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Abstract: Pore-filling hydrates are the main occurrence forms of marine gas hydrates. Pore charac-
teristics are a vital factor affecting the thermodynamic properties of hydrates and their distribution
in sediments. Currently, the characterization of the pore system for hydrate-bearing reservoirs are
little reported. Therefore, this paper focuses on the Krishna-Godavari Basin, via various methods to
characterize the hydrate-bearing sediments in the region. The results showed that X-ray diffraction
(XRD) combined with scanning electron microscopy (SEM) and cast thin section (CTS) can better
characterize the mineral composition in the reservoir, high-pressure mercury injection (HPMI) fo-
cused on the contribution of pore size to permeability, constant-rate mercury injection (CRMI) had the
advantage of distinguishing between the pore space and pore throat, and nuclear magnetic resonance
cryoporometry (NMRC) technique can not only obtain the pore size distribution of nanopores with a
characterization range greater than nitrogen gas adsorption (N2GA), but also quantitatively describe
the trend of fluids in the pore system with temperature. In terms of the pore system, the KG Basin
hydrate reservoir develops nanopores, with a relatively dispersed mineral distribution and high
content of pyrite. Rich pyrite debris and foraminifera-rich paleontological shells are observed, which
leads to the development of intergranular pores and provides more nanopores. The pore throat
concentration and connectivity of the reservoir are high, and the permeability of sediments in the
same layer varies greatly. The reason for this phenomenon is the significant difference in average
pore radius and pore size contribution to pore permeability. This article provides a reference and
guidance for exploring the thermodynamic stability of hydrates in sediments and the exploration
and development of hydrates by characterizing the pores of hydrate reservoirs.

Keywords: hydrate-bearing sediments; microporous structure; Krishna-Godavari Basin; pore
characterization

1. Introduction

As an important natural gas resource, hydrate-bearing sediment reservoirs have
attracted extensive attention in recent years. Due to their unique physical and chemical
properties, the microscopic pore structure of hydrate-bearing sediments has a decisive
impact on their reserves and exploitation efficiency [1–3]. The pore-filling hydrate is the
main storage form of marine gas hydrates, and pore features are important factors affecting
the thermodynamic properties of the hydrate and its distribution in sediments, and the
pore diameter, pore size distribution, pore connectivity, and physicochemical properties of
pore surface are the key factors determining the formation, decomposition, and migration
of the hydrate [4–7].
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The properties of reservoirs, as key factors affecting the behavior of underground
fluids and the occurrence of resources, have a profound impact on the formation and
distribution of hydrates due to their various characteristics. Specifically, the following
properties are particularly crucial:

Permeability is a physical parameter that measures the ability of a reservoir rock to
allow fluid to pass through its pore space. A high permeability reservoir means that fluids
(including water and gas) can flow more freely, which helps the raw materials for hydrate
formation—gases (such as methane)—to more effectively contact and react with water,
thereby promoting the formation of hydrates. On the contrary, low-permeability areas may
suppress the widespread distribution of hydrates due to the restricted fluid flow.

Porosity reflects the proportion of pore volume to total volume in a reservoir, directly
related to the reservoir’s ability to accommodate fluids (including the water and gas
required for hydrate formation). A higher porosity not only provides more space for the
formation of hydrates, but also promotes fluid interactions, which is beneficial for the
formation of hydrates. On the contrary, reservoirs with a low porosity typically have
limited potential for hydrate formation.

The organic matter in the reservoir, especially those that can decompose to produce
gas, has an indirect but important impact on the formation of hydrates. The decomposition
process of organic matter releases gases such as methane, which are the main components
of natural gas hydrates. Therefore, reservoirs with abundant organic matter often have
superior conditions for hydrate formation.

The mineral composition of a reservoir not only affects its physical properties such
as permeability and pore structure, but may also affect the stability of hydrates through
chemical reactions. The surface properties of certain minerals (such as clay minerals) may
promote or hinder the growth of hydrate crystals, and certain specific mineral combinations
may also provide more stable attachment points for hydrates, thereby affecting their
distribution patterns. In addition, trace elements in minerals may also have subtle effects
on the formation conditions of hydrates.

The properties of reservoir permeability, porosity, organic matter content, and min-
eral composition, which directly or indirectly affect the formation and distribution of
hydrates, are key factors that must be carefully considered when studying and predicting
hydrate resources.

However, the extraction and utilization of gas hydrates face several technical chal-
lenges, one of which is the in-depth understanding and characterization of the microscopic
pore structure of the reservoir. In addition, the properties of the reservoir (e.g., permeability,
porosity, organic matter content, mineral composition, etc.) also have a significant impact
on the formation and distribution of hydrates [8,9]. Limited to characterization methods,
the characterization of microscopic pore structure systems of hydrate-bearing sediment
reservoirs is rarely reported. Due to the complex pore structure and variable reservoir
conditions, how to accurately characterize microscopic pores has always been a research
problem in this field. Therefore, this study focuses on the sediment system characterization
of the KG Basin in the gas-hydrate-bearing region of India.

