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Abstract: The mesoscale interaction between sea surface temperature (SST) and wind is a crucial factor
influencing oceanic and atmospheric conditions. To investigate the mesoscale coupling characteristics
of the Yellow Sea and East China Sea, we applied a locally weighted regression filtering method to
extract mesoscale signals from Quik-SCAT wind field data and AMSR-E SST data and found that the
mesoscale coupling intensity is stronger in the Yellow Sea during the spring and winter seasons. We
calculated the mesoscale coupling coefficient to be approximately 0.009 N·m−2/◦C. Subsequently,
the Tikhonov regularization method was used to establish a mesoscale empirical coupling model,
and the feedback effect of mesoscale coupling on the ocean was studied. The results show that the
mesoscale SST–wind field coupling can lead to the enhancement of upwelling in the offshore area of
the East China Sea, a decrease in the upper ocean temperature, and an increase in the eddy kinetic
energy in the Yellow Sea. Diagnostic analyses suggested that mesoscale coupling-induced variations
in horizontal advection and surface heat flux contribute most to the variation in SST. Moreover, the
increase in the wind energy input to the eddy is the main factor explaining the increase in the eddy
kinetic energy.

Keywords: mesoscale wind–SST coupling; satellite data; Yellow and East China Seas; Tikhonov
regularization method; eddy kinetic energy

1. Introduction

Air–sea coupling is an important factor affecting the Earth’s climate system. With
advancements in science and technology, as well as the establishment of satellite observation
systems, scholars have increasingly focused on mesoscale phenomena (10–1000 km), such
as eddies and fronts. In large-scale ocean research, SST and wind speed are negatively
correlated, mainly because wind speed affects the rate of seawater evaporation, which,
in turn, affects SST. However, in mesoscale air-sea coupling, scholars have found that
mesoscale SST affects the magnitude of mesoscale wind fields by influencing the vertical
mixing and pressure distribution of the air–sea boundary layer. Therefore, there is a
positive correlation between mesoscale sea surface wind stress perturbation (WSmeso)
and sea surface temperature perturbation (SSTmeso) [1–12]. Mesoscale coupling can also
be characterized by perturbations in the mesoscale wind stress curl (Curl(WSmeso)) and
divergence (Div(WSmeso)), which are positively correlated with perturbations in mesoscale
crosswind and downwind sea surface temperature gradients (∇cross SSTmeso and ∇down
SSTmeso), respectively [4,13].

The investigation of mesoscale air–sea coupling is crucial for both the oceanic and
atmospheric domains in scientific research. For instance, the tropospheric wind, precipita-
tion, and cloud cover can be greatly influenced by the SSTmeso [14–23]. Changes in wind
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speed caused by SSTmeso can also impact the exchange of latent and sensible heat fluxes
at the surface of the ocean [24]. Bunker and Worthington [25] observed that when winds
blow over warm water in the Gulf Stream region, a substantial amount of sensible heat
flux is released through seawater evaporation, which critically influences water transport
in the area. Moreover, the heat flux released from the ocean caused by mesoscale air–sea
coupling can result in a reduction in the SST. Similar conclusions have been drawn from
studies conducted in the Kuroshio Extension [26,27].

Oceanic eddies are also influenced by mesoscale air–sea interactions. Byrne et al. [15]
highlighted that mesoscale eddies can absorb energy from the atmosphere through mesoscale
air–sea coupling. Their statistical analysis revealed that approximately 10% of the mesoscale
eddy kinetic energy (EKE) in the Southern Ocean is attributed to mechanical input from
the wind stress perturbation caused by the mesoscale air–sea coupling. When studying
the Kuroshio Extension, Ma et al. [28] observed a positive correlation between the SSTmeso
and the heat flux released by the sea surface in the Kuroshio Extension. This indicates
that energy is transferred from the ocean to the atmosphere over warm eddies, while the
ocean absorbs heat from the atmosphere over cold eddies. Furthermore, the energy budget
of eddies is greatly influenced by the coupling between the atmosphere and ocean at the
mesoscale. The activity of eddies is enhanced in the Kuroshio Extension and weakened
in the Kuroshio Current when the effect of mesoscale air–sea coupling is removed in their
model simulation.

