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Abstract: The saturated impulse is a special phenomenon in the dynamic plastic behavior of engi-
neering structures under intensive pulse loading, such as slamming loading. In this study, slamming
experiments were performed on steel plates to investigate their slamming pressure and dynamic
plastic responses, as well as the saturation phenomenon, and elucidate the effect of the plate thickness
and material properties on the dimensionless saturated deflection and saturated impulse in combi-
nation with the published test data. The results show that the dimensionless saturated deflection
and saturated impulse of the test plates gradually increased as the dimensionless stiffness decreased.
After being validated against the experimental results, a numerical method that considered the
fluid–structure interaction (FSI) effect was then employed to provide comprehensive insight into the
transient plastic responses and saturated impulse of the flat plates under slamming impact. Numeri-
cal simulations revealed that the compressed air layer always existed during the effective process
of the flat slamming impact. Through the numerical prediction of the dynamic plastic deflection
and slamming pulse loading, it was observed that the saturated impulse phenomenon always took
place after the time instant of the peak value of the pressure pulse. Furthermore, the analysis of the
saturated impulse based on the numerical simulations indicated that the saturation phenomenon
was more likely to be achieved as the water impact velocity increased.

Keywords: saturated impulse; slamming experiments; flat plates; slamming pressure; plastic
responses; numerical simulation

1. Introduction

Ships and marine structures are commonly exposed to wave impacts during service,
such as bottom and bow flare slamming, which may cause severe local structural damage [1]
or global collapse of the ship hull girder [2]. Various types of ship structural damage,
including plastic damage of the ship plate, web plate bulking, and web shearing, have been
reported. Over the past years, the hydroelastic responses of the structures under slamming
loads were widely studied and a lot of valuable experimental, analytical, and numerical
results have been published [3–7].

To investigate the elastic–plastic responses of ship structures under slamming pressure,
Chuang [8] experimentally studied the effects on flat-bottomed plates and found that the
plate had undergone plastic deformation due to a large water impact velocity. Mori [9] ex-
perimentally studied the elastoplastic responses of the flat stiffened plates of an aluminum
high-speed craft that suffered from slamming loading and employed the finite strip method
to predict the dynamic responses of the stiffened plate. Shin et al. [10] investigated the
cumulative plastic deformation of ship plates subjected to multiple slamming pressure
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pulses by conducting repeated drop tests. Abrahamsen et al. [11] investigated the dynamic
plastic deformations of aluminum plates during slamming impacts based on experimental
and theoretical methods. Recently, Zhu et al. [12] investigated the large plastic responses of
square plates by carrying out drop tests and verified the saturated impulse phenomenon of
the ship plates based on the test results for the first time, which indicated that considering
the effect of saturated impulse would more accurately predict the plastic deformation of
the ship plates under a slamming impact.

Due to the complexity and limitations of the slamming test, powerful numerical tools
have been widely employed to simulate the slamming impacts of marine structures in
recent years, for instance, FEM [13], the SPH method [14], CFD [15], and CEL [16]. In
addition, many numerical studies on the slamming problem for marine structures using the
arbitrary Lagrange–Eulerian (ALE) method have been reported. Luo et al. [17] numerically
simulated the dynamic responses and slamming pressure of a stiffened plate. Stenius
et al. [18] numerically investigated the slamming impact of ship plates based on the ALE
method and confirmed the significance of hydroelasticity in predicting the structural
responses. Wang and Guedes Soares [19] numerically studied the slamming impact of 3D
bodies and revealed that the mesh density of the model and contact stiffness are essential
to the numerical results. Yu et al. [20] employed the numerical method to validate the
proposed analytical method for predicting the plastic response of stiffened beams under
slamming loading. Wang et al. [21] numerically investigated the dynamic responses of the
composite sandwich panels and validated the numerical simulations against the test results.
Truong et al. [22,23] validated the numerical method in comparison with the existing test
data, and then proposed a model for a water-hitting structure that can be used to study the
slamming loads of offshore structures. After this, Truong et al. [24] carried out a benchmark
study on the dynamic response of stiffened plates by considering the FSI.

In addition to the numerical method, the theoretical method is another essential tool
for providing quick predictions on the plastic damage of ship structures under slamming
loads. Jones [25] developed a theoretical method using the rigid–perfectly plastic (R-PP)
model to estimate the plastic deflection of the ship plates under slamming impact and found
that the plastic deflection of the plate would come to rest during the decaying phase or
even rising phase of the slamming loads if the pulse loading had a relatively long duration.
This special phenomenon was not explored until the 1990s when Zhao and Yu [26,27] first
defined it as a saturated impulse phenomenon based on a study of the dynamic responses
of rigid–perfectly plastic beams, plates, and cylindrical shells under a rectangular pressure
pulse. After this, Zhu and Yu [28] defined two types of saturated impulse associated with
the maximum deflection and permanent deflection, respectively, in the analysis of the
elastoplastic dynamic response. In recent years, saturation analysis for R-PP beams and
plates under various pulse loadings, such as a linearly decaying pulse and a linearly rising
exponentially decaying (LRED) pulse, was conducted [29]. Furthermore, the saturated
impulse of the ship plates during a slamming impact was verified and analyzed for the
first time by using the experimental method [12].