The Krishna-Godavari (KG) Basin in India is one of the world’s largest gas hydrate
deposits, with low permeability and high saturation reservoir characteristics, making
hydrate extraction and utilization challenging [10–12]. The study of the characteristics of
the reservoir, especially the study of the microporous structure, not only helps to better
understand the storage state of hydrates, but also provides an important theoretical basis
for subsequent exploration technology, which is essential for the effective development and
utilization of hydrate resources.

Scholars have used the HPMI and N2GA methods to characterize the porosity of
the KG Basin [13,14]. Daigle et al. used the HPMI method to study the microporous
system of hydrate-bearing sediments in the Kumano Basin off the coast of Japan, and found
that micron-scale pores led to the uplift of the methane hydrate stability zone (MHSZ)
basement, showing the effect of pore size on MHSZ thickness. In another study, Daigle et al.
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performed nitrogen adsorption (N2GA) experiments to determine the pore size distribution
(PSD) of nanoscale pores by the Barrett–Joiner–Halenda (BJH) model and merge them with
the HPMI data. The results showed that the micropore content (with a pore size of less than
2 nm) was mainly affected by mineralogy, and the diagenesis process also had a certain
influence. The micropore content was mainly determined by the abundance of detrital clay
and the development process of clay as an ash alteration product, and the amorphous silica
cement precipitated in areas with an abnormally high porosity also had a certain effect.

However, there is no systematic study on the microscopic porosity of hydrate-bearing
sediment reservoirs in the KG Basin, and the characterization methods used are relatively
single, and the applicability of other methods in the characterization of hydrate-bearing
reservoirs is not clear. Due to the complexity and particularity of the geological conditions
of the hydrate-bearing sediment reservoirs in the KG Basin, there are still many challenges
in the in-depth research and effective development and utilization of the reservoirs.

The characterization of hydrate containing sediments is of great significance from
multiple perspectives such as energy, environmental implications, and geohazards.

From an energy perspective, it helps to evaluate the development potential of natural
gas hydrates. Understanding and characterizing the properties of hydrate-containing
sediments is crucial for assessing their energy development potential. By conducting in-
depth research on the physical, chemical, and mechanical properties of hydrate-containing
sediments, a scientific basis and technical support can be provided for their safe and
efficient mining.

From the perspective of environmental implications, it is related to the balance of
marine ecosystems and the response to global climate change. Submarine sediments
are an important component of marine ecosystems, containing abundant organic matter
and microorganisms that provide nutrients and energy for the ecosystem. The thermo-
dynamic stability of sediment containing hydrates is directly related to the balance of
marine ecosystems. Once hydrates are decomposed or improperly extracted, they may
disrupt the stability of seabed sediments, thereby affecting the health and stability of ma-
rine ecosystems. In addition, when external conditions do not meet the thermodynamic
stability conditions of hydrates, they may decompose and release greenhouse gases such as
methane under specific conditions. Understanding and characterizing the stability of hy-
drate containing sediments is of great significance for assessing their potential greenhouse
gas emission risks. Through scientific research and effective management, the impact of
hydrate sediment decomposition on global climate change can be minimized to the greatest
extent possible.

From the perspective of geohazards, it helps to assess risks such as ground subsi-
dence and groundwater pollution. The ground subsidence risk is described as follows:
The thermodynamic temperature and pressure changes of sediment containing hydrates
may lead to geological hazards such as ground subsidence. For example, in the process
of natural gas hydrate extraction, if the stability of hydrate containing sediments is not
effectively controlled, factors such as changes in pore water pressure may cause the plastic
deformation of the soil layer, leading to ground subsidence. Understanding and character-
izing the mechanical properties of hydrate-containing sediments is of great significance
for assessing their geological hazard risk. Secondly, sediment containing hydrates may
contain harmful substances such as heavy metals and organic pollutants. If hydrates are
decomposed or extracted improperly, it may lead to the release of these harmful substances
into groundwater, causing pollution of the groundwater. By characterizing the pollutant
content and migration transformation patterns of sediment containing hydrates, a scientific
basis and technical support can be provided for its pollution prevention and control [15,16].

In order to overcome the above shortcomings and better understand the microscopic
pore structure of hydrate-bearing sediment reservoirs, this study took the hydrate-bearing
reservoirs in the KG Basin as the research object, explored the applicability of various
characterization techniques, compared the advantages and limitations of qualitative and
quantitative characterization techniques, and analyzed the microporous structure and
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heterogeneity of hydrate-bearing sediment. This study not only helps to deepen the
understanding of the micropores of hydrate-bearing reservoirs, but also provides a scientific
basis for the characterization of hydrate-bearing reservoirs in other regions, and provides
an important reference for parameter setting and the exploration and exploitation of
hydrates, which will promote the further development of the research field of hydrate-
bearing reservoirs.

2. Geological Background

The Krishna-Godavari Basin (Figure 1) is a sedimentary basin on the Indian subconti-
nent whose formation is closely related to the collision of the Indian Plate with the Eurasian
Plate and the subsequent tectonic activity. Over the course of its geological history, the
KG Basin has undergone numerous transgressions and retreats, resulting in a variety of
sedimentary facies zones and sedimentary systems. The interior of the basin is mainly
composed of Paleozoic and Mesozoic sedimentary strata, which are rich in organic mat-
ter, which provides a material basis for oil and gas generation. Changes in sedimentary
facies zones and sedimentary systems not only control the formation and aggregation of
hydrocarbons, but also affect the development of reservoirs and caprocks. Sediments have
a significant influence on the formation of hydrates in the Krishna-Godavari Basin, and
the lithology, organic matter content, pore water, and fluid migration characteristics of
sediments, and the correlation with hydrate saturation are all responsible for the formation
and distribution of gas hydrates.
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Figure 1. Schematic diagram of the geographical location of the KG Basin and the station location
of NGHP-01-10.