In addition, the interaction between the atmosphere and the ocean at the mesoscale
level can impact the vertical movement of water. Gaube et al. [29] found that global eddy
statistics can be obtained using wind field data from the Quik-SCAT satellite and SST
data from the AMSR-E. Researchers have found that the SSTmeso caused by eddies can
influence the wind stress curl, which affects the generation of Ekman upwelling [30,31].
Seo et al. [32] employed the Regional Oceanic Modeling Systems (ROMS) and Weather
Research and Forecasting (WRF) coupling model to investigate mesoscale air–sea coupling
in the California Sea area. They found that Curl(WSmeso) caused by SSTmeso can impact
the Ekman pumping effect. When the monsoon prevails, there is also a strong mesoscale
air–sea coupling in the Arabian Sea [33]. Vecchi et al. [34] observed strong perturbations in
the wind stress curl over regions with intense eddies in the Arabian Sea, leading to changes
in Ekman suction. Seo et al. [35] discovered that during the southwest monsoon, the Somali
jet in the Arabian Sea can generate a strong mesoscale air–sea coupling process, which can
greatly modulate the intensity of Ekman upwelling and impact the energy transported by
the wind to these sea areas.

Numerical simulation is an effective way to conduct studies in regional seas. However,
the limited understanding of the physical mechanism of mesoscale air–sea coupling hinders
the ability of parametric methods used in current coupling models to accurately represent
small and mesoscale physical processes. For instance, ocean models have difficulty simulat-
ing the mesoscale air–sea coupling processes, especially when the ocean model resolution
is low. Even when the resolution is increased, the mesoscale air–sea coupling simulation
remains weaker than that observed in areas with strong coupling, such as the Antarctic
Circumpolar Current and the Kuroshio Extension [36]. Song et al. [37] discovered that the
impact of SST changes on surface winds is influenced by both the boundary conditions and
grid resolution in the WRF model. When the grid space of the WRF mode increases from
45 km to 25 km, the simulated mesoscale coupling strength will significantly enhance. This
is due to a lack of understanding regarding how the atmospheric boundary layer responds
to SSTmeso, and the current parameterization method used in the atmospheric boundary
layer is inadequate for simulating the mesoscale air–sea coupling process [38].

The Yellow Sea (YS) and East China Sea (ECS) are important marginal seas in the
world. However, there are still some errors in the simulation of the YS and ECS, as most
climate models exhibit warm errors in simulating SST in this region [39]. Although it
has been demonstrated that a strong mesoscale air–sea coupling process exists in the YS
and ECS [19,40], researchers have not adequately considered the influence of mesoscale
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air–sea coupling on the dynamics of this sea area because regional ocean models they use
often rely on prescribed wind fields and heat fluxes, which fail to accurately represent the
feedback effect of mesoscale SST–wind coupling on the ocean. To address this issue, a new
parameterization method for mesoscale wind field feedback needs to be developed and
applied to ocean models.

The influence of air–sea coupling on dynamic processes in this area remains unresolved.
This article aimed to investigate the mesoscale coupling characteristics of the YS and ECS
and design a new approach for parameterizing the feedback of mesoscale wind fields in
the YS and ECS. This study will contribute to enhancing the simulation accuracy of the YS
and ECS and will greatly contribute to our understanding of marine dynamic processes
and the ecological environment in these areas.

2. Materials and Methods
2.1. Data

The statistical analysis of mesoscale air–sea coupling characteristics in this article
included the sea surface 10 m wind field data from the Quik satellite scatterometer (Quik-
SCAT, Version 4, Ball Aerospace & Technologies Corporation, Boulder, CO, USA) and
the SST data from the Advanced Scanning Microwave Radiometer satellite microwave
scatterometer (AMSR-E Version 7, AMSR-E(Thompson Ramo Wooldridge, Inc., Lyndhurst,
OH, USA)). The grid resolution of the two datasets is 0.25◦. The Quik-SCAT satellite was
launched on 19 June 1999 and stopped operation in November 2009. The AMSR-E SST data
measurement satellite provided sea surface temperature data from June 2002 to September
2011. These two satellites covered the world and could distinguish mesoscale perturbations.
These datasets were used to study the mesoscale SST–wind interactions at the beginning of
this century. In this study, we used the average daily wind and SST data from January 2003
to December 2008.