Extensive research was conducted on the dynamic responses of marine structures
against slamming loads. However, there were few experimental and numerical studies that
considered the FSI on the larger plastic response and the special saturation phenomenon of
the structures under a slamming impact. Therefore, the purpose of this work was to study
the saturated impulse of the flat plates under slamming impact based on experimental and
numerical methods. In this study, the drop tests of the flat steel plates were first conducted.
The associated relationship between the pressure pulse and the plastic response of the steel
plates with the drop height is discussed herein. The effects of the material properties and
thickness of the flat plates on the dimensionless saturated deflection and saturated impulse
were analyzed in combination with available test data. Then, a numerical method that
considered the FSI, which was validated with the experimental results, was employed to
simulate the flat slamming impact of the plates, in which the associated phenomenon of the
compressed air layer during the process of slamming impact is discussed herein. Lastly, the
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saturated impulse was numerically analyzed by combining the plastic dynamic deflection
with the predicted pressure pulse of the plates.

2. Experiments
2.1. Experimental Setup

The experiments for investigating the saturated impulse of the square plates were
conducted by using the drop tower at the Wuhan University of Technology [12], which is
presented schematically in Figure 1. In this study, the drop tower was used to carry out the
experimental study on the square plates under flat slamming impact.
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Figure 1. Sketch of the drop tower with drop model [12]. Figure 1. Sketch of the drop tower with drop model [12].

As shown in Figure 2, two identical square steel plates with a length of 350 mm were
mounted on each side of a rectangular fixture to prevent mutual interference [12], and a
clamping plate with 24 bolts was applied to model the clamped boundary condition. During
the test, the dynamic strain and slamming pressure were recorded by the strain gauge (S1)
and pressure sensors (P1 and P2) installed on the two identical test plates. A synchronous
acquisition instrument was used to make sure that the strain and slamming pressure were
simultaneously measured. After each test, the 3D-scanning instrument was utilized to
capture the lateral permanent deflection of the test plate. Furthermore, it is noted that the
initial impact velocity of the test model has been reported in the published experimental
study [12], and the measurements indicate that the drop model was approximately in
free fall motion during the tests. More information about the experimental facilities and
instrumentation can be found in ref. [12].
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2.2. Specimens and Test Conditions

In this study, the test specimen was made of mild steel with dimensions of 0.35 × 0.35
× 0.001 m, where the effective dimensions were 0.25 × 0.25 × 0.001 m. Uniaxial tensile
tests of the steel plates were carried out on a universal testing machine, and the tests were
repeated three times to check the accuracy. The tensile stress–strain curves obtained in the
three tests are shown by three colors in Figure 3. The nominal stress σN was obtained by
the tensile force divided by the original cross-sectional area of the tensile specimen, and the
corresponding nominal strain εN was the result of dividing the tensile elongation by the
original length of the tensile specimen. The true stress σT and true strain εT were calculated
by the following equations:

σT = σN(1 + εN), εT = ln(1 + εN) (1)

Table 1 summarizes all drop test conditions for steel plates. It should be noted that since
the reliability of the test results measured from the experimental system were confirmed in
ref. [12], the test repeatability was not further examined.
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Figure 3. Stress–strain curves for the mild steel materials used in this study.

Table 1. Drop model test conditions.

Test Object Material Drop Height (mm) Series Number *

Drop model Mild steel

700 S-1.0-700
800 S-1.0-800
900 S-1.0-900

1000 S-1.0-1000
1100 S-1.0-1100
1200 S-1.0-1200

* Series number S-□□-□□□□ means steel-thickness-drop height.

2.3. Experimental Results
2.3.1. Slamming Pressure and Impulse

Figure 4 depicts the pressure–time histories, as well as the relevant integral impulse
variations, at P1 and P2 for different drop heights. It should be noted that ti and tf in the
figures represent the start and end time instants of the first positive pulse, respectively,
where tf is the time at which the pressure first dropped to zero. As shown in Figure 4, the
variations in the impulse integrated from the pressure curves at two measuring points
were consistent at various drop heights. Figure 5 shows the variation in the first positive
integral impulse Ipos-exp with the drop height. It can be seen that the maximum positive
impulses of two measuring points (P1 and P2) increased with the drop height, and the
pressure impulses at P1 and P2 were almost the same at various drop heights. Previous
studies [12,30] indicated that studies on the slamming pressure pulse should focus on both
the peak values and pulse duration. Figure 6, therefore, displays the variation in the first
positive impulse Ipos-exp versus the peak pressure pm for various test conditions, in which the
present and published test results are included. For different drop heights, only relatively
small differences were observed in the peak pressure and impulse calculated from the
present test data at P1 and P2. Some published experimental studies [3,8,10] indicated that
the slamming pressure that acts on the flat structure is approximately uniformly distributed
due to the air cushion effect. Therefore, it is reasonable to regard the pressure that acted
on the flat steel plates as uniformly distributed in this study. Moreover, the comparison
revealed that the calculated impulses for 1.0 mm steel plates were smaller than the test
results for the 1.0 mm aluminum plates and 0.5 mm steel plates, which were possibly due
to the stiffness of the test plate. In Figure 6, the symbol “S-1.0” refers to the 1.0 mm steel
plate, and similarly, “S-0.5” and “A-1.0” refer to the 0.5 mm steel plate and the 1.0 mm
aluminum plate, respectively.
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Figure 4. Pressuretime histories and the relevant integral impulse variations at P1 and P2 with
different drop heights.
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2.3.2. Strain

