-to-noise ratio,
and the positioning accuracy attains 0.11% R when the signal-to-noise ratio is 5 dB. The pool
and sea tests have demonstrated that the proposed method theoretically achieves high
positioning accuracy within an open angle of ±45◦.

In subsequent work, we shall investigate the impact of array element installation
position deviation, sound velocity profile, attitude sensor installation deviation, etc., on
positioning accuracy.
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