2.2. The LOESS Method

In this paper, mesoscale signals in the ocean and atmosphere were extracted via the
locally weighted regression (LOESS) filtering method [41].

The LOESS method needed two half-span parameters in the x and y directions, which
were denoted as ax and ay, respectively. These two smoothing parameters determined the
size of the sub dataset set used for fitting, that is, all data points in the rectangle with point
x0 as the center and half-width ax and ay, respectively. The larger the values of ax and ay,
the more data points were used for fitting, and the larger the perturbation.

Assuming that the estimation at position x0 needed to use the values of the surround-
ing q points, the LOESS method needed a weighted function and local radius. The weight
function W is

W(u) =
(

1 − u3
)3

, 0 ≤ u < 1 (1)

ρ(x0, xi) is the distance from the ith point to x0, and d is the farthest distance from the
points to x0, then the weight of xi is wi = W(ρ(x0, xi)/d).

Thus, when xi is closer to x0, its weight is closer to 1. After the weight function was
determined, it was necessary to fit a quadratic surface equation

g(x, y) = α1 + α2x + α3x2 + α4xy + α5y + α6y2 (2)

According to the weight function, f(x, y) is the observed value of this point. When
∑ wi(gi − fi)

2 reaches the minimum value, the solved α1 is the smooth value at the target
point. We selected different half-span parameters for filtering and obtained the probability
distribution of the mesoscale signals from 2003 to 2008. When the half-span parameter is
10◦, the filtered SST perturbation probability distribution is similar to that obtained when
the half-span parameter is greater than 10◦ (Figure 1).
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Figure 1. The probability distributions of the mesoscale magnitude of SST perturbations as a function
of the different half-span parameters.

In this study, a half-span parameter of 10◦ was used to filter and analyze the SST and
wind fields in the satellite data to obtain SSTmeso and WSmeso. Then, SSTmeso was used to
calculate the along-wind gradient and the cross-wind gradient to obtain ∇down SSTmeso
and ∇cross SSTmeso.

∇downSSTmeso =

→
∇SSTmeso ×

→
τ∣∣∣→τ ∣∣∣ (3)

∇crossSSTmeso =

→
∇SSTmeso·

→
τ∣∣∣→τ ∣∣∣ (4)

The Div(WSmeso) and Curl(WSmeso) were obtained by calculating the divergence and
curl of WSmeso.

2.3. Parameterization of Mesoscale Wind Field

The main process of the parameterization scheme was as follows: First, the SSTmeso
and WSmeso were obtained from satellite observation data, and the coupling coefficients
between Curl(WSmeso) and ∇cross SSTmeso and between Div(WSmeso) and ∇down SSTmeso
were calculated, respectively. Then, Div(WSmeso) and Curl(WSmeso) were calculated from
the mesoscale SST gradient perturbation based on the resulting coupling coefficient. Finally,
the two components of the wind stress perturbation were obtained via a parameteriza-
tion method.

The focus of the parameterization method was to calculate the WSmeso based on the
Div(WSmeso) and Curl(WSmeso). In order to achieve this goal, we chose the Tikhonov
regularization method [42–45].

The wind stress divergence and curl are expressed as follows:

Z = k·∇ × τ = ∇2Ψ (5)

∆ = ∇·τ = ∇2χ (6)

where Ψ and χ represent the stream function and potential function. The discrete form of
the above equations is y = Ax, where y = (Z

∆), x = (τx
τy
), and τx and τy are two components

of the wind stress perturbation. A is a difference matrix, and its structure is related to the
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selected difference scheme. The least squares regression method is generally used to solve
this kind of problem, and the solution is

x =
(

ATA
)−1

ATy (7)

where AT is the transpose matrix of A. For a finite irregular region, A can be ill-conditioned
or nonsingular, resulting in instability of the solution [46]. Such ill-posed problems can
be effectively solved by the Tikhonov regularization method. According to the Tikhonov
regularization method, this problem is equivalent to finding the approximate solution of