Figure 7 plots the test results of the strain–time histories at the flat plate center (S1)
under the drop heights of 800 mm and 1000 mm, and a time duration of 0.08 s was chosen
to clearly show the strain curves. It is noted that the yield strain ey of the steel plate was
approximately the ratio of the yield stress to Young’s modulus. It was found that the
peak strains at the plate center with the drop height of 0.8 m and 1.0 m were 2580 and
3156 microstrains, respectively, which were 1.9 and 2.4 times the yield strain. As shown in
the figures, a wide “valley” was found in the strain curves after the peak values, which
may have been due to the effect of hydroelasticity. For the central strain response of the
plate, only the values of the final strain ef and the peak strain em are typically considered,
with the final strain being averaged over the fluctuating strains during the later phase of
the response dominated by the structural elastic vibration. Figure 8 depicts the results of
the final and peak strains under various drop heights, where the strain data for 0.5 mm
steel plates in ref. [12] was also included for comparison. The results show that the final
and peak strains increased almost linearly with the drop height. In addition, the final strain
values of the 1.0 mm steel plates were obviously smaller than those of the 0.5 mm steel
plates, but the peak strains of the 1.0 mm steel plates were slightly smaller than the results
for the 0.5 mm steel plate, which may have been related to the deformation mode of the
plate during slamming.
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2.3.3. Permanent Deflection and Deformed Profile

The transverse deformation profiles, which were measured in situ by using the 3D-
scanning instrument, along the X-axis for each deformed plate are presented in Figure 9a.
It was found that the final deformed profiles of each plate were all approximately in cosine
forms, and the maximum deflections occurred at the central point. Furthermore, the fitted
curve using the cosine function for the final deformed profile of “S-1.0-1200” is also given
in Figure 9a, with a small error from the test result. The final deflections at the steel plate
center with respect to the drop height are plotted in Figure 9b, which shows that the final
central deflection increased almost linearly with the drop height. In addition, in order to
analyze the effect of the measurement of slamming pressure on the plastic response of
the flat plate, the comparison of the deformation profiles of two equal plates installed on
the left and right sides at different drop heights is shown in Figure 10. It is noted that
“L” and “R” in the figure represent the strain-measuring plate on the left side and the
pressure-measuring plate on the right side, respectively. As shown in the figure, the final
deformations of the square plates on the left and right sides were in good agreement under
various drop heights, which indicates that the pressure sensors had little effect on the
plastic response of the flat plate under the given test conditions.
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Figure 9. (a) The transverse deformation profiles measured along the X-axis, and (b) the final central
deflection of flat steel plates against the drop height.
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2.3.4. Analysis of Saturated Impulse

The saturated impulse is a special phenomenon in the dynamic plastic behavior of
some structures, such as beams and plates. Previous studies indicated that the load-carrying
capacity of a plate is greatly enhanced when subjected to intense lateral dynamic loading
due to the membrane force generated by a large deflection. If the time duration of the pulse
loading is relatively long, the permanent deflection of the plate will come to rest when
the impulse reaches a critical value; namely, the saturated phenomenon occurs [28,29].
Recently, Zhu et al. [12] experimentally studied the saturated impulse of ship plates under
a slamming impact, but the effects of plate thickness and materials on saturated deflection
and saturated impulse remain to be clarified. Therefore, in this subsection, the saturated
impulse of the 1.0 mm steel plates under slamming loading was first analyzed, and then
the effects of plate thickness and materials on the saturation phenomenon were studied
together with the published test results.

Figure 11a,b display the comparison of the measured plastic response and pressure
pulse for drop heights of 800 mm and 1000 mm, in which the variations in the integral
impulse are also drawn. It should be noted that the directly measured strain variations at
the plate center were employed instead of the deflection–time histories for the saturated
impulse analysis. In each figure, the curves of the slamming pressure, strain, and calculated
impulse are marked in different colors. To clearly show the comparison, only a time period
of 0.018 s of the test results is depicted in the figures. As shown in the figures, the plates
gained their maximum central strain at a time instant later than the occurrence of the peak
pressure, which implies that the saturation phenomenon also existed for the 1.0 mm steel
plates under a slamming impact. The time point of peak strain is defined as the saturation
point, and the corresponding impulse is defined as the saturated impulse Isat-exp.