The lithology of sediments directly determines their pore structure, permeability, and
storage space. Generally speaking, sediments with a large porosity, coarse grains, and high
sedimentation rate are conducive to the formation of hydrates. In the KG Basin, different
types of sediments, such as mudstone, silty mudstone, sandstone, etc., have different pore
structures and hydrogeological conditions, which affect the formation and distribution
of hydrates.
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The organic matter content in sediments is an important material basis for the forma-
tion of gas hydrates. Organic matter can produce gases such as methane under the action
of microorganisms, which are necessary for the formation of gas hydrates. As an important
oil-bearing basin, the KG Basin is rich in organic matter in its sediments, which provides a
sufficient gas source for the formation of gas hydrates.

The pore water in the sediment is not only an important medium for the formation
of gas hydrates, but also transports methane and other gases to suitable accumulation
sites through fluid transport. Tectonic activities such as faults and folds not only provide
channels for the migration of underground fluids, but also indirectly affect the forma-
tion and distribution of hydrates by changing the pore structure and permeability of
sediments [17–21].

Samples for this study were obtained from the KG Basin offshore India, which is
located on the east coast of India and extends 500 km laterally and more than 200 km from
the coast to the deep sea. The basin covers an area of 70,000 km2, mostly alluvium, and
42,000 km2 of offshore, mainly in the Bay of Bengal. India has launched a National Gas
Hydrate Project (NGHP) in the KG Basin and discovered one of the richest marine gas
hydrate aggregates, NGHP-01, with samples from station 01-10D (10X, cc), which is located
between 15–16◦ N latitude and 81–82◦ E longitude [2,10,11,17,22].

3. Samples and Methodology
3.1. Sample Information

The hydrate-bearing sediments in the KG Basin are mainly composed of fine-grained
sediments, and the particle size, composition, and distribution characteristics of the sed-
iments are affected by a variety of factors, including tectonic activities within the basin,
sedimentary environment, and sea level changes.

Experimental samples (Figure 2) were taken from station NGHP01-10-10D; after
drilling and coring, the core sediments are preserved in liquid nitrogen tanks, and the
sediments were mainly stripped from the Quaternary mudstones; grain size analysis
showed that the grain size of the sediments was mainly sandy and silty; and the color of
the sediment is predominantly black to grayish-black. In this study, two samples were
tested with labels HYD58 and HYD68, respectively.

3.2. Experiments

The experimental process first formed a preliminary understanding of the physical
characteristics of the reservoir by casting thin sections, X-ray diffraction (XRD), and particle
size analysis, and obtained the specific data of the minerals in the reservoir, and then
carried out field emission scanning electron microscopy (FESEM) and CTS method to obtain
the 2D plane and 3D distribution of the pore and pore throat of the sample, to study the
microscopic characteristics of the pore. Finally, on this basis, the NMRC method was tried to
quantitatively characterize the nanoscale pores combined with N2GA, and the applicability,
advantages, and limitations of the two methods were compared through experimental data.
HPMI and CRMI were used to quantitatively characterize the distribution characteristics of
pores and throat.

3.2.1. XRD

Different mineral crystals correspond to different XRD patterns, and the intensity of
the characteristic peaks in the spectrum is positively correlated with the mineral content in
the sample, and the quantitative analysis is based on the “K-value method” [2,23,24].

Grind the sample into powder, fill the powder into glass sheets using the compression
method, and then place the glass sheets into the instrument. Conduct experiments by setting
parameters through software. The experiments were performed using the Netherlands
PANalytical Empyrean Ray Diffractometer and the PIXcel1D-Medipix 3 detector (Malvern
Panalytical Ltd.) with a scan step of 0.01◦ and copper K-α radiation. The measured XRD
patterns were analyzed using MDI Jade 6.5 software.
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3.2.2. CTS and SEM

Cast thin sections were cast using dye resins and then observed using a microscope to
determine pore types and pore morphological characteristics at the micrometer scale.

Electron microscope samples are glued to the sample stage using electrostatic glue,
gold-plated on a fresh plane of the sample using an ion-sputtering instrument, then ana-
lyzed using SEM to characterize pore types and morphology at the nanoscale level [25,26].

3.2.3. NMRC

The pore size affects the freezing point of the liquid in porous media, which can be
quantitatively expressed by the Gibbs–Thomson equation [27–31].

The relationship between the melting point depression temperature (∆Tm) and pore
diameter (x) is as follows:

∆Tm = Tm − Tm(x) =
4σTm

xρ∆H
(1)
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where x is diameter of the equivalent spherical pore, nm; ∆Tm is liquid melting point
depression, K; ∆Tm is melting point of the bulk material, K; Tm(x) is melting point of a
crystal, K; ∆H is bulk enthalpy of fushion, J/g; ρ is density of the solid, g/cm3; and σ is
solid–liquid surface, N/m.

