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Abstract: When navigating dynamic ocean environments characterized by significant wave and wind
disturbances, USVs encounter time-varying external interferences and underactuated limitations.
This results in reduced navigational stability and increased difficulty in trajectory tracking. Con-
trollers based on deterministic models or non-adaptive control parameters often fail to achieve the
desired performance. To enhance the adaptability of USV motion controllers, this paper proposes
a trajectory tracking control algorithm that calculates PID control parameters using an improved
Deep Deterministic Policy Gradient (DDPG) algorithm. Firstly, the maneuvering motion model and
parameters for USVs are introduced, along with the guidance law for path tracking and the PID
control algorithm. Secondly, a detailed explanation of the proposed method is provided, including
the state, action, and reward settings for training the Reinforcement Learning (RL) model. Thirdly,
the simulations of various algorithms, including the proposed controller, are presented and analyzed
for comparison, demonstrating the superiority of the proposed algorithm. Finally, a maneuvering
experiment under wave conditions was conducted in a marine tank using the proposed algorithm,
proving its feasibility and effectiveness. This research contributes to the intelligent navigation of
USVs in real ocean environments and facilitates the execution of subsequent specific tasks.

Keywords: unmanned surface vehicles; PID controller; reinforcement learning; DDPG

1. Introduction

Unmanned surface vehicles (USVs), also known as Autonomous Surface Vessels
(ASVs), are capable of autonomous navigation and operations. They are often deployed in
complex and harsh oceanic environments, which necessitate robust autonomous navigation
capabilities. This autonomous navigation serves as the foundation for subsequent tasks
such as collision avoidance, automatic docking, target tracking, and formation control.
Among these capabilities, autonomous trajectory tracking is a critical aspect that highlights
the USV’s navigational proficiency. When navigating dynamic ocean environments with
significant wave and wind disturbances, USVs face time-varying external interferences
and limitations due to their underactuated nature, leading to reduced navigational sta-
bility and increased difficulty in trajectory tracking. Over the years, researchers have
relentlessly explored the trajectory tracking control mechanisms of USVs under wave and
wind conditions.

Do K. D. [1] investigated the trajectory tracking control of USVs in the presence of
wind and wave disturbances using the Serret–Frenet frame. An adaptive robust trajec-
tory tracking controller for underactuated USVs was developed by designing nonlinear
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observers for the lateral velocity and yaw rate based on nonlinear backstepping and the
Lyapunov stability theory [2].

Sun [3] designed an exponentially stable trajectory tracking controller for USVs based
on the dynamic surface control theory. Aguiar A. P. [4] researched trajectory tracking control
for USVs using switching control techniques, while Fahimi F. [5] proposed a robust sliding
mode trajectory tracking control method. Harmouche M. [6] addressed the lack of speed
measurement feedback in the trajectory tracking of USVs by proposing a control method
based on observer technology and backstepping. Katayama H. [7] introduced a straight-line
trajectory tracking control method for underactuated vessels with semi-global uniform
asymptotic stability, utilizing nonlinear sampled-data control theory, state feedback, output
feedback control techniques, and observer technology [8,9]. However, the aforementioned
methods, including optimal control, feedback linearization, and backstepping, require
precise modeling to achieve high control accuracy [10]. The motion model of a USV
is affected by variables such as speed and load, making precise modeling challenging.
Moreover, disturbances from wind, waves, and currents during navigation complicate the
path-following control of USVs. Therefore, in real oceanic environments, control algorithms
based on deterministic models or those with non-adaptive control parameters often fail to
achieve the desired control performance.

The PID control algorithm remains dominant in ship autopilot systems because of
its simplicity and reliability. However, when USVs experience substantial time-varying
disturbances, the effectiveness of fixed-parameter PID algorithms is not satisfactory. Re-
searchers have sought to enhance the effectiveness through improving the adaptability of
PID parameters [11]. Most efforts are focused on combining PID with other theories such
as fuzzy control and neural networks to achieve the adaptive tuning of PID parameters.

Adaptive PID controllers adjust PID parameters dynamically during the process of
tracking a desired heading, significantly enhancing the algorithm’s dynamic response.
However, due to model uncertainties and external disturbances, a discrepancy between the
estimated and actual system outputs often exists. Hu Zhiqiang [12] proposed an online
self-optimizing PID heading control algorithm, which facilitates the online adjustment of
control parameters and exhibits robust performance and interference resistance.

Genetic algorithms (GAs), known for their stable global optimization capabilities,
are frequently used for parameter tuning in various USV path controllers. Liu [13] has
demonstrated the use of GA for the online tuning of PID parameters to implement adaptive
PID control. However, these controllers face challenges such as prolonged parameter
optimization times, which can impact the real-time applicability on actual vessels. De-
signing crossover and mutation operators within the optimization process can shorten the
optimization time and enhance the algorithm’s real-time performance [14].

Fuzzy logic control translates expert knowledge into fuzzy rules; it can effectively ad-
dress the impacts of model uncertainties and random disturbances on USV path-following
control. In practical applications, fuzzy logic is often used for the parameter tuning of PID
controllers and sliding mode controllers due to its rapid response and real-time perfor-
mance [15,16]. Liu [15] has established fuzzy rules according to path point errors, heading
errors, and error differentials to improve control smoothness. However, the accuracy of
fuzzy controllers mainly depends on the complexity of the fuzzy rules, which is generally
constructed based on expert knowledge and dynamic models, so complex rules may lead
to computational challenges [17].