Figure 12 shows the relationship of the saturated impulse Isat-exp and the total impulse
to the drop height, in which the ratio of the saturated impulse Isat-exp to the total impulse
Ipos-exp (defined as the first positive impulse) is also plotted. It is seen that both the total
impulse and saturated impulse increased almost linearly with the drop height, while the
ratio gradually decreased, which indicates that the saturation phenomenon of the steel
plate was more likely to being achieved. In addition, since the saturated impulse Isat-exp was
larger than the impulse Ir of the rising section for different test conditions, the saturation
phenomenon always took place during the decaying section of the slamming pulse loading.
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Figure 11. Representations of the saturation phenomena of the steel plates for the drop heights of
(a) 800 mm and (b) 1000 mm.
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Figure 12. The total impulse and saturated impulse versus the drop height.

Figure 13a illustrates the relationship between the dimensionless saturated deflection
and the drop heights for the three types of test plates (A-1.0, S-0.5, and S-1.0), where
δ = w/h, w is the final deflection at the plate center, and h is the plate thickness. As
shown in the figure, the dimensionless saturated deflections of the 0.5 mm steel plates
were the largest, followed by those of the 1.0 mm aluminum plate, while the saturated
deflections of the 1.0 mm steel plates were the smallest. Furthermore, Figure 13b depicts
the dimensionless saturated impulses with the drop heights for various test plates, and the
dimensionless saturated impulse can be expressed as

Isat−exp = Isat−exp

√
L2

M0µh
(2)

where M0 = σyh2/4 refers to the fully plastic bending moment per unit area, with σy being
the yield stress of the material, and µ is the mass per unit area of the plate. The comparison
revealed that the dimensionless saturated impulse of the 0.5 mm steel plates was the
largest, while the smallest results were obtained for the 1.0 mm steel plates. By combining
Figure 13a,b, it can be concluded that when the thicknesses of the test plates were the same
(i.e., S-1.0 and A-1.0), the dimensionless saturated deflection and dimensionless saturated
impulse of the steel plates with a high material strength were obviously smaller than those
of the aluminum plates. In addition, when the test plates were made of the same material
(i.e., S-0.5 and S-1.0), the dimensionless saturated deflection and saturated impulse were
greater for the plates with the smaller thickness. Based on the previous study [31], the
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dimensionless stiffness ζ, which takes into account the material and dimensions of the
square plate, can be determined by

ζ =
h
L

√
E

σy(1 − ν)
(3)

where ν is Poisson’s ratio, and h is the thickness of the plate. Calculations found that the
values of ζ were 0.13, 0.22, and 0.26 for the 0.5 mm steel plate, the 1.0 mm aluminum plate,
and the 1.0 mm steel plate, respectively. Hence, it can be deduced that the dimensionless
saturated deflection and the dimensionless saturated impulse of the test plates for the same
water impact velocity gradually increased as the dimensionless stiffness ζ decreased under
the given test conditions.
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Figure 13. (a) Dimensionless saturated deflection and (b) dimensionless saturated impulse versus
drop height for various flat plates [12].

3. Numerical Simulations

In this study, numerical simulations that considered the FSI were employed to obtain
the deflection–time history of the plate, which was not recorded in the tests. A numerical
model using the ALE method in the commercial software LS-DYNA version 971 was
developed for simulating the drop-on-water tests of the flat plates, which were validated
against the test results reported in ref. [12].

3.1. FSI Model

The numerical model that considered the FSI consisted of two parts, as shown in
Figure 14a: the structures, namely, the boundary supporting plates and test plate, as
well as the fluid domains, namely, the air and water. The structures were modeled by
the shell elements, which were described by the *Belytschko–Tsay element formula with
five integration points through the thickness direction. The fluid was modeled by the
solid element defined by a multi-material arbitrary Lagrangian–Eulerian. During the
simulation, the structure experienced deformation under the action of hydrodynamic
pressure, while the response of the structure simultaneously influenced the fluid pressure.
Detailed information on the ALE method can be found in ref. [19].
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Figure 14. (a) Boundary conditions and (b) schematic dimensions of the numerical model.

In previous studies, it was demonstrated that the application of a symmetric model can
greatly reduce the computation time without compromising the precision of the numerical
results. A quarter model with symmetric boundaries on the XOZ and YOZ planes, as
presented in Figure 14a, was therefore used for the FSI analysis based on the symmetry
conditions. In the structural model, the steel boundary-supporting fixture was set to allow
free motion in the z-direction only. It is noted that extra mass should be assigned to the
boundary-supporting plates to achieve the actual one-quarter of the total weight measured
in the test. In addition, the dimensions of the fluid domains were set to approximately
three times the length and width of the structural model, which was consistent with the
required specifications [32]. Since the overall size of the water tank in the test ensured no
wave reflection at the boundary during the slamming process, all boundary surfaces of the
fluid domains in the numerical model, except for the symmetry planes, were defined as
non-deflection conditions to prevent boundary effects. Due to the large size of the fluid
domain, mesh refinement for all fluid domains was not suitable in terms of computational
time. Therefore, mesh refinement was performed on the local fluid domains, as shown
in Figure 14b, and the detailed dimensions of the different fluid domains are given in
Table 2. The mesh size of the structure and the locally refined fluid domains were set to
be the same, as suggested by ref. [19]. A convergence study was conducted to analyze
the sensitivity of the numerical simulations to the mesh size, as included in Appendix A.
The penalty coupling mechanism between the fluids and structure was governed by the
keyword *Constrained_Lagrange_In_Solid. The penalty factor, which is associated with the
computed coupling force, was set to a default value of 0.1 based on previous studies [22,33].