Generally, the σ, Tm, ρ, and ∆H can be regarded as constant; therefore, Equation (1)
can be written as follows:

∆Tm =
kGT

x
(2)

where kGT is Gibbs–Thomson constant, nm·K.
The formula with pore volume is given below:

P(x) =
dv(x)

dx
=

dv(x)
dTm(x)

× dTm(x)
dx

=
dv(x)

dTm(x)
× kGT

x2 (3)

The log differential PSD is calculated as follows:

dv(x)
dlog(D)

=
dv(x)

dx
× dx

dlog(D)
= P(x)·x·ln(10) (4)

where x is the pore diameter, v is the volume of the water, and T is the temperature.
The NMRC method is used to record the phase transition process of hydrogen-

containing fluids in porous media with temperature by NMR signals, and the increase in the
signal of low-temperature liquids means that the pore volume is accumulated from small
to large. In this research, experiments were performed using the NMR MesoMR23-060V-1
(Suzhou Niumag Analytical Instruments Co.); we choose water as liquid probe with a
temperature range of −30 ◦C to 25 ◦C.

3.2.4. HPMI

The experiment was used Micromeritics Auto Pore IV 9505 mercury injection meter
with a mercury injection pressure range of 0–200 MPa. After drying the sample, calibrate
the instrument, set the test parameters, and load the sample into the sample chamber for
experimentation.

The structural characteristics of the pore and throat were analyzed according to the
Washburn equation, and the mercury injection pressure curve was transformed by the
following [32]:

Pc =
2σcos θ

r
(5)

where Pc is capillary pressure, MPa; θ is wetting angle, θ = 140◦; σ is surface tension, N/m,
σ = 0.48 N/m, and r is pore diameter.

3.2.5. CRMI

The experiment used ASPE730 system to monitor mercury injection with the maxi-
mum injection pressure of 900 psi and the constant rate of mercury injection velocity of
0.0001 mL/min; the constant low velocity allows the mercury introductory process to be
approximated as a quasi-static process. During this process, the interfacial tension and
contact angle remain constant, and every change in pore shape experienced by the leading
edge of the mercury causes a change in the capillary pressure of the system; the pores and
throats identified by pressure fluctuations during mercury injection.

3.2.6. LP-N2GA

The samples were prepared as powders (60–80 mesh), dried to remove residual liquid
from the pores, and degassed for 12 h at room temperature. Then, using the Mecromeritics
ASAP 2460 device (Micromeritics Instruments Corporation), at the temperature of liquid nitro-
gen, the pressure was increased to achieve the saturated vapor pressure of the liquid nitrogen,
and then the pressure was lowered to obtain the nitrogen adsorption–desorption curve.
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The analysis of the specific surface area (SSA) and pore size distribution (PSD) is based
on Brunnauer–Emmett–Taylor (BET) and Barrett–Joyner–Hallenda (BJH) theories [33–35].

The experimental procedure is as follows: open the computer, vacuum pump, and
adsorption instrument host in sequence, and enter the software operation interface. Then
open the gas cylinder and adjust the pressure. Next, weigh the mass of the empty sample
tube and plug, place the weighed sample into the already weighed empty sample tube, and
degas the sample tube. After the processing time is reached, the temperature decreases to
room temperature, backfill with gas, and weigh the mass of the sample, sample tube, and
plug. Finally, use software operation program settings for sample analysis.

4. Results and Discussion
4.1. Mineral Compositions That Make Up the Pores

The study shows that the samples from the KG Basin mainly contained quartz, feldspar,
calcite, pyrite, and a large number of clay minerals (Figure 3). The clay mineral content is
the highest, with 45.3% and 37.9% in Samples 58 and 68, respectively. Clay minerals are
widely developed in the illite/smectite mixed layer, with minor amounts of illite, kaolinite,
and chlorite. In addition to clay minerals (Figure 4), the quartz content was higher, with
Samples 58 and 68 containing 26.3% and 28.6%, respectively. Pyrite was also observed in the
samples collected from the KG Basin, with Sample 68 having a higher percentage of pyrite
at 10.1%, which may account for the high magnetic induction intensity observed here.

Figure 3. Pie charts of mineral content in Samples 58 and 68 ((A) Sample 58 and (B) Sample 68):
(A) mineral content of Sample 58; and (B) mineral content of Sample 68.
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Figure 4. Pie charts of clay mineral content in Samples 58 and 68 ((A) Sample 58 and (B) Sample 68):
(A) clay mineral content of Sample 58; and (B) clay mineral content of Sample 68.

Microscopic images of CTS show that the distribution of detrital minerals in both samples
is relatively dispersed, with quartz and feldspar minerals being dominant (Figures 5 and 6).
The particle sizes of the mineral grains are of micrometer scale, with none exceeding 100 µm.
Nanoscale intergranular pores are formed between different minerals.

