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Abstract: The task of automatically and intelligently diagnosing faults in marine equipment is of great
significance due to the numerous duties that shipboard professionals must handle. Incorporating
automated and intelligent systems on ships allows for more efficient equipment monitoring and better
decision-making. This approach has attracted considerable interest in both academia and industry
because of its potential for economic savings and improved safety. Several fault diagnosis methods
are documented in the literature, often involving mathematical and control theory models. However,
due to the inherent complexity of some processes, not all characteristics are precisely known, making
mathematical modeling highly challenging. As a result, fault diagnosis often depends on data or
heuristic information. Fuzzy logic theory is particularly well suited for processing this type of
information. Therefore, this paper employs fuzzy models to diagnose faults in a marine pneumatic
servo-actuated valve. The fuzzy models used in fault diagnosis are obtained from the data. These
fuzzy models are identified for the normal operation of the marine pneumatic servo-actuated valve,
and for each fault, predicting the system’s outputs from the inputs and outputs of the process. The
proposed fault diagnosis framework analyzes the discrepancy signals between the outputs of the
fuzzy models and the actual process outputs. These discrepancies, known as residuals, help in
detecting and isolating equipment faults. The fault isolation process uses an intelligent decision-
making approach to determine the specific fault in the system. This method is applied to diagnose
abrupt faults in a marine pneumatic servo-actuated valve. The approach presented was used to detect
and diagnose three very important faults in the operation of a marine pneumatic servo-actuated
valve. The three faults were correctly detected and isolated, and no errors were detected in this
detection and isolation process.

Keywords: intelligent fault diagnosis; model-based fault diagnosis; fuzzy modeling; marine equipment

1. Introduction

The drive for higher quality and increased productivity has led to more complex
technical processes, which in turn has raised the demand for safety and reliability, particu-
larly in marine system production [1]. Historically, predictive maintenance was employed,
where maintenance actions were based on equipment condition monitoring via sensors
and degradation timelines. This approach was heavily dependent on human expertise
and intervention [2,3]. With the growing complexity of technical processes, the probability
of faults increases. Marine equipment features interconnected subsystems, so a small
fault can cause a chain reaction, affecting related subsystems and magnifying the original
fault [4]. Incorporating automatic supervision into control systems can detect and isolate
faults early. Several fault diagnosis methods have been developed, with model-based
fault diagnosis emerging in the early 1970s [5,6]. This technique has garnered increasing
attention for detecting faults in dynamic systems. Fault detection and isolation methods
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identify discrepancies between system outputs and model outputs, flagging these as faults.
However, these discrepancies can also result from model–plant mismatches or noise in
the measurement data carried out on the process input and output variables, potentially
leading to false fault detections. A good model of the monitored system can enhance
diagnostic tool performance and reduce false alarms [7]. The residual, representing the
inconsistency between system measurements and model signals, is critical in model-based
fault diagnosis. Proper residual generation is essential to avoid losing fault information.
There is a growing demand for effective fault diagnosis systems to improve the safety and
reliability of marine systems [8]. Given the variety of onboard equipment, diagnosing faults
in a pneumatic servo-actuated valve is crucial to prevent faults and serious consequences.
Detecting and isolating faults promptly can prevent costly damage and loss of efficiency
and productivity. Numerous Fault Detection and Isolation (FDI) approaches have been
developed in recent years across various installations. One of the initial methods was the
failure detection filter for linear systems [9]. This was followed by various techniques, such
as identification methods for detecting faults in jet engines [10] and correlation methods
for leak detection [11]. Isermann introduced methods for process fault detection based on
modeling parameters and state estimations [5]. Model-based fault detection and diagnosis
techniques for chemical processes were detailed in [12]. In the frequency domain, FDI is
performed using frequency spectra to isolate faults [13]. Other approaches include residual
generators, which can be based on either physical or hardware redundancy methods, or
analytical or functional redundancy methods [6]. Traditional fault diagnosis methods can
have a degradation of diagnostic performance due to the use of large data samples, and
techniques based on convolutional neural networks have been used to resolve this situa-
tion [14]. Other techniques have been developed under conditions of limited availability
of data obtained from aero engine bearings [15]. These techniques made it possible to
obtain better results when compared to the results obtained with other techniques. Some
equipment has very complex structures which make it difficult to diagnose faults. This
type of situation was assessed in [16] by diagnosing faults in aero engine bearings. In the
approach presented, a Rotational Spectrum Informed Robustness (RSSR) neural network
was used to deal with the difficulties of fault diagnosis and the interference of noise. In
the maritime area, techniques such as transfer learning have been applied to Marine Diesel
Engines [17], and adaptive neural networks have been used for fault diagnosis in ship
power equipment [18]. A hierarchical method combining domain knowledge of ship en-
gines with advanced data analysis techniques was proposed in [19]. Fault diagnosis has
gained widespread acceptance in the academic community and is extensively applied in
maritime environments, particularly on ships.