Table 2. Dimensions of the fluid domains (unit: mm).

Model
Water Domain Air Domain Initial Gap

L1 L2 L3 L4 L5 L6 L7 L8 di

Aluminum/steel plate 300 600 800 1200 300 500 300 500 100

As shown in Figure 14, an initial gap di that was much smaller than the drop height in
the test was set between the water surface and flat structure to reduce the computation time.
An initial gap value of 0.1 m was selected, which was large enough to consider the effect of
the air cushion [22]. Thus, to attain the same water impact velocity measured in the tests, the
structure should be assigned an initial falling velocity vi calculated from vi =

√
v2

m − 2gdi,
where vm is the measured impact velocity in the test after taking the friction of the guide
rails into account and g is the gravitational acceleration. The computation time of 0.1 s with



J. Mar. Sci. Eng. 2024, 12, 1730 13 of 24

an output time interval of 0.001 s was selected, which was sufficient to simulate the entire
water impact process.

3.2. Materials for Structures and Fluids

In this study, the material model of *015-Mat_Johnson_Cook in the material library was
used to simulate the plastic behavior of the flat plate during slamming, and its expression
is given as follows:

σeq =
(

A + Bεp
n)(1 + c ln

.
εm

)
(4)

where A, B, n, and c are the constants; εp is the effective plastic strain; and
.
εm denotes

the mean effective plastic strain rate. The parameter c is related to the strain rate of the
material, while the parameters A, B, and n were obtained by fitting the tensile test results.
For example, the stress–strain curve for the mild steel of the plates with a thickness of
0.5 mm obtained from the tensile tests were fitted by the Johnson–Cook material model,
as shown in Figure 15. Specific parameter values of the Johnson–Cook model for the
materials aluminum alloy A1060 and mild steel are presented in Table 3, where the value
of parameter c for the mild steel was selected as 0.0652 based on a previous study [34]. The
strain rate effect of the aluminum A1060 was not considered in this study. In addition,
to ensure that the response of the boundary support plates of the fixture was consistent
with that in the actual drop tests, the *001-Mat_Elastic material model with a density of
7850 kg/m3, Young’s modulus of 206 GPa, and Poisson’s ratio of 0.3 was used to ensure
that the response was always within the elastic range.
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Figure 15. Fitting of the Johnson–Cook model to the stress–strain curve of mild steel.

Table 3. Parameter values of Johnson–Cook material model.

Type Density ρ
[kg/m3]

Young’s Modulus
[GPa] A [MPa] B

[MPa] n [-] c [-]

Aluminum
A1060 2700 70.0 132.74 54.13 0.32 -

Mild steel
(S-0.5) 7850 206.0 263.56 594.58 0.53 0.0652

Mild steel
(S-1.0) 7850 206.0 270.16 553.40 0.76 0.0652

The fluids in the numerical model were assigned a *Mat_Null material model with no
yield strength, which was therefore used to simulate the behavior of the fluids. In addition,
the viscosity of the water was not considered. Furthermore, the equation of state (EOS) was
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adopted to define the pressure in the fluid material, with the EOS of water defined by the
Gruneisen model as

pwater =
ρ0C2ν

[
1 +

(
1 − γ0

2
)
ν − a

2 ν2][
1 − (S1 − 1)ν − S2

ν2

ν+1 − S3
ν3

(ν+1)2

] + (γ0 + aν)E (5)

where C, S1, S2, S3, γ0, and a are constants; E is the initial energy per unit reference volume;
and ν = ρ/ρ0 − 1, where ρ0 is the density of water in the nominal state and ρ is the current
density.

A perfect air model with zero shear strength was used to simulate the air state, and
the corresponding polynomial equation of state was expressed by

pair = C0 + C1υ + C2υ2 + C3υ3 +
(

C4 + C5υ + C6υ2
)

E (6)

where Ci (i = 1–6) are user-defined constants, and υ = 1/V0 − 1, where V0 is the relative
volume.

The values of the abovementioned related parameters of the EOS were obtained from
ref. [22] and are shown in Table 4.

Table 4. EOS coefficients of fluid model.