4.2. Pore and Throat Types, and Geometry

A microscopic observation of the sample revealed the presence of intergranular pores,
intragranular pores, and microfractures (MFs). Microfractures consist of intergranular
fractures (InterFs) and intragranular fractures (IntraFs).
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nant distribution of tiny quartz detritus; (B): quartz and feldspar; (C): feldspar; (D): predominant
distribution of tiny quartz; (E): foraminiferal detritus with quartz and feldspar; (F): tiny quartz and
feldspar; (G): predominant distribution of quartz with feldspar; (H): quartz; (I) quartz.

4.2.1. Intragranular Pore

In terms of micropores, the biodetritus such as shells of different species of foraminifera
and algae were observed from CTS (Figures 7 and 8), with a more complete preserva-
tion of the contours, and intact chambers could be seen in the foraminifera. The broken
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foraminifera shells were filled with minerals and organic matter. The biodetritus described
above mainly provide intragranular pores.
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detritus; (I) foraminiferal detritus.
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Figure 8. Microscopic observation of foraminiferal shells and diatom shells in CTS in Sample 68.
(A): bioclasts with cellular structure; (B): foraminiferal detritus; (C): foraminiferal detritus; (D):
diatom detritus; (E): diatom detritus; (F): diatom detritus; (G): foraminiferal detritus; (H): biodetritus
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Of course, this method has certain limitations. The mechanical polishing of sample
pretreatment will cause an irregular surface morphology and difficulty distinguishing
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pseudo-pores from true pores. Moreover, grinding particles can easily enter the actual pore
area, resulting in the true pore being buried or obscured.

4.2.2. Intergranular Pore

Intergranular pores within the pyrite framboids were observed in SEM experiments
on the nanoscale level (Figure 9); the accumulated particles were about 500 nm in diameter
and uniform in size, mostly block hexahedral. Except pyrite framboids, pyrite mineral
aggregates and intergranular pores were developed in the samples, which were contiguous
and diffuse, and coexisted with clay minerals. The diameter of the pyrite grains in the
aggregates varies widely, with most pyrite particles being around 600–800 nm in diameter
and smaller pyrite particles of 70–250 nm in diameter stacked together.
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Figure 9. SEM observation of pyrite framboids in Sample 68. pyrite framboid in (A) main view;
(B) side view; (C) detail view of pyrite particles; (D) pyrite aggregate; (E,F) detail view of pyrite
particles of different diameters.

As for other minerals, illite is filled around mineral particles such as quartz and
feldspar in the form of needles, flakes, and networks; the mineral particles and aggregates
are stacked with each other to form a large number of micron-sized intergranular pores
with complex morphologies. Kaolinite is a pseudo-hexagonal plate and worm-like, with
a large number of intergranular pores. Rigid and brittle particles such as feldspar and
quartz are accompanied by micro-cracks, and the width of the cracks is mostly 1–3 µm;
the surfaces are smooth and cracks are straight, and the extension distance is relatively far.
Meanwhile, intragranular dissolved pores are observed in calcite.

4.2.3. Crack

The morphology of the bioclasts is preserved intact in the CTS, from which it can be
inferred that the microcracks are non-artificial cracks with widths of a few micrometers.
The cracks in Figure 10A,B are single microcracks without branching, and the crack in
Figure 10C is connected to the bioclasts with multiple bifurcating microcracks, which
increase the pore volume. The cracks in Figure 10D are not connected to the bioclasts, and
the bioclast shells provide a certain closed-pore space.
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microcracks.

4.3. Pore Size Distribution (PSD) and Connectivity
4.3.1. Nanometer-Scale Characterization—N2GA

According to the classification of the International Union of Pure and Applied Chem-
istry (IUPAC), the characteristics of the pore structure can be analyzed by adsorption–
desorption curves (Figure 11A) in the LP-N2GA data. This process is divided into the
following three stages:

1. In the part with a low relative pressure stage (0 < P/P0 < 0.4), the adsorption
capacity increases slowly, and the adsorption isothermal curve showed a slightly upward
and convex shape. This stage was the transition process from mono-molecular layer
adsorption to multi-molecular layer adsorption, and the inflection point of the isothermal
adsorption curve was the critical point of the transition shift.

2. At the medium and high relative pressure stage (0.4 < P/P0 < 0.8), the adsorption
capacity increases slowly with the increase in pressure, and this stage is the multilayer
adsorption process.

3. In the high relative pressure stage (0.8 < P/P0 < 1), the adsorption isotherm rises
sharply, showing a downward concave shape, and the adsorption saturation phenomenon
does not occur until it is close to the saturation vapor pressure, which indicated that there
existed a certain amount of macropores and mesopores in the sediment, resulting in the
capillary condensation of nitrogen on the surface of the sediment sample.

According to IUPAC’s classification, the adsorption isotherm of the samples is very
steep near the saturated vapor pressure, close to type H3, while having the character-
istics of type H4. These types of hysteresis line indicate that the sediment sampled are
predominantly slit-type pores, but also contain some ink-bottle-shaped pores [36–38].
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4.3.2. Nanometer-Scale Characterization—NMRC

NMR T2 spectrums are as follows:
Figures 12 and 13 show all the temperature points we set, as well as the acquired

relaxation time T2 spectrum. The experimental results show that the melting point of ice in
the reservoir micropores is related to the pore size. Figures 14 and 15 show that, between
−30 ◦C and −5 ◦C, the signal of the fluid is quite weak and the liquid content rises slowly.
The bound water is directly bound to the hydrogen bond of the macromolecular group,
so the binding force is stronger and the fluidity of the water is weaker, as the attenuation
rate is faster. Free water, on the other hand, is not affected by the structure, the fluidity
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of the water is strong, and the attenuation rate is the slowest [39,40]. Therefore, different
states of water can be distinguished based on the magnitude of the relaxation time. These
three peaks can represent different water states, such as bound water, perturbed water, and
free water, respectively. Thus, T2 spectra are divided into three peaks, from left to right,
P1, P2, and P3, where P1 represents bound water, P2, varying in complexity, represents
perturbed water, and P3 represents free water. The pore size increases with increasing T2
relaxation time.
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Figure 12. The T2 relaxation time of NMRC experiment.