∥Ax − y∥2 + ∥Гx∥
2
, where Г is called the Tikhonov matrix, Г is expressed as α I, where

α is the regularization coefficient, and 1 × 10−6 was taken in this paper [47]. I is the unit
matrix. The form of this solution is

x = AT
(

AAT + α2I
)−1

y (8)

We developed a new empirical model to study the feedback effect of mesoscale air–
sea coupling. This model calculated the disturbance in the SST gradient from the SST
perturbation and then calculated the perturbation in wind stress. The model was then
nested into the ocean model.

2.4. Ocean Model

We utilized the Regional Ocean Modeling System (ROMS) version 3.4 as the ocean
model. The ROMS is a numerical model that operates in three dimensions, accounting
for the free surface and following the terrain [48,49]. ROMS provides a variety of mixed
parameterization schemes. The harmonic mixing scheme is used in the horizontal mixing
in this study, and the Mellor/Yamada Level-2.5 closed parameterization scheme is used in
the vertical mixing. The vertical advection adopts the fourth-order central discrete scheme.
The tracer and momentum advection in the horizontal direction adopts the third-order
upstream discrete scheme.

To mitigate the impact of boundary effects on the simulation of the study region, the
model domain encompassed the northwest Pacific, spanning from 20◦ N to 42◦ N and from
117◦ E to 135◦ E. The horizontal grid resolution was set at 1/8◦ × 1/8◦ cos Φ (where Φ rep-
resents the latitude). In the vertical direction, the model employed 30 levels (s-coordinates),
with increased resolution near the surface and bottom [49,50]. The bathymetry was derived
from the Global 2 min Gridded Topographic Data ETOPO2. The time step utilized for the
two-dimensional barotropic equations was 30 s, while for the three-dimensional baroclinic
equations, it was 300 s.

The European Centre for Medium-Range Weather Forecasts Reanalysis-Interim (ERA-
Interim) monthly mean surface wind fields from 1985 to 2015 were utilized as input data to
drive the model. The air–sea fluxes were computed using bulk formulae based on atmo-
spheric variables obtained from the National Center for Environmental Prediction (NCEP)
reanalysis product spanning the period from 1985 to 2015. These variables include monthly
mean longwave radiation, shortwave radiation, atmospheric relative humidity, rainfall,
sea surface pressure, and air temperature. The model was set to adjust the temperature
by calculating the upward longwave radiation based on the magnitude of the sea surface
temperature. The model did not take into account the influence of tides but incorporated
the effect of runoff. The initial and boundary conditions for the model were provided by
the Simple Ocean Data Assimilation (SODA) 3.4.2 dataset. The calculation of the wind
stress in the model used the relative velocity of the wind speed and the flow velocity. All
the driving field data were processed into monthly climatology data.

2.5. Sensitivity Experiments

The mode uses the configuration introduced in Section 2.4 and forced by the clima-
tological monthly forced field for 20 years in order to achieve a stable climate state. To
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study the influence of mesoscale air–sea coupling, two experiments were designed. The
first experiment, referred to as the control experiment (CONTROL-E), maintained the same
configuration as the previous 20 years. The second experiment was a mesoscale air–sea
coupling experiment (MESO-E). In this experiment, the SSTmeso was extracted from the
SST at each time step in the model. WSmeso was then obtained using the constructed
mesoscale wind field feedback parameterization method described in Section 2.3. This
perturbation was superimposed on the climatological wind stress to jointly drive the model.
Thus, the ocean model incorporated the mesoscale air–sea coupling process (Figure 2). All
experiments were run from the 21st year to the 30th year, and then the feedback effect of
mesoscale air–sea coupling on the ocean was analyzed by comparing the 10-year averaged
monthly results of the experiment with those of CONTROL-E.
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3. Results
3.1. Characteristics of Mesoscale SST–Wind Coupling in Observation