*EOS_Linear_Polynomial *EOS_Gruneisen

Parameter Unit Value Parameter Unit Value

ρ0 kg/m3 1.225 ρ0 kg/m3 1000
C0 MPa 0.0 C m/s 1480
C1 MPa 0.0 S1 - 1.921
C2 MPa 0.0 S2 - −0.096
C3 MPa 0.0 S3 - 0.0
C4 - 0.4 γ0 - 0.35
C5 - 0.4 a - 0.0
C6 - 0.0 E MPa 0.2895
E MPa 0.25 V0 - 1.0

V0 - 1.0

3.3. Validation of Numerical Model

The numerical method, which considered the FSI and was utilized to simulate the
slamming experiments on the flat metal plates, was validated against the test results of
the slamming pressures, strains, and final deflections of the plates. Figure 16a,b show the
comparison of test data with the numerical simulations for the pressure–time histories of
the aluminum and steel plates for the drop height of 1100 mm, respectively. It should be
noted that the model series number “A-1.0-1100” in the figure denotes an aluminum plate of
thickness 1.0 mm that was dropped from 1100 mm in the test [12]. As shown in the figures,
the predicted time histories of slamming pressure were in good agreement with the test
measurements for the first positive pulse. However, there were differences in the following
fluctuating phases of the slamming pressure–time histories, which may have been due to
the effects of structural elastic vibration. The experimental study conducted by Okada and
Sumi [35] indicated that the first positive pulse is the most important. Similarly, studies
on the saturation phenomenon also revealed that the saturated deflection of the impacted
structure always occurs within the timeframe of the first positive pressure phase [12].
Therefore, the predicted slamming pressure pulse was generally in reasonable agreement
with the test results.
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Figure 16. Comparison of the numerical predictions with the test results for pressure–time histories
of the (a) aluminum and (b) steel plates with a drop height of 1100 mm. Exp and FSI refer to the
experiments and numerical simulations that considered the fluid–structure interaction, respectively.

Figure 17a,b present the comparison of the experimental data with the numerically
predicted peak pressure and the integral impulse Ipos of the first positive pulse, respectively.
The dashed line indicates an identical match. It is noted that only the pressure pulse
at central point P1 was used for the analysis, as the slamming pressure was uniformly
distributed on the plate. As shown in the figures, the peak pressures and impulses predicted
by the numerical model were in reasonable agreement with the test results. In addition, it
was observed that the numerical predictions slightly overpredicted the peak pressures while
underestimating the positive impulses. This difference between the numerical predictions
and the test results was possibly caused by the modeling of the effects of the air cushion
and air–water–structure interaction, as well as the simplified boundary condition.

Figure 18 compares the test results with the numerical simulations for the strain–time
histories at the flat plate center for the drop height of 1100 mm. It is seen that the numerically
predicted strain–time histories generally agreed well with the test results. However, some
differences were found in the peak strain and the subsequent rebound phase, which were
possibly due to the utilization of ideally rigid boundary conditions in the numerical model
that reduce the elastic vibration. Figure 19a,b compare the numerically predicted peak and
final strains of different flat plates with the experimental data, respectively. As shown in
Figure 19a, the peak strains measured in the tests were generally larger than the numerical
predictions for both the aluminum and steel plates, which was probably due to the larger
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elastic strains of the metal plates in the tests. In addition, the numerically predicted final
strains at the plate center were overall slightly larger than the test values.
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Figure 17. Comparison of the experimental data with the numerically predicted (a) peak pressure
and (b) positive impulse of the slamming pulse loading.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 16 of 24 
 

 

  
(a) (b) 

Figure 17. Comparison of the experimental data with the numerically predicted (a) peak pressure 
and (b) positive impulse of the slamming pulse loading. 

Figure 18 compares the test results with the numerical simulations for the strain–time 
histories at the flat plate center for the drop height of 1100 mm. It is seen that the numeri-
cally predicted strain–time histories generally agreed well with the test results. However, 
some differences were found in the peak strain and the subsequent rebound phase, which 
were possibly due to the utilization of ideally rigid boundary conditions in the numerical 
model that reduce the elastic vibration. Figure 19a,b compare the numerically predicted 
peak and final strains of different flat plates with the experimental data, respectively. As 
shown in Figure 19a, the peak strains measured in the tests were generally larger than the 
numerical predictions for both the aluminum and steel plates, which was probably due to 
the larger elastic strains of the metal plates in the tests. In addition, the numerically pre-
dicted final strains at the plate center were overall slightly larger than the test values. 

  
(a) (b) 

Figure 18. Comparison of numerical predictions with test results for the strain–time histories of 
the (a) aluminum and (b) steel plates (A-1.0-1100 and S-0.5-1100). 

100 200 300 400 500
100

200

300

400

500

R-square = 0.972

 A-1.0
 S-0.5
 S-1.0

N
um

er
ic

al
 p

re
di

ct
io

n 
(k

Pa
)

Experimental data (kPa)

Peak pressure

400 600 800 1000 1200 1400
400

600

800

1000

1200

1400

R-square = 0.986

 A-1.0
 S-0.5
 S-1.0

N
um

er
ic

al
 p

re
di

ct
io

n 
 I p

os
-n

um
 (k

Pa
·m

s)

Experimental data  Ipos-exp (kPa·ms)

Positive impulse

0 6 12 18 24 30

0

1

2

3

4

5

6 ×103

A-1.0-1100

St
ra

in
 (μ

ε)

Time t (ms)

 S1x-Exp
 S1x-FSI

0 6 12 18 24 30
0

1

2

3

4

5

St
ra

in
 (μ

ε)

Time t (ms)

 S1x-Exp
 S1x-FSI

×103

S-0.5-1100

Figure 18. Comparison of numerical predictions with test results for the strain–time histories of the
(a) aluminum and (b) steel plates (A-1.0-1100 and S-0.5-1100).