As can be seen from the 3D diagram (Figure 13), the bound water content increases as
the temperature increases. The perturbed water starts to increase gradually and continu-
ously at −5 ◦C and migrates through the pores. At 0–2 ◦C, the free water content increases
significantly, indicating that the ice has completely melted into water.

Starting at −5 ◦C, the signal changes significantly and water is transported into larger
pores. P3 (Figures 14 and 15) shows two small peaks, indicating that the water in the larger
pore size is in a perturbation state. This shows that, below −5 ◦C, water exists in the form
of bound water (water film).

Between −5 ◦C and 0 ◦C, the bound water content continued to increase, and the
signals of the P2 and P3 peaks were enhanced with the perturbation, and the perturbed
water was transported in the pore space; meanwhile, there was no significant enhancement
in the signal of the P3 peak, suggesting that ice of the smaller pores melted first, and
the freezing point decreased due to the influence of pore size, which was caused by the
Gibbs–Thomson effect [41–44].

When the temperature is higher than −5 ◦C (Figure 16), the content and distribution of
water in the pores of the sample change significantly. Therefore, −5 ◦C can be considered
to be the freezing point boundary value for adsorbed water and capillary water in the
sediment pores; this phenomenon corroborates the view of Razumova et al. and Jaeger
et al. [45].
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Figure 16. The T2 spectrum of NMRC with temperature varies from −5 ◦C to 0 ◦C.

The pore size distribution is as follows:
The PSDs of the sample are shown in Figure 17. Pores in the 2–10 nm range contribute

less to pore volume than those in the 10–100 nm range, and pores in the 9–10 nm range
have the peak pore volume. The pore size ranges with a large pore volume contribution
are 10–50 nm.
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Figure 17. The PSDs of the hydrate-bearing Sample 58.

By calibrating with NMRC technology, the trend distribution map of the unfrozen
water content was obtained (Figure 18). The PSDs of Samples 58 are shown in Figure 15.
Among them, pore sizes in the range of 10–100 nm account for a relatively larger percent
of the pore volume. Compared to the N2GA method, NMRC can characterize a larger
range of pore sizes, detect more closed pores, and calculate the water content in the pores
(Figure 18).
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Figure 18. Schematic diagram of pore volume and water content variation with pore size.

4.3.3. Pore Volume (PV) and Surface Area (SSA)

PV and SSA can be used to study the storage space of natural gas and are a vital
part of reservoir evaluation. In general, pores can be divided into macropores (>50 nm),
mesopores (2–50 nm), and micropores (<2 nm). In this study, SSA can be obtained based on
the BET model, PV can be obtained by the BJH model, and pore size distribution can be
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obtained by the BJH or DFT model. Among them, the DFT model can be used to jointly
characterize the PSDs of the samples from micropores to partial macropores.

The pore structure parameters are presented in Table 1. The values of the micropore
surface area of samples are 76.232 m2/g and 64.751 m2/g, respectively. The pore volume of
the micropores (pore size 2–50 nm) of the samples are 0.108 cc/g and 0.110 cc/g.

Table 1. Pore structure parameters of samples.

Sample BET Surface Area (m2/g) BJH Pore Volume (cc/g)

58 76.232 0.108
68 64.751 0.110

4.3.4. Micrometer Scale Characterization—HPMI

The data of the HPMI method show that the radius of the pore throat in the KG
Basin is concentrated in the nano-scale, with a few micron-scale pore throats. Among
them, micro-scale pore throats have a greater permeability contribution than nano-scale
pore throats.

The pore size distributions obtained by HPMI only represent the pore (or throats) that
have the permeability contribution, and do not reflect the pore size distribution of the entire
sample, and cannot distinguish between the pore and throat. Therefore, the combination of
the CRMI and NMRC methods was used for further research.

The capillary pressure curves of mercury intrusion and extrusion are depicted in
Figure 19, and their key parameters are listed in Table 2.
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Figure 19. Capillary pressure curves of mercury intrusion and extrusion obtained by HPMI.

The parameters indicate that the permeability of Sample 58 and Sample 68 is quite
different, at 160.8 × 10−3 µm2 and 0.142 × 10−3 µm2, respectively, but the porosity is
similar (Table 2).

The throat radius shows that, although the median values of the two sample are
the same, the maximum value of the throat was very different, with Sample 58 having a
larger average throat radius of 2.937 µm, where the maximum throat radius could reach
13.368 µm; meanwhile, Sample 68 had a nanometer average throat radius of only 0.114 µm
and a maximum throat radius of 1.088 µm.
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Table 2. Parameters of pore throat size in hydrate-bearing reservoir from HPMI.