When redundant systems are used in fault diagnosis, their reliability increases. Con-
sequently, a causality-based fault diagnosis method has been proposed for systems that
utilize redundancy [20]. Traditionally, fault diagnosis has relied on hardware redundancy,
which involves using multiple sensors, actuators, and components to measure and control
a variable. However, this method has drawbacks, such as increased equipment and mainte-
nance costs and the need for additional space [21]. These limitations emphasize the need
for alternative, more cost-effective methods.

Analytical or functional redundancy methods are promising alternatives. These
methods use redundant analytical relationships among various measured variables in
the monitored system [13,22]. These variables are actual measurements compared with
estimated values generated by a mathematical model of the system. In an analytical redun-
dancy scheme, the difference between these values, known as the residual or symptom
signal, should be zero during normal operation and non-zero when a fault occurs. This
property helps identify faults. Examples of residual generators include the Kalman filter,
Luenberger observers, state and output observers, and parity relations [13]. Model-based
FDI, which involves detecting and isolating faults by extracting features from measured
signals, has been applied in various fields, including marine diesel engines [23]. The first
step in model-based FDI is generating residuals from the system’s inputs and outputs
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by comparing measured outputs (y) with estimated outputs (ŷ). A mechanism then eval-
uates the residuals by checking if they exceed a reference value, indicating a fault. For
simple faults detectable by a single measurement, a conventional threshold check may be
enough [13].

Figure 1 illustrates the fault detection approach based on residual analysis. The ac-
curacy of the model representing the process is crucial for effective model-based fault
detection. Without a reliable model, accurate fault diagnosis is impossible. The second step
in model-based fault diagnosis involves an intelligent decision-making approach. Multiple
residuals are designed, each sensitive to specific faults in different system locations. Once a
residual exceeds its threshold, it isolates the fault. Residuals can be evaluated using statis-
tical tests [24]. However, the inherent uncertainty in fully understanding the monitored
process complicates this approach. While reducing sensitivity to modeling uncertainty can
aid in fault diagnosis, it might also decrease sensitivity to actual faults [13,25]. Thus, the
primary challenge of model-based fault diagnosis is dealing with the inevitable modeling
uncertainty in real industrial systems. Various approaches to fault diagnosis in marine
equipment, including model-based, data-driven, knowledge-based, and hybrid methods,
are discussed in [26], along with perspectives on future directions in this field.
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This paper proposes a model-based fault diagnosis architecture that synergistically
combines fuzzy modeling with an intelligent decision-making approach. Fault diagnosis
involves fault detection and fault isolation. First, fuzzy models for normal operation
and each fault are identified, predicting system outputs from process inputs and outputs,
and directly deriving a fuzzy model from the data. Detection involves computing the
residual by comparing real data with the system’s fuzzy model during normal operation.
Once the fault has been detected, the fault isolation process begins. In the fault isolation
process, a fuzzy model is considered for each fault considered, as shown in Figure 2. The
residuals that make it possible to isolate the fault are obtained by comparing the output of
the process with the output of each of the fault models considered. These residuals from
each fault model are evaluated using an intelligent decision-making approach to isolate
the fault.

This paper is structured as follows: Section 2 presents fuzzy modeling. Section 3
outlines the proposed intelligent fault diagnosis approach. Section 4 discusses the applica-
tion to marine equipment. Section 5 details the experiments and results of applying the
proposed fault diagnosis method. Finally, Section 6 offers conclusions.
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2. Fuzzy Modeling

Expert systems leverage inference techniques to tackle complex problems that typically
require specialized human expertise. They offer several benefits, including quick response
times, increased reliability, cost efficiency, and adaptability. Due to these advantages, expert
systems have found applications across various fields. This paper introduces an intelligent
system grounded in fuzzy logic principles through fuzzy modeling. Fuzzy modeling
usually involves encoding expert knowledge, often articulated in verbal form, into a series
of if–then rules, thereby forming a model structure. This structure’s parameters can be
adjusted using input–output data. In cases where prior system knowledge is lacking,
a fuzzy model can be entirely derived from system measurements. The fault diagnosis
approach discussed here utilizes fuzzy models. Specifically, we will explore data-driven
modeling based on fuzzy clustering techniques [27].