Peng Yan [18] researched the challenges faced by USV systems, such as large inertia,
long time delays, nonlinearity, difficulty in precise modeling, and susceptibility to external
disturbances like waves. The study revealed that traditional PID control often fails to
achieve satisfactory trajectory tracking performance. Consequently, a PID cascade controller
based on generalized predictive control (GPC-PID) was designed to separately control
the heading and steering motions of USVs, providing enhanced resistance to external
disturbances. Additionally, radial basis function (RBF) neural networks can approximate
model uncertainties and external disturbances affecting PID parameters, thus improving the
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robustness and interference resistance of the controller. RBF neural networks are frequently
employed to model the impact of internal and external disturbances on PID parameters.

Reinforcement Learning (RL) has been extensively applied in control systems [19]. Its
capability to operate without precise mathematical models and its self-learning abilities
make it particularly effective in addressing challenges related to model uncertainties and
unknown disturbances in USV trajectory tracking control [20,21]. Neural networks were
utilized within sliding mode controllers to tune controller parameters, with RL employed to
evaluate the tuning efficacy [22]. This approach enabled the self-learning of neural network
parameters, addressing the low model accuracy requirement of sliding mode control while
mitigating its chattering issue.

Sun [3] explored trajectory tracking control for underactuated USVs under unknown
disturbances using neural network control technologies. Another study [23] employed
Q-learning for PID parameter tuning, demonstrating that this controller can effectively
resist external disturbances and facilitate the motion control of mobile robots through
experiments. Bertaska [24] developed a multi-mode switching controller using Q-learning,
which intelligently switches controllers based on the environment and the operational state
of the USV, enhancing control performance across different conditions.

Magalhaes [25] proposed a RL control method based on Q-learning that mimics fish
swimming motions to control the fins and tail of an unmanned underwater vehicle (UUV)
for trajectory tracking. Bian [26] employed neural network controllers for ship trajectory
tracking control; however, such learning methods require the pre-acquisition of reliable ship
navigation sample data. Deep Q Networks (DQNs), which incorporate experience replay
and fixed Q-targets, significantly enhance the stability and expressiveness of complex RL
problems [27]. However, DQNs remain constrained to discrete action or state spaces based
on Q-learning, making them challenging to apply to the continuous control problem of USV
motion under dynamic wave conditions, where low control precision can lead to chattering.

Wu [28] modeled the trajectory tracking problem as a Markov Decision Process (MDP)
based on the maneuvering characteristics and control requirements of ships. The DDPG al-
gorithm was used as the controller, and offline learning methods were applied for controller
training. Simulation tests showed promising results, although the simulation environment
lacked environmental disturbances. Woo [29] introduced a trajectory tracking controller
based on Deep Reinforcement Learning (DRL), allowing USVs to learn navigation expe-
riences during voyages. In repetitive trajectory tracking simulations, the control strategy
was trained to enable adaptive interaction with the environment, achieving trajectory
following. However, this method directly employed DRL as the control strategy rather
than adaptive parameter matching, which lacks the mature performance of classical control
algorithms. Additionally, it did not leverage the dynamic performance of USVs within the
controller, but treated it as a black box, which demands high-quality training data. Without
comprehensive training data, the control performance may not meet expectations.

The analysis above highlights several key issues in the current trajectory tracking
control methods for USVs: Firstly, many existing algorithms fail to consider the impact of
time-varying environmental disturbances. Secondly, when employing machine learning
algorithms for training USV motion controllers, acquiring sample data poses significant
challenges, and the quality of these training samples greatly influences the performance of
machine learning-based controllers. Thirdly, when using RL algorithms such as Q-learning
for controller training, these approaches typically use a black box method to compensate for
time-varying and difficult-to-quantify environmental disturbances. However, the motion
and control models established by these methods are based on discrete mathematical
models with low precision. Fourthly, directly using RL as a controller, rather than for
adaptive parameter tuning, fails to leverage the superior performance of classical control
algorithms and relies entirely on black box processes, which preclude the utilization of USV
dynamics within the controller.

To address these challenges, this paper proposes a trajectory tracking control al-
gorithm for USVs that calculates PID control parameters based on an improved Deep
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Deterministic Policy Gradient (DDPG) algorithm. By integrating RL algorithms with
classical control theory, this approach aims to enhance the adaptability of USV motion
controllers. The subsequent sections of this paper are organized as follows: Section 2
introduces the maneuvering motion model and parameters for USVs, the guidance law
for path tracking, and the PID control algorithm employed. Section 3 provides a de-
tailed explanation of the proposed method for calculating PID parameters based on
the improved DDPG algorithm and outlines the state, action, and reward settings for
training the RL model. Section 4 presents the simulation results of various algorithms,
demonstrating the superiority of the algorithm proposed in this study. In Section 5,
maneuvering experiment in wave conditions was conducted in a marine tank using the
proposed algorithm, proving its feasibility and effectiveness.

2. