Pore Characteristics of Hydrate-Bearing Sediments from Krishna-Godavari Basin, Offshore India
Abstract
:1. Introduction
2. Geological Background
3. Samples and Methodology
3.1. Sample Information
3.2. Experiments
3.2.1. XRD
3.2.2. CTS and SEM
3.2.3. NMRC
3.2.4. HPMI
3.2.5. CRMI
3.2.6. LP-N2GA
4. Results and Discussion
4.1. Mineral Compositions That Make Up the Pores
4.2. Pore and Throat Types, and Geometry
4.2.1. Intragranular Pore
4.2.2. Intergranular Pore
4.2.3. Crack
4.3. Pore Size Distribution (PSD) and Connectivity
4.3.1. Nanometer-Scale Characterization—N2GA
4.3.2. Nanometer-Scale Characterization—NMRC
4.3.3. Pore Volume (PV) and Surface Area (SSA)
4.3.4. Micrometer Scale Characterization—HPMI
4.3.5. Micrometer Scale Characterization—CRMI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lijith, K.P.; Srinivasa Rao, R.; Narain Singh, D. Investigations on the influence of wellbore configuration and permeability anisotropy on the gas production from a turbidite hydrate reservoir of KG Basin. Fuel 2022, 317, 123562. [Google Scholar] [CrossRef]
- Chaturvedi, E.; Maiti, M.; Laik, S.; Mandal, A. Mineralogical and structural characterization of the sediments of Krishna Godavari and Mahanadi Basin and their influences on hydrate formation kinetics. Adv. Powder Technol. 2021, 32, 1247–1263. [Google Scholar] [CrossRef]
- Bhawangirkar, D.R.; Nair, V.C.; Prasad, S.K.; Sangwai, J.S. Natural Gas Hydrates in the Krishna-Godavari Basin Sediments under Marine Reservoir Conditions: Thermodynamics and Dissociation Kinetics using Thermal Stimulation. Energy Fuels 2021, 35, 8685–8698. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, L.; Wang, Z.; Gao, Y.; Wang, J.; Yu, C.; Sun, B. Hydrate phase equilibria in natural sediments: Inhibition mechanism and NMR-based prediction method. Chem. Eng. J. 2023, 452, 139447. [Google Scholar] [CrossRef]
- Bian, H.; Ai, L.; Hellgardt, K.; Maitland, G.C.; Heng, J.Y.Y. Phase Behaviour of Methane Hydrates in Confined Media. Crystals 2021, 11, 201. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Li, X.; Yan, K.; Wang, Y.; Chen, Z. Decomposition behaviors of methane hydrate in porous media below the ice melting point by depressurization. Chin. J. Chem. Eng. 2019, 27, 2207–2212. [Google Scholar] [CrossRef]
- Lee, S.; Seo, Y. Experimental measurement and thermodynamic modeling of the mixed CH4 + C3H8 clathrate hydrate equilibria in silica gel pores: Effects of pore size and salinity. Langmuir 2010, 26, 9742–9748. [Google Scholar] [CrossRef]
- Liu, H.; Zhan, S.; Guo, P.; Fan, S.; Zhang, S. Understanding the characteristic of methane hydrate equilibrium in materials and its potential application. Chem. Eng. J. 2018, 349, 775–781. [Google Scholar] [CrossRef]
- Fang, B.; Lü, T.; Li, W.; Moultos, O.A.; Vlugt, T.J.H.; Ning, F. Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions. Energy 2024, 288, 129755. [Google Scholar] [CrossRef]
- Yoneda, J.; Oshima, M.; Kida, M.; Kato, A.; Konno, Y.; Jin, Y.; Jang, J.; Waite, W.F.; Kumar, P.; Tenma, N. Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna–Godavari Basin, offshore India. Mar. Pet. Geol. 2019, 108, 524–536. [Google Scholar] [CrossRef]
- Oshima, M.; Suzuki, K.; Yoneda, J.; Kato, A.; Kida, M.; Konno, Y.; Muraoka, M.; Jin, Y.; Nagao, J.; Tenma, N. Lithological properties of natural gas hydrate–bearing sediments in pressure-cores recovered from the Krishna–Godavari Basin. Mar. Pet. Geol. 2019, 108, 439–470. [Google Scholar] [CrossRef]
- Yamamoto, K. Overview and introduction: Pressure core-sampling and analyses in the 2012–2013 MH21 offshore test of gas production from methane hydrates in the eastern Nankai Trough. Mar. Pet. Geol. 2015, 66, 296–309. [Google Scholar] [CrossRef]
- Daigle, H.; Johnson, A. Combining Mercury Intrusion and Nuclear Magnetic Resonance Measurements Using Percolation Theory. Transp. Porous Media 2015, 111, 669–679. [Google Scholar] [CrossRef]
- Daigle, H.; Dugan, B. Pore size controls on the base of the methane hydrate stability zone in the Kumano Basin, offshore Japan. Geophys. Res. Lett. 2014, 41, 8021–8028. [Google Scholar] [CrossRef]
- Vasheghani Farahani, M.; Guo, X.; Zhang, L.; Yang, M.; Hassanpouryouzband, A.; Zhao, J.; Yang, J.; Song, Y.; Tohidi, B. Effect of thermal formation/dissociation cycles on the kinetics of formation and pore-scale distribution of methane hydrates in porous media: A magnetic resonance imaging study. Sustain. Energy Fuels 2021, 5, 1567–1583. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Vasheghani Farahani, M.; Takeya, S.; Ruppel, C.; Yang, J.; English, N.J.; Schicks, J.M.; Edlmann, K.; Mehrabian, H.; et al. Gas hydrates in sustainable chemistry. Chem. Soc. Rev. 2020, 49, 5225–5309. [Google Scholar] [CrossRef] [PubMed]
- Kocherla, M.; Ray, D.; Satyanarayanan, M.; João, H.M.; Sojan, C. Trace and rare earth element systematics of cold-seep carbonates from the Krishna-Godavari basin: A comparison between isotopically distinct carbonate deposits. Mar. Chem. 2024, 259, 104363. [Google Scholar] [CrossRef]
- Singh, A.; Ojha, M. Machine learning in the classification of lithology using downhole NMR data of the NGHP-02 expedition in the Krishna-Godavari offshore Basin, India. Mar. Pet. Geol. 2022, 135, 105443. [Google Scholar] [CrossRef]
- Peketi, A.; Mazumdar, A.; Sawant, B.; Manaskanya, A.; Zatale, A. Biogeochemistry and trophic structure of a cold seep ecosystem, offshore Krishna-Godavari basin (east coast of India). Mar. Pet. Geol. 2022, 138, 105542. [Google Scholar] [CrossRef]
- Nukapothula, S.; Chen, C.; Yunus, A.P. Seasonal sediment plumes in the Krishna-Godavari basin using satellite observations. Deep Sea Res. Part I Oceanogr. Res. Pap. 2022, 188, 103850. [Google Scholar] [CrossRef]
- Rehitha, T.V.; Madhu, N.V.; Vipindas, P.V.; Vineetha, G.; Ullas, N.; Muraleedharan, K.R.; Nair, M. Influence of oil and gas exploration activities on the macrobenthic community structure of the Krishna-Godavari basin (Ravva coast), Western Bay of Bengal. Cont. Shelf Res. 2021, 224, 104463. [Google Scholar] [CrossRef]
- Chatterjee, R.; Singha, D.K.; Ojha, M.; Sen, M.K.; Sain, K. Porosity estimation from pre-stack seismic data in gas-hydrate bearing sediments, Krishna-Godavari basin, India. J. Nat. Gas Sci. Eng. 2016, 33, 562–572. [Google Scholar] [CrossRef]
- Qiao, J.; Zeng, J.; Jiang, S.; Feng, S.; Feng, X.; Guo, Z.; Teng, J. Heterogeneity of reservoir quality and gas accumulation in tight sandstone reservoirs revealed by pore structure characterization and physical simulation. Fuel 2019, 253, 1300–1316. [Google Scholar] [CrossRef]
- Mazumdar, A.; Kocherla, M.; Carvalho, M.A.; Peketi, A.; Joshi, R.K.; Mahalaxmi, P.; Joao, H.M.; Jisha, R. Geochemical characterization of the Krishna–Godavari and Mahanadi offshore basin (Bay of Bengal) sediments: A comparative study of provenance. Mar. Pet. Geol. 2015, 60, 18–33. [Google Scholar] [CrossRef]