Now, let us focus on rule-based models of the Takagi–Sugeno (TS) type [28]. These
models consist of fuzzy rules, each representing a local input–output relationship, typically
expressed in an affine form.

Ri: If x1 is Ai1 and . . . and xn is Ain then yi = aix + bi (1)

where i = 1, 2, . . ., K. Here, Ri is the ith rule, x = [x1, . . ., xn]T is the antecedent vector,
Ai1, . . ., Ain are fuzzy sets defined in the antecedent space, and yi is the output of the rule.
The parameter K denotes the total number of rules in the rule base. The overall output of
the model, ŷ, is obtained by calculating the weighted average of the rule consequents:

ŷ =
∑k

i=1 βiyi

∑k
i=1 βi

(2)

the degree of activation of the ith rule, denoted as βi, is defined by the formula βi = ∏n
j=1 µAij

(
xj
)
,

where i = 1, 2, . . ., K. Here, µAij

(
xj
)

: R → [0, 1] represents the membership function of the
fuzzy set Aij in the antecedent of the rule Ri.

To identify the model (2), we first construct the regression matrix X and the output
vector y using the available data XT = [x1, . . ., xN]; yT = [y1, . . ., yN]. In this context, N ≫ n,
representing the number of samples used for model identification.

The number of rules, K, the antecedent fuzzy sets, Aij, and the consequent parameters,
ai, bi, are determined through fuzzy clustering applied to the product space X × Y [29].
The dataset Z to be clustered is represented as ZT = [X, y]. With Z and an estimated number
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of clusters K, the Gustafson–Kessel fuzzy clustering algorithm [30] is used to compute the
fuzzy partition matrix U.

The fuzzy sets in the antecedent of the rules are derived from the partition matrix U,
where each ikth element, µik ϵ [0, 1], indicates the membership degree of the data object zk
in cluster i. One-dimensional fuzzy sets Aij are obtained by projecting the multidimensional
fuzzy sets defined in the ith row of the partition matrix onto the input variable space xj.

The consequent parameters for each rule are derived using a weighted ordinary least-
squares estimate. Let θT

i =
[
aT

i ; bi
]
, where Xe represents the matrix [X; 1], and Wi is a

diagonal matrix in RNXN with the degree of activation, βi(xk), as its kth diagonal element.
Provided that the columns of Xe are linearly independent and βi(xk) > 0 for 1 ≤ k ≤ N, the
weighted least-squares solution of y = Xe θ + ε is given by:

θi =
[
XT

e WiXe

]−1
XT

e Wiy. (3)

3. Proposed Intelligent Fault Diagnosis

This paper introduces a model-based architecture for fault diagnosis that involves
both fault detection and fault isolation. The process for these steps is outlined below. The
proposed method employs fuzzy modeling, with models derived directly from the available
process data. Notably, this approach allows for the use of any type of model—whether
white-box or black-box, such as fuzzy or neural networks—since the architecture relies
solely on the model outputs. Although fuzzy models can be gray-box models, in this paper
the complexity of the identified fuzzy models makes them black-box models.

In this technique, a fuzzy model represents the process during normal operation, and
separate fuzzy models are used for each fault that needs to be isolated. The fault detection
fuzzy model is developed using data from the process without faults. Faults are detected
when the residual, calculated by comparing the process outputs with those of the fuzzy
mode, exceeds a predefined threshold. For fault isolation, individual fuzzy models are
created for each potential fault using data from the process when faults are present. A fault
is isolated when the residual, obtained by comparing the process outputs with the outputs
of these fault-specific fuzzy models, exceeds a certain threshold. Assuming that a process
operates with n possible faults, the fault detection and isolation system described in this
paper is illustrated in Figure 2.

The system’s multidimensional input is fed into both the process and an observer
model during normal operation. The residual vector, denoted as ∈, is defined as:

∈ = y − ŷ (4)

In this system, y represents the actual system output, while ŷ is the model’s predicted
output under normal conditions. A fault is detected when any component of ∈ exceeds a
specific threshold δ. Once a fault is detected, n models are activated, one for each potential
fault, and n residual vectors are calculated.