Figure 3 shows the mesoscale air–sea signals extracted from AMSR-E SST data and
Quik-SCAT wind field data in 2006. Due to the interference of land electromagnetic waves,
some satellite data in offshore waters are default values. The results show that there is
a strong mesoscale coupling in the YS and ECS, and the mesoscale SST and wind field
show a good positive correlation. At the same time, it can be seen that the mesoscale signal
intensity is relatively strong from January to March but relatively weak from September
to October.
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The spatial distributions of the AMSR-E ∇down SSTmeso (∇cross SSTmeso) and Quik-
SCAT Div(WSmeso) (Curl(WSmeso)) perturbations in February, June, August, and December
2006 are presented in Figure 4. Spatially, the Div(WSmeso) (Curl(WSmeso)) positively cor-
related with ∇down SSTmeso (∇cross SSTmeso). The SSTmeso gradient field exhibited both
positive and negative values and was widely distributed throughout the YS and ECS.
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(b,f) June, (c,g) August, and (d,h) December 2006. The contour interval is 0.3 N·m−2 per 10,000 km.
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To statistically analyze the correlation between the SSTmeso gradient field and Div
(WSmeso) and Curl(WSmeso), Figure 5 displays scatterplots of the magnitudes of Div(WSmeso)
and Curl(WSmeso) categorized by the ranges of ∇down SSTmeso and ∇cross SSTmeso, re-
spectively. The coupling coefficients were derived from daily data spanning the period
2003–2008. In Figure 5, the coupling coefficient, denoted as s, is represented in scien-
tific notation. The results demonstrated a linear relationship between the mesoscale SST
gradient and wind stress divergence and curl perturbations. The coupling coefficient
between ∇down SSTmeso and Div(WSmeso) was approximately 0.82 N·m−2/(◦C·100 km).
The coupling coefficient between ∇cross SSTmeso and Curl(WSmeso) was approximately
0.61 N·m−2/(◦C·100 km). This also implied that Div(WSmeso) and Curl(WSmeso) could be
derived from ∇down SSTmeso and ∇cross SSTmeso, respectively.

The monthly coupling coefficients between Div(WSmeso) (Curl(WSmeso)) and ∇down
SSTmeso (∇cross SSTmeso) were also calculated from daily data spanning the period 2003–2008
(Figure 6). Both coupling coefficients had a persistent pattern of seasonal variation, with
relatively high coupling coefficients occurring in summer and relatively low coupling
coefficients in October.
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(a) Div(WSmeso) and ∇down SSTmeso and (b) Curl(WSmeso) and ∇cross SSTmeso.

3.2. Simulated Mesoscale SST–Wind Coupling and Its Influence
3.2.1. Simulated Mesoscale SST–Wind Coupling Characteristics

After obtaining the observed monthly averaged mesoscale coupling coefficient be-
tween the Div(WSmeso) (Curl(WSmeso)) and ∇down SSTmeso (∇cross SSTmeso), we used the
method mentioned in Section 2.3 to construct the mesoscale reconstruction model and
applied it to the ROMS model.

Figure 7a,d show the observed SSTmeso and WSmeso in the summer and winter from
the AMSR-E and Quik-SCAT of 2006. Both results showed that the SSTmeso and WSmeso
changed seasonally. Moreover, both the observations and simulated outputs of the MESO-E
revealed that there were several regions with high positive SSTmeso values in the YS. The
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spatial distribution of the WSmeso closely corresponded to that of the SSTmeso. These results
also indicated that the simulated output of MESO-E successfully captured the spatial and
temporal features of SSTmeso and WSmeso observed in the region and their relationships. It
is worth noting that the distribution of mesoscale coupling varied between summer and
autumn in different years; thus, caution should be taken when using the data solely from
2006 as a reference. However, in CONTROL-E, there is almost no correlation between the
distribution characteristics of SSTmeso and WSmeso. This is because, in CONTROL-E, the
driving wind field is the climatological monthly mean wind field, which has smoothed the
mesoscale signal.
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In addition, it can also be seen from the statistical coupling coefficient that CONTROL-
E cannot characterize the mesoscale coupling phenomenon at all. The coupling coefficient
between SSTmeso and WSmeso was calculated from the output of MESO-E. For the con-
venience of comparison, we only count the valid regional data on satellite data when
processing the data. The simulated coupling coefficient was 0.009 ◦C/N·m−2, which was
nearly identical to the observed value of 0.0092 ◦C/N·m−2 (Figure 8).
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3.2.2. The Feedback Effect on the Sea Temperature

These findings suggested that WSmeso could be effectively represented by SSTmeso
using the mesoscale wind field empirical model derived from Tikhonov’s regularization
method. Then, we used the method and model described in Section 2 to study the effect of
the mesoscale SST–wind coupling on dynamic processes in YS and ECS.

Figure 7a shows the average temperature difference in the upper 50 m of the ocean
(MESO-E minus CONTROL-E). The temperature in the nearshore region of the ECS experi-
enced an increase in the MESO-E, with maximum SST values reaching 0.62 ◦C. In contrast,
the temperature in the upper 50 m in most areas of the YS exhibited a decreasing trend
throughout the year.

The heat budget analysis in the upper 50 m of the ocean was introduced to inves-
tigate the physical mechanisms responsible for the changes in SST under the influence
of mesoscale SST–wind coupling. The SST change is controlled by the following heat
budget equation:

∂Ta

∂t
= −va·∇Ta +

Qnet
ρCph

+
Qdiff
ρCph

+ RES (9)

where a means averaged from the upper 50 m, and v means the horizontal velocity. The first
term on the right-hand side is the horizontal advection. The second and third terms repre-
sent the contributions of the net surface heat flux and vertical heat diffusion, respectively.
Qnet represents the downward net surface heat flux, while Qdiff represents the diffusive
heat flux, and RES represents other remnants that affect the ocean heat budget.

Figure 9 presents the 10-year averaged difference (MESO-E minus CONTROL-E) in the
sea temperature and heat budget terms. According to the statistics, the spatial mean values
of surface heat flux, horizontal advection, and the vertical diffusion term are approximately
0.0042, −0.0056, and 0.000247 ◦C/month, respectively. The major factors responsible for the
SST difference are horizontal advection and surface heat flux. Horizontal advection tends
to increase the sea temperature in the coastal region, aligning with the sea temperature
differences caused by the mesoscale coupling (Figure 9a,b). In contrast, the net surface heat
flux counteracts the sea temperature difference and mainly suppresses the sea temperature
difference induced by horizontal advection (Figure 9a,c). Although the contributions of
vertical heat diffusion and the residual (RES) terms are relatively small, they lead to a
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decrease in sea temperature in the coastal area and an increase in sea temperature in the
offshore region (Figure 9a,d).
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3.2.3. The Feedback Effect on Horizontal and Vertical Currents

Figure 10 shows the differences in the winter horizontal current between the SODA
and CONTROL-E, between MESO-E and CONTROL-E, and between MESO-E and SODA.
It shows that the simulated zonal current in CONTROL-E was smaller than that in SODA
in the coastal area of the YS and ECS and the middle region of the YS (Figure 10a). The sim-
ulated meridional current in CONTROL-E was larger than that in SODA in the nearshore
area and the middle area of the YS and smaller than that in SODA in other regions
(Figure 10d). After adding the mesoscale coupling method to the model, the simulated
zonal current strengthened in the coastal area of the YS and ECS and the middle region of
the YS (Figure 10b). The simulated meridional currents weakened in the nearshore area and
the middle area of the YS and strengthened in other regions (Figure 10e). In conclusion, the
change in ocean horizontal velocity caused by mesoscale coupling can reduce the difference
between the model and SODA data well (Figure 10c,f). The strong spatial correlation of the
sets of the difference results indicated that the addition of mesoscale ocean–air coupling
in winter could significantly improve the simulation accuracy of the horizontal current.
Observations showed that in addition to stable positive SSTmeso in the coastal waters of
the ECS, the distribution of mesoscale signals in other regions varied significantly in the
summer of each year. Therefore, the improvement in the model’s dynamic system was not
as pronounced in summer as in winter.
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MESO-E and SODA (MESO-E minus SODA, right panel). The zonal and meridional current was
calculated by averaging vertically up to a depth of 50 m.