- Xie, S.; Cheng, Q.; Ling, Q.; Li, B.; Bao, Z.; Fan, P. Fractal and multifractal analysis of carbonate pore-scale digital images of petroleum reservoirs. Mar. Pet. Geol. 2010, 27, 476–485. [Google Scholar] [CrossRef]
- Liu, X.; Nie, B. Fractal characteristics of coal samples utilizing image analysis and gas adsorption. Fuel 2016, 182, 314–322. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Jiang, Y.; Hou, S. Investigation on pore structure characteristics of ultra-tight sandstone reservoirs in the upper Triassic Xujiahe Formation of the northern Sichuan Basin, China. Mar. Pet. Geol. 2022, 138, 105552. [Google Scholar] [CrossRef]
- Qin, Y.; Yao, S.; Xiao, H.; Cao, J.; Hu, W.; Sun, L.; Tao, K.; Liu, X. Pore structure and connectivity of tight sandstone reservoirs in petroleum basins: A review and application of new methodologies to the Late Triassic Ordos Basin, China. Mar. Pet. Geol. 2021, 129, 105084. [Google Scholar] [CrossRef]
- Fleury, M.; Chevalier, T.; Jorand, R.; Jolivet, I.; Nicot, B. Oil-water pore occupancy in the Vaca Muerta source-rocks by NMR cryoporometry. Microporous Mesoporous Mater. 2021, 311, 110680. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, L.; Liu, S.; Cao, B.; Sun, Y.; Hou, B. Pore structure characterization of shales using synchrotron SAXS and NMR cryoporometry. Mar. Pet. Geol. 2019, 102, 116–125. [Google Scholar] [CrossRef]
- Yin, T.; Liu, D.; Cai, Y.; Zhou, Y. Methane adsorption constrained by pore structure in high-rank coals using FESEM, CO2 adsorption, and NMRC techniques. Energy Sci. Eng. 2019, 7, 255–271. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, C.; Shi, Z.; Wang, J.; Zhu, W.; Yuan, B.; Yang, D. Multi-Scale Quantitative Characterization of Pore Distribution Networks in Tight Sandstone by integrating FE-SEM, HPMI, and NMR with the Constrained Least Squares Algorithm. Energies 2019, 12, 3514. [Google Scholar] [CrossRef]
- Zhang, M.; Fu, X. Characterization of pore structure and its impact on methane adsorption capacity for semi-anthracite in Shizhuangnan Block, Qinshui Basin. J. Nat. Gas Sci. Eng. 2018, 60, 49–62. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, J.; Wang, G.; Li, K.; Fang, X. Experimental study on the effect of high-temperature nitrogen immersion on the nanoscale pore structure of different lithotypes of coal. Energy 2023, 284, 128596. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, X.; Liang, L. Experimental study on the pore structure characteristics of the Upper Ordovician Wufeng Formation shale in the southwest portion of the Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2015, 22, 530–539. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, C.; Wang, X.; Wang, G.; Ni, G.; Cheng, Y. Effects of micro-mesopore structure characteristics on methane adsorption capacity of medium rank coal. Fuel 2023, 351, 128910. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Li, J.; Shao, H.; Deng, Z.; Wu, Y. Thermal maturity: The controlling factor of wettability, pore structure, and oil content in the lacustrine Qingshankou shale, Songliao Basin. J. Pet. Sci. Eng. 2022, 215, 110618. [Google Scholar] [CrossRef]
- Wang, X.; Geng, J.; Zhang, D.; Xiao, W.; Chen, Y.; Zhang, H. Influence of sub-supercritical CO2 on pore structure and fractal characteristics of anthracite: An experimental study. Energy 2022, 261, 125115. [Google Scholar] [CrossRef]
- Yu, S.; Bo, J.; Ming, L.; Chenliang, H.; Shaochun, X. A review on pore-fractures in tectonically deformed coals. Fuel 2020, 278, 118248. [Google Scholar] [CrossRef]
- Zang, Q.; Liu, C.; Awan, R.S.; Yang, X.; Li, G.; Wu, Y.; Lu, Z.; Feng, D. Occurrence characteristics of the movable fluid in heterogeneous sandstone reservoir based on fractal analysis of NMR data: A case study of the Chang 7 Member of Ansai Block, Ordos Basin, China. J. Pet. Sci. Eng. 2022, 214, 110499. [Google Scholar] [CrossRef]
- Brunelli, D.N.; Skodje, R.T. Kinetics of multicomponent nanosize clusters on solid surfaces. Langmuir 2003, 19, 7130–7140. [Google Scholar] [CrossRef]
- Sliwinska-Bartkowiak, M.; Dudziak, G.; Sikorski, R.; Gras, R.; Radhakrishnan, R.; Gubbins, K.E. Melting/freezing behavior of a fluid confined in porous glasses and MCM-41: Dielectric spectroscopy and molecular simulation. J. Chem. Phys. 2001, 114, 950–962. [Google Scholar] [CrossRef]
- Sliwinska-Bartkowiak, M.; Jazdzewska, M. Melting behavior of bromobenzene within carbon nanotubes. J. Chem. Eng. Data 2010, 55, 4183–4189. [Google Scholar] [CrossRef]
- Coasne, B.; Czwartos, J.; Sliwinska-Bartkowiak, M.; Gubbins, K.E. Effect of pressure on the freezing of pure fluids and mixtures confined in nanopores. J. Phys. Chem. B 2009, 113, 13874–13881. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, F.; Bowe, S.; Van As, H.; Schaumann, G.E. Evaluation of 1H NMR relaxometry for the assessment of pore-size distribution in soil samples. Eur. J. Soil Sci. 2009, 60, 1052–1064. [Google Scholar] [CrossRef]
Sample | BET Surface Area (m2/g) | BJH Pore Volume (cc/g) |
---|---|---|
58 | 76.232 | 0.108 |
68 | 64.751 | 0.110 |
Permeability | Porosity | Pore Throat Radius | Pore Throat Size Distribution | Permeability Distribution | ||||
---|---|---|---|---|---|---|---|---|
10−3 μm2 | (%) | Maximum | Average | Median | Peak Position | Peak Value | Peak Position | Peak Value |
(μm) | (%) | (μm) | (%) | |||||
K | φ | Ra | Rp | R50 | Rv | Rm | Rf | Fm |
160.8 | 36.04 | 13.368 | 2.937 | 0.035 | 0.025 | 10.769 | 10.000 | 63.510 |
0.142 | 31.44 | 1.088 | 0.114 | 0.031 | 0.025 | 16.868 | 0.630 | 59.533 |
Sorting Factor | Skewness | Kurtosis | Mean Radius (μm) | Structural Coefficient | Relative Sorting Coefficient | Characteristic Structural Parameters | Homogeneity Coefficient |
---|---|---|---|---|---|---|---|
Sp | Skp | Kp | Dm | Φ | D | 1/DΦ | α |
4.273 | −0.494 | 0.622 | 2.495 | 2.417 | 1.713 | 0.242 | 0.220 |
2.184 | −0.146 | 1.312 | 0.060 | 3.622 | 36.264 | 0.008 | 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, W.; Yang, H.; Lu, X.; Lu, H. Pore Characteristics of Hydrate-Bearing Sediments from Krishna-Godavari Basin, Offshore India. J. Mar. Sci. Eng. 2024, 12, 1717. https://doi.org/10.3390/jmse12101717
Guan W, Yang H, Lu X, Lu H. Pore Characteristics of Hydrate-Bearing Sediments from Krishna-Godavari Basin, Offshore India. Journal of Marine Science and Engineering. 2024; 12(10):1717. https://doi.org/10.3390/jmse12101717
Chicago/Turabian StyleGuan, Wen, Hailin Yang, Xindi Lu, and Hailong Lu. 2024. "Pore Characteristics of Hydrate-Bearing Sediments from Krishna-Godavari Basin, Offshore India" Journal of Marine Science and Engineering 12, no. 10: 1717. https://doi.org/10.3390/jmse12101717
APA StyleGuan, W., Yang, H., Lu, X., & Lu, H. (2024). Pore Characteristics of Hydrate-Bearing Sediments from Krishna-Godavari Basin, Offshore India. Journal of Marine Science and Engineering, 12(10), 1717. https://doi.org/10.3390/jmse12101717