In the fault diagnosis framework illustrated in Figure 2, fault isolation is achieved by
evaluating the residuals from each of the n models, corresponding to each fault. At each
time step k, a residual ∈i is calculated for each fault:

∈i(k) = yi − ŷi (5)

the variable ŷi represents the output of the observer for fault i, where i ranges from 1 to n.
It is important to note that the residual ∈i is a vector with a dimension of m, corresponding
to the number of outputs.

Next, we will outline the intelligent decision-making process for fault isolation. Fault
detection triggers the activation of models corresponding to each fault, as illustrated in Figure 2.
Once residuals for each fault model are obtained, they are aggregated over a time range from
instant k to instant k − p. The value of p should be chosen based on the variability of the
system’s outputs under analysis. Specifically, p may need to be increased if output variability
is high and decreased if it is low. Using a time range from instant k to instant k − 5 helps



J. Mar. Sci. Eng. 2024, 12, 1737 6 of 15

the method accommodate temporary fluctuations in fault model outputs that might occur
without indicating actual faults. Given that a fault model may have multiple outputs, this
paper suggests calculating the maximum aggregate values of the residuals for these outputs.
This approach provides an overall aggregate residual value for each fault model. To determine
the existence of multiple faults, we assess the total residuals for each fault model. The fault is
isolated by selecting the model with the lowest total residual value.

4. Marine Equipment

The pneumatic servo-actuated valve used for marine control, illustrated in Figure 3,
serves as the testbed for the fault diagnosis approach proposed in this paper. This actuator
comprises three primary components: the control valve (V), the pneumatic servomotor (S), and
the positioner (P). Each of these components includes several subcomponents: the positioner
supply air pressure (PSP), the air pressure transmitter (PT), the volume flow rate transmitter
(FT), the temperature transmitter (TT), the rod position transmitter (ZT), the electro-pneumatic
converter (E/P), and the controller output (CVI). Analysis of these variables indicates that the
most critical factors for fault diagnosis are the flow process (PV) and the rod displacement of
the servomotor (X), which are the primary outputs considered in the model.
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5. Experiments and Results
5.1. Studied Faults

The FDI method introduced in this paper, illustrated in Figure 2, was used to identify
and isolate sudden faults in the pneumatic servo-actuated valve. Among the potential
faults, three were specifically analyzed: F1, F2, and F3. Descriptions of these faults can be
found in Table 1.

Table 1. Faults’ description.

Faults Description

F1 Valve clogging
F2 Fully or partly opened bypass valve
F3 Flow rate sensor fault

Table 2 shows the results obtained when different input faults occur in the system.
Each row in Table 2 corresponds to a specific fault simulated, while each column represents
the fault model used for isolation. The residuals for the faults considered are highlighted
in bold. The fault diagnosis approach proposed in this paper successfully detects and
isolates all three faults. The bold values in Table 2 represent the smallest residuals for their
respective faults, indicating correct isolation.

The following figures illustrate the effectiveness of the fault detection and isolation
method introduced in this paper. In Figure 4, you can see the residuals used for fault
detection alongside the detection time. The residual for the flow output is significantly
high and exceeds the set threshold, indicating that a fault has occurred. This conclusion is
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validated because the fault diagnosis technique was applied to data representing the process
behavior with fault F1. The threshold is established through a method that integrates both
learning from and understanding of the process behavior.

Table 2. Residual fault isolation (∈i).

Input Faults
Fuzzy Model

F1 F2 F3

F1 0.0156 × 105 0.3966 × 105 1.8963 × 105

F2 0.9034 × 105 0.0061 × 105 1.4996 × 105

F3 0.7543 × 105 0.2836 × 105 761.06
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After detecting the fault, the second stage of the fault diagnosis process begins, as
illustrated in Figure 2. In this stage, fault isolation is performed. Figure 5 presents the
results obtained when the fault diagnosis method uses data from the process exhibiting
fault F1. The residuals from the model for fault F1 are nearly zero, suggesting that fault F1
has been accurately isolated. In contrast, the residuals for the models of faults F2 and F3
are significantly different from zero, indicating that these faults are not present.