As shown in Figure 11, incorporating the mesoscale SST–wind coupling in the model
simulation led to a noticeable increase in the upward vertical velocity both in summer and
in winter in the nearshore area, especially around the Changjiang Estuary. The introduction
of mesoscale air–sea coupling enhanced upwelling in the nearshore area of the ECS by
approximately 7% in winter and 16% in summer. Compared with that in CONTROL-E, the
Curl(WSmeso) in MESO-E also increased in the nearshore area, showing a spatial variation
pattern similar to that of the vertical velocity (Figure 11a,c).
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Figure 11. Differences in the 10-year average (left panel) Curl(WSmeso) (1 × 10−6 N/m3) and (right
panel) vertical current (1 × 10−7 m/s) in (a,b) winter and (c,d) summer between MESO-E and
CONTROL-E (MESO-E minus CONTROL-E). The vertical current was calculated by averaging
vertically up to a depth of 50 m.
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3.2.4. The Feedback Effect on Eddy Kinetic Energy (EKE)

The 10-year average differences in the budget term of the EKE between MESO-E and
CONTROL-E were also calculated (Figure 12b–d). We used the method developed by
Renault et al. [51] to calculate the budget of EKE. Based on their analysis, all variables were
decomposed into their time means estimated over a 10-year period, denoted by an overbar
(–), and their deviations from this mean were indicated using primes (′). Then, the EKE is
defined by

EKE =
1
2
ρ
(

u′2 + v′2 + w′2
)

(10)

where ρ is the density of seawater. The EKE budgets are given by:

dEKE
dt

=
∫ 1

ρ

(
τ′xu′ + τ′yv′

)
dS +

∫
−g
ρ
ρ′w′dV +

∫
−∂Ui

∂xj
Ui

′Uj
′dV − Ddiss (11)J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 15 of 19 
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Figure 12. The 10-year averaged difference in (a) EKE, (b) eddy wind work, and (c) baroclinic
conversion from eddy available potential energy to EKE. (d) Conversion between mean kinetic energy
and EKE between MESO-E and CONTROL-E (MESO-E minus CONTROL-E). The units are cm3/s3

in (a–c) and 1 × 10−2 cm3/s3 in (d).

On the right-hand side, the first term corresponds to the eddy wind work; the second
term represents the baroclinic conversion between eddy available potential energy and
EKE; and the third term represents the barotropic conversion between mean kinetic energy
and EKE. Ddiss is the energy dissipation term.U = (u, v, w) is the three-dimensional
velocity vector.

Figure 12a illustrates the 10-year average difference in EKE between MESO-E and
CONTROL-E. The results showed that the addition of mesoscale air–sea coupling enhanced
the EKE in most regions of the YS and the northern region of the ECS. The estimated
enhancement was approximately 17%. The eddy wind work term and baroclinic conversion
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term were important in the EKE change. Compared with that in the CONTROL-E, the
eddy wind work term in the MESO-E increased in most regions of the YS and the northern
region of the ECS (Figure 12b). However, the baroclinic conversion term decreased in most
of the study area (Figure 12c). The change in the barotropic conversion term was two
orders of magnitude smaller than that in the eddy wind work and baroclinic conversion
terms (Figure 12d).

4. Discussion and Conclusions

The LOESS method effectively separated the mesoscale signals from the satellite data
fields (Figures 3 and 4). Observations revealed a positive correlation between Div(WSmeso)
(Curl(WSmeso)) and ∇down SSTmeso (∇cross SSTmeso). The mesoscale coupling strength is
stronger in spring and summer.

The empirical model of mesoscale SST–wind coupling derived from Tikhonov’s regu-
larization method was well applied to the ROMS model and successfully reproduced the
observed coupling of SSTmeso and WSmeso (Figures 7 and 8). WSmeso could be effectively
represented by SSTmeso using the empirical model. These methods provided a suitable way
to study the mesoscale SST–wind coupling and its effect on the dynamic environment in
the YS and ECS.