Permeability Porosity Pore Throat Radius Pore Throat Size
Distribution Permeability Distribution

10−3 µm2 (%) Maximum Average Median

Peak
Position Peak Value Peak

Position Peak Value

(µm) (%) (µm) (%)

K φ Ra Rp R50 Rv Rm Rf Fm

160.8 36.04 13.368 2.937 0.035 0.025 10.769 10.000 63.510

0.142 31.44 1.088 0.114 0.031 0.025 16.868 0.630 59.533

The pore throat is distributed over a wide range, from the nanometer to micrometer
scale, with the larger pore throat providing permeability (Figure 20). The permeability
contribution of Sample 58 corresponds to the pore size distribution ranging from 2–10 µm,
so the permeability contribution of Sample 68 corresponds to the pore size distribution
ranging from 0.2–1 µm. In Samples 58 and 68, the pore sizes with the strongest permeability
were 10 µm and 0.6 µm, respectively.

Rv and Rm, respectively, mean the peak position and peak value of the PSD. The Rv
values of the two sample are the same: Sample 68 has a higher value of Rm than Sample 58.

Rf represents the peak position of the permeability distribution, while Fm represents
the peak value of the permeability distribution. In Sample 58, the pore throat radius of
10 µm contributes the most permeability, while, in Sample 68, the pore throat radius of
0.63 µm contributes the most permeability. This is the reason why the porosity of the two
sample is the same, but the permeability is quite different.

The parameters of the pore throat structure from HPMI can be seen in Table 3. The
overall sorting coefficients show that the overall pore throat sorting is good for both
samples; thus, the relative sorting coefficients need to be analyzed. The relative sorting
coefficient is used to characterize the uniformity of the pore size, with Sample 58 having
a smaller relative sorting coefficient of 1.713, indicating that the pore size of the samples
is not uniform, whereas the relative sorting coefficient of Sample 68 is larger at 36.264,
indicating that the pore size of the samples is more uniform.

Table 3. Parameters of pore throat structure in hydrate-bearing reservoir from HPMI.

Sorting
Factor Skewness Kurtosis

Mean
Radius
(µm)

Structural
Coefficient

Relative
Sorting

Coefficient

Characteristic
Structural

Parameters

Homogeneity
Coefficient

Sp Skp Kp Dm Φ D 1/DΦ α

4.273 −0.494 0.622 2.495 2.417 1.713 0.242 0.220
2.184 −0.146 1.312 0.060 3.622 36.264 0.008 0.105

The sorting coefficient is also reflected in the structural characteristic parameters. There
is a close relationship between the structural characteristic parameters and the relative
permeability: the larger the structural characteristic parameters, the better the relative
sorting of the pores. When the difference in pore size is large, the relative sorting is poor,
the pore size occupied by the wetting phase and the non-wetting phase is vastly different,
the non-wetting phase preferentially occupies the large pore space, which inevitably results
in a substantial increase in the relative permeability of the non-wetting phase, and then the
saturation of the intersection point is shifted to the left.

The structure coefficient φ indicates the degree of seepage and circuitous flow of the
fluid in the pores, and the larger the φ value, the stronger the degree of pore bending and
meandering. The pore curvature of Sample 68 is greater than that of Sample 58.
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Figure 20. The pore throat size distribution and its contribution to the permeability of Sample 58 (A)
and Sample 68 (B) obtained by HPMI.

Skewness is a measure of the asymmetry of the pore throat size distribution. The
Skp value varies between ±1, i.e., −1 ≤ Skp ≤ 1; with Skp = 0, indicating that the pore
distribution curve is symmetrical, Skp > 0 for coarse skewness, and Skp < 0 for fine skewness.
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Samples 58 and 68 have fine skewness; i.e., the pore throat size distribution is biased in
favor of fine pore throats.

The kurtosis measures of the steepness of the frequency curve, i.e., the ratio of the
throat diameters of the two tails (anterior and posterior) of the frequency curve distribution
to the center of the curve, show the following: Kp = 1 means the pore distribution curve is
normally distributed, Kp > 1 is the peak curve, and Kp < 1 is a flat or multimodal curve.
The kurtosis value of the Sample 58 is smaller than that of the Sample 68.

The homogeneity coefficient α indicates the degree of concentration of the main
infiltration pore channels. The homogeneity coefficients are similar for both samples, with
Sample 58 having a higher concentration of percolation pore channels.

The homogeneity coefficient α indicates the concentration of the main percolation
channels. The homogeneity coefficient was similar for both samples; Sample 58 had a
higher concentration of percolation pores and channels.

4.3.5. Micrometer Scale Characterization—CRMI

Sample 58 showed a steady increase in the mercury saturation increment (Figure 21A),
while Sample 68 showed an abnormally high value of mercury saturation at 3 µm, with
high mercury saturation below 1 µm and above 5 µm in Figure 21B, corroborating the
findings from the HPMI experiments; Sample 58 has a higher concentration of percolation
pores and channels.

The parameters of CRMI, such as the pore/throat radius distribution (Figures 22 and 23)
and the pore/throat radius ratio distribution (Figure 24), can accurately reflect the mi-
crostructure characteristics of the sediment.