Figure 6 displays the results for the process behavior with fault F2. The residuals
from the fault F2 model are nearly zero, demonstrating effective isolation of this fault.
Conversely, the residuals for the F1 and F3 fault models are substantially larger, confirming
that neither fault F1 nor fault F3 is present.
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The results of the process behavior with fault F3 are shown in Figure 7. The F3 fault
model has almost zero residuals, demonstrating the effective isolation of this fault. The
residuals for the F1 and F2 fault models are larger, confirming that neither the F1 nor the F2
faults are present.
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5.2. Models’ Identification

The weighted least-squares solution presented in (3) was calculated for each of the
output variables across models with and without faults (F1, F2, and F3). The matrices
below display the results for the output flow (PV) and output rod displacement (X). For
the fault-free process, the output flow (PV) is as follows:

θPV =

0.2214 −0.5742 68.3162
0.7612 −0.5832 45.3167
0.6431 −0.3289 39.0561


For the fault-free process, the output rod displacement (X) is as follows:

θX =



−0.3271 −0.0783 0.3650 −0.5941 106.4142
0.4105 0.0594 0.0239 0.7143 28.3359
−0.6131 0.0891 −0.8956 2.8012 −49.1140
−1.7231 −0.0836 0.7266 −2.5342 303.0247
1.8129 −0.0021 0.0713 0.5612 −71.1406
−1.7165 −0.0243 −0.0884 −0.5307 245.6795


For the process with fault F1, the output flow (PV) is:

θPVF1 =

[
1.2437 0.6910 −135.8624
0.8615 0.0951 −4.8612

]
For the process with fault F1, the output rod displacement (X) is:

θXF1 =

[
0.9717 −0.0661 11.1541
1.2831 −0.9754 145.1127

]
For the process with fault F2, the output flow (PV) is:

θPVF2 =


1.3161 −0.0914 15.2714
0.9681 0.0571 −5.2192
0.8416 0.0632 27.1245
0.9137 0.0892 1.3286


For the process with fault F2, the output rod displacement (X) is:

θXF2 =


3.7581 0.0231 0.0571 −0.3951 −224.7141
−5.1603 −0.0671 −0.0238 1.9104 321.9176
3.0215 −0.0421 0.0874 −1.7129 −109.1135
−4.7843 0.0923 −0.4178 0.7835 360.1956
5.8143 −0.0876 0.0581 0.2143 −320.6117


For the process with fault F3, the output flow (PV) is:

θPVF3 =

1.1493
0.9587
0.7342

−0.9751
−0.4050
−0.4169

71.5421
27.1934
61.0731


For the process with fault F3, the output rod displacement (X) is:

θXF3 =



−1.1531 0.2148 0.02935 91.7081
−1.5320 0.3651 −1.5461 235.8012
3.4901 −1.2089 0.2517 5.5091
0.6183 −0.0513 −0.0415 41.0637
−0.1351 0.0529 0.7514 29.0118
−0.2512 0.6709 −0.2153 22.2917
0.3750 −0.1531 −0.21385 85.7139
−0.6127 0.4319 −0.3418 91.5218


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5.3. Process Data

The analysis of the process variables revealed that the key input variables for modeling
are input pressure, output pressure, temperature, and reference. The primary output
variables are flow and rod displacement. Figure 8 displays process data without faults.
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6. Conclusions

This paper presents a fault diagnosis system that utilizes fuzzy modeling combined
with an intelligent decision-making approach to identify and address faults. The system
integrates fuzzy models for both detecting and isolating faults. Specifically, the fault detec-
tion model is developed using data from the process when it is fault-free, while the fault
isolation models are based on data from processes with faults. Fault detection and isolation
rely on residual analysis. An intelligent decision-making strategy is employed to perform
fault isolation by evaluating the residuals from each fuzzy fault model. The proposed
architecture was applied to a pneumatic servo-actuated marine valve, demonstrating its
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capability to detect and isolate three distinct faults, despite the challenges introduced by
noisy data. The correct diagnosis of the three faults through the proposed techniques and
the presented architecture are very promising because this architecture and the modeling
and intelligent decision-making techniques used allow the inclusion of models correspond-
ing to other faults without changing the proposed architecture. On ships, the use of more
modern and effective fault diagnosis systems is an advantage in maintenance. However,
sometimes the most recent techniques require a lot of time for data preparation, as well
as for process modeling and architecture implementation. The approach presented has a
model structure that allows for the rapid inclusion of more faults and other types of faults
without changing its structure. This characteristic, combined with the reduced time to
obtain fuzzy models, are important advantages in ship maintenance processes.

Future work will focus on expanding this fault diagnosis and isolation (FDI) frame-
work to accommodate a broader range of faults, including more complex types. Addition-
ally, research will aim to develop intelligent systems for determining optimal threshold
values and selecting the appropriate time instants for residual analysis. The methodology
will also be integrated into fault-tolerant control systems.
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