The simulated results revealed that incorporating the mesoscale SST–wind coupling
results in significant changes in sea temperature in the YS and ECS. The sea temperature in
the offshore region of the ECS exhibits a noticeable increase, with maximum sea temperature
changes reaching 0.62 ◦C. The sea temperature in most areas of the YS decreases throughout
the year, effectively mitigating the SST error introduced by the climate model in this
region [39]. The heat budget analysis indicated that the major factors contributing to the
difference in sea temperature were surface heat flux and horizontal advection. Horizontal
advection tends to increase the sea temperature in the nearshore area, while surface heat flux
acts to dampen the sea temperature difference. In general, the changes in sea temperature
resulting from mesoscale air–sea interactions are primarily driven by changes in heat flux
due to changes in wind speed and the horizontal advection effect.

The more realistic horizontal and vertical velocity outputs from MESO-E also indi-
cated that incorporating the mesoscale air–sea coupling empirical model into the clima-
tological model can reduce errors and improve our modeling capabilities in this region
(Figures 10 and 11). After incorporating mesoscale air–sea coupling, the horizontal current
velocity is more realistic, and it is found that the upward vertical velocity is significantly
enhanced in the nearshore area. The introduction of mesoscale air–sea coupling enhances
upwelling in the nearshore area of the ECS by approximately 7% in winter and 16% in sum-
mer. A comparison of the vertical velocity difference with the wind stress curl difference
suggests that the change in Ekman pumping, which is triggered by the curl of WSmeso, is the
primary factor that induces the change in the vertical velocity. The EKE is also influenced
by mesoscale air–sea coupling. The estimated EKE enhancement is approximately 17% in
the YS. The EKE budget analysis revealed that the increase in the EKE under the influence
of mesoscale air–sea coupling is primarily attributed to the change in the eddy wind work.

These findings were consistent with previous research. For instance, studies on marine
heat waves in the YS and ECS have shown that the occurrence of marine heat waves is
largely influenced by decreased wind speeds and the advection of warm water [52,53].
Marine heat waves have an important influence on marine ecosystems [54]. Moreover, the
SST in winter is associated with the YS cold water mass, which provides a suitable envi-
ronment for primary production and benthic organisms [55,56]. Therefore, investigating
the influence of mesoscale air–sea interactions on SST is essential for understanding the
changes in both dynamic and ecological environments in the YS and ECS.

The changes in current and EKE are mainly caused by the wind field variation induced
by mesoscale air–sea coupling. The primary reason for the improvement in the horizontal
current is the influence of mesoscale wind fields. For example, in the coastal waters
of the YS, there is a strong positive SSTmeso, which can enhance the local East Asian
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monsoon and subsequently strengthen the southward flow. The variation in vertical
velocity aligns with that in Curl(WSmeso) within the nearshore area (Figure 11), suggesting
that the difference in Ekman pumping, which is triggered by the wind stress curl, is the
primary factor inducing the change in vertical velocity. Researchers have found that the
curl of WSmeso can modulate Ekman pumping, particularly in areas with intense mesoscale
eddy activities [29,35]. The 10-year average differences in each term in the EKE budgets
between MESO-E and CONTROL-E indicate that the addition of mesoscale air–sea coupling
enhances the EKE in the YS. This enhancement is primarily attributed to the change in
the wind field caused by mesoscale air–sea coupling, which increases the energy input to
the eddy. The conversion from eddy available potential energy to EKE works to dampen
the EKE change in the nearshore sea area. The difference in conversion between the mean
kinetic energy and EKE is relatively small.

Upwelling is an important nutrient source for the growth of phytoplankton in the
nearshore area of the ECS [57]. Mesoscale motion is also critical in the distribution of
nutrients and phytoplankton [58,59]. Therefore, the study of the vertical velocity and EKE
changes associated with mesoscale air–sea coupling is also essential for understanding the
ecological environment in the YS and ECS.

This paper provides insight into the underlying physical processes involved in the
feedback effect of mesoscale SST–wind coupling and contributes to the enhancement
of model simulations. These results have important implications for understanding the
possible responses of the ecosystem to mesoscale air–sea coupling in the YS and ECS.
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