Figure 20 plots the numerical predictions of the final central deflection of various flat
plates against the experimental data. In general, reasonable agreements were achieved,
with average errors of 12.1%, 8.8%, and 7.2% for the aluminum plates (A-1.0), steel plates
of thickness 0.5 mm (S-0.5), and steel plates of thickness 1.0 mm (S-1.0), respectively. It was
observed, however, that the numerical predictions for the aluminum plates were all larger
than the test results, while the numerical predictions for the steel plates were all smaller
than the test data, and this difference in the final deflections of the aluminum and steel
plates may be improved if accurate boundary conditions and strain rate parameters are
taken into account in the numerical model. In addition, a flat slamming impact is a complex
problem, and it is difficult to use a numerical model to perfectly simulate the slamming
process. Based on the current comparison results, the prediction accuracy of the numerical
model was acceptable.
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Figure 19. Graphs of numerical predictions of (a) peak strain and (b) final strain versus experimental
results.
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Figure 20. Graph of the numerical predictions of the final central deflection of the aluminum and
steel plates versus the experimental data.

All in all, the above comparisons show that the developed numerical model could
reasonably simulate the flat slamming impact of the plates in the tests. Therefore, the
numerical model was valid for the subsequent analysis of the transient response and the
saturation phenomenon of the metal plates during the process of slamming.

3.4. Numerical Prediction of the Transient Response and Saturated Impulse

Figure 21a depicts the central deflection–time history of the aluminum plate for the
drop height of 1100 mm, with five particular instants being marked, while Figure 21b
depicts the deformation profile across the center line of the plate (y = 0) at the same instants,
in which the final deformation profile measured in the test is also included. In general, the
numerically predicted final deformation profile was in reasonable agreement with the test
measurements. As observed from Figure 21b, the deflection of the plate increased rapidly in
the initial stage (t = 3.0–7.0 ms), then entered the stage of elastic rebound (t = 7.0–21.5 ms),
after which the deflection gradually reached a relatively stable stage (t = 21.5–30.0 ms). At
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some time instants (t = 7.0 ms and 21.5 ms), it was found that the deformed shape of the
plate was closer to the cosine mode, which is consistent with the plate’s profile evolution
measured by using the DIC technique in the tests of Abrahamsen et al. [11]. In addition,
it is worth noting that no obvious traveling plastic hinge lines were found in the profile
evolution of the square plate under slamming loading, which is different from that of the
typical blast-loaded plate, as presented in ref. [36].
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Figure 21. Numerical simulations of the transient response of the aluminum plate (A-1.0-1100):
(a) the central deflection–time history of the plate; (b) deformed profiles for y = 0 at selected instants
indicated in (a).

To provide comprehensive insight into the slamming phenomenon, the interaction
between water and structure simulated by the established numerical model at six selected
time instants is plotted in Figure 22 for the case of the aluminum plate with a drop height
of 1100 mm. The results were captured across the symmetrical plane (XOZ) to clearly
display the location of the fluid and the structure variation during the slamming process.
When combining Figures 21a and 22b, it was observed that the plate had already deformed
before it contacted the water surface (t = 5.0 ms) due to the compression of the air layer.
As shown in Figure 22c, when the plates impinged on the water surface, the water rose at
the edge of the plate and an air pocket formed between the plate and the free surface. The
air pocket was formed because the air was trapped between the water and the plate and
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was gradually forced into the water. Thereafter, the volume of the air pocket decreased
over time but still existed during the effective process of the water impact, as shown in
Figure 22c–f, which agrees with the phenomena observed in the experiment described
in ref. [11]. Moreover, it is seen that the slamming pressure and central deflection of the
plate reached their maximum at the instant t = 7.0 ms, whilst the plate had just reached the
position slightly before the initial calm water surface, as shown in Figure 22c.
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Figure 22. Interaction between the fluid and structure at the selected time instants (A-1.0-1100).

The saturation phenomenon of the square plates during the flat slamming impact
was experimentally studied. In this subsection, the numerical model is utilized to analyze
the saturated impulse by combining the predicted plastic deflection and the slamming
pressure at various water impact velocities. Figure 23a,b depicts the comparison of the
plastic deflection with the predicted pressure pulse of the aluminum and steel plates for a
drop height of 1100 mm, respectively, where the integral impulse variations are also plotted.
The comparison shows that the metal plates gained the maximum deflection at a time
instant later than the occurrence of the peak pressure, which indicates that the saturation
phenomenon was also verified based on numerical simulations.