The pore radius of Sample 58 is concentrated in the range of 100–300 µm, with the
peak occurring in the interval around 150 µm (Figure 22A). The pore radius of Sample 68 is
mainly concentrated within 100 µm, and the pore volume decreases with increasing pore
radius, with the peak occurring in the range of 50 µm (Figure 22B).

The throat radius of Sample 58 was distributed within 30 µm and the pore volume
decreased with increasing throat radius (Figure 23A), and the throat radius of Sample 68
was distributed within 25 µm, where the throat with a radius of less than 15 µm accounted
for the majority of the throat volume; the throat with a radius of 5 µm contributes to the
largest volume of the throat (Figure 23B).

Figure 24 shows the distribution frequencies of the ratio of the pore radius to throat
radius, respectively. The peak of the distribution frequency of Sample 68 was greater than
that of Sample 58, which was mainly distributed within 200 µm and Sample 68 was mainly
distributed within 300 µm.

Above all, Samples 58 and 68 all developed nanopores, the mineral distribution was
relatively scattered, and they were rich in paleontological shells such as foraminifera, among
which Sample 68 had more pyrite content, and abundant pyrite framboid was observed,
which made the intergranular pore develop and provide more nanopores. Sample 58 has
a high concentration of pore and throat, high pore connectivity, low pore curvature, and
pores with a diameter of 10 µm contributing to the main permeability, with an average
pore radius of 2.495 µm, whereas Sample 68 has a poor pore connectivity, high curvature,
and pores with a diameter of 1 µm contributing to the main permeability, with an average
pore diameter of 60 nm, which explains the obvious difference in permeability between the
two samples.

The pore characterization of reservoirs in the KG Basin in this paper has made sig-
nificant contributions to the evaluation of resource potential, the study of accumulation
mechanism, and the support of engineering technology.
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Figure 21. Schematic of mercury saturation as a function of constant velocity mercury pressing:
(A,B) variation of throat radius with incremental mercury saturation for Samples 58 and 68.
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Figure 22. Schematic diagram of pore and throat radius for CRMI: (A,B) schematic diagram of pore
volume variation with pore radius for Samples 58 and 68.
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Figure 23. Schematic diagram of pore and throat radius for CRMI: (A,B) schematic diagram of the 
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Figure 23. Schematic diagram of pore and throat radius for CRMI: (A,B) schematic diagram of the
variation of throat volume with throat radius for Samples 58 and 68.
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Figure 24. Schematic diagram of pore and throat radius for CRMI: (A,B) frequency diagrams of the
ratio of pore radius to throat radius for Samples 58 and 68.

Understanding the pore structure of sediments can help optimize engineering and
technical measures in drilling, completion, and production, improving production efficiency
and safety.

In addition, an accurate assessment of gas hydrate reserves in the KG Basin is of great
significance for India’s energy strategy. As potential clean energy, the development and
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utilization of natural gas hydrate will help alleviate the energy shortage and promote the
optimization and sustainable development of the energy structure.

Moreover, the extraction of gas hydrates may have environmental impacts, such
as methane releases and seabed geological hazards. Through pore characterization, the
environmental impact of mining activities can be assessed, and effective environmental
protection measures can be formulated to ensure the safe conduct of mining activities.

In terms of future work, it is suggested that the pore characterization results should be
combined with numerical simulation techniques to simulate the formation, distribution,
and evolution of gas hydrates in sediment pores. This will help to understand the accumu-
lation mechanism of gas hydrates and provide more scientific guidance for their exploration
and exploitation. Secondly, in the process of gas hydrate exploration and exploitation,
attention could be paid to environmental protection and sustainable development, and, in
the future, the research and implementation of environmental protection measures can be
strengthened to ensure that the information of the reservoir pore system can promote the
safe conduct of mining activities and minimize the impact on the environment. At the same
time, the joint development and utilization mode of natural gas hydrates and other clean
energy in the same reservoir can be explored to promote the optimization and sustainable
development of the energy structure.

5. Conclusions

This study aims to apply the characterization method of unconventional reservoirs to
the sediment pore characterization of hydrate-bearing reservoirs, and integrate methods to
obtain various information about pores, such as pore size distribution, porosity, average
pore size, pore volume, pore specific surface area, and other features, and also the three-
dimensional spatial information of pores.

The results show that the nanoscale characterization methods include N2GA and
NMRC. The NMRC method measured a much larger total pore volume than the N2GA
method, which is presumed to be due to the closed pores, while N2GA did not measure
the closed-pore volume, resulting in a large variation in the total pore volume compari-
son results.

In terms of micron-scale characterization, HMPI highlights the permeability contri-
bution of the pore throat, while CRMI mainly focuses on the distinction between the pore
and larynx. The advantage of CTS is in observing the distribution of minerals, and SEM is
suitable for studying intergranular pores.

The pore types of hydrate-bearing reservoirs in the KG Basin are complex, and the
pore morphology is diverse, including closed pores, open pores, ink-bottle pores, etc., and
foraminifera shells and diatom shells provide storage space; in addition, the connectivity
between the pores is poor, with 4–20 µm pores contributing the most to permeability.
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