Figure 24a,c depict how the total impulse Ipos-num and saturated impulse Ipos-sat ob-
tained by the numerical simulations varied with the drop heights, where the ratio γnum
of the predicted saturated impulse Isat-num to the predicted total impulse Ipos-num was also
drawn. As shown in the figures, the numerically predicted results of the total impulse
Ipos-num and saturated impulse Isat-num for various plates increased linearly with the drop
height. The numerical simulations also revealed that the saturated impulse phenomenon
of the plate always took place during the decaying section of the pressure pulse, as the
predicted saturated impulse Isat-num was larger than the impulse Ir-num. Furthermore, the
variation in the ratio γnum in the figures indicates that the saturated impulse phenomenon
of the flat plate was more likely to be achieved as the drop height increased.
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Figure 23. Numerical predictions of the saturation phenomenon of the flat (a) aluminum and (b) steel
plates with the drop height of 1100 mm.
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Figure 24. The total impulse and saturated impulse versus the drop height: (a) aluminum plates of
thickness 1.0 mm, (b) steel plates of thickness 0.5 mm, and (c) steel plates of thickness 1.0 mm.

4. Conclusions

A combined experimental and numerical investigation was conducted to explore
the saturated impulse of the plates under a flat slamming impact. The large dynamic
plastic responses and slamming pressure pulse of the steel plates of thickness 1.0 mm
during the slamming impact were experimentally studied. The test results reveal that the
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pressure acting on the steel plates was uniformly distributed. The plastic responses of the
steel plates, including the central strain and final deflection, increased linearly with the
drop height.

The comparison of the measured plastic response with the pressure pulse indicates
that the saturation phenomenon also existed for the 1.0 mm steel plates during slamming.
The effects of plate thickness and material properties on dimensionless saturated deflection
and dimensionless saturated impulse were studied by combining the published slamming
test results reported in ref. [12]. The results demonstrate that the dimensionless saturated
deflection and dimensionless saturated impulse were larger for the smaller plate thickness
when the materials were the same, while they were smaller for the material of higher
strength with the same plate thickness. In addition, it was found that the dimensionless sat-
urated deflection and saturated impulse gradually increased as the dimensionless stiffness
ζ of the plate decreased.

The numerical method considered the FSI effect, which was validated against the test
results, was then employed to investigate the transient response and saturated impulse
of the flat plates under a slamming impact. The numerical simulations showed that
the compression of the air layer always existed during the process of the flat slamming
impact, which was consistent with the phenomenon observed in the existing slamming test.
Through the numerical predictions of the dynamic plastic deflection and slamming pulse
loading, it was observed that the saturated impulse phenomenon always took place after
the time instant of the peak value of the pressure pulse under various drop heights, and the
saturated impulse phenomenon of the flat plate was more susceptible to being achieved as
the water impact velocity increased.
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Appendix A

As is well known, the numerical simulations of the ALE method are very sensitive
to the mesh density. Therefore, the mesh size of the water impact region needs to be
fine enough to capture accurate slamming results, while using a coarser mesh for other
fluid domains can greatly reduce the computational time. For the main impact region
(L1 × L3 × (L5 × L7)) shown in Figure 14, three kinds of mesh sizes (4.2 mm, 5.0 mm, and
12.5 mm) were selected for the mesh convergence study, and a reasonable mesh size was
determined by comparing the experimental results of the aluminum plate with the drop
height of 1100 mm. A server workstation that comprised 24 CPUs was used to conduct the
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numerical simulations, and the main parameters of the mesh convergence study for the
three cases are shown in Table A1.

Table A1. Parameters of mesh convergence study.

Parameters Case 1 Case 2 Case 3

Mesh size (mm) 12.5 5.0 4.2
Number of shell

elements (structure) 448 2800 4032

Number of solid
elements (fluid) 116,058 1,394,250 2,336,026

Total nodes 124,395 1,438,152 2,397,991
CPU time 1 h 2 min 13 h 27 min 25 h 11 min

Figure A1a–d show the numerical predictions of the pressure–time histories at P1 and
P2, the strain time history at S1, and the central deflection time history for the numerical
model with various mesh sizes compared with the experimental results, respectively.
As shown in Figure A1a,b, the numerical predictions for the mesh sizes of 4.2 mm and
5.0 mm agreed well with the test results, while the prediction accuracy was poor for the
mesh size of 12.5 mm, especially for predicting the slamming pressure at P2. Furthermore,
the comparisons in Figure A1c,d revealed that the numerical predictions of the strain and
deflection for mesh sizes of 4.2 mm and 5.0 mm were essentially the same and agreed
well with the test measurements. In contrast, the numerical model with a mesh size of
12.5 mm greatly underestimated both the strain and deflection. Therefore, by combining
the accuracy of the numerical simulations and the effect of the computational time, the
mesh size of the main impact region was set to 5.0 mm.
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Figure A1. Comparison of the test results and numerical predictions of slamming pressure time
histories at (a) P1 and (b) P2, (c) strain time history at S1, and (d) deflection time history at plate
center with various mesh sizes for the drop height of 1100 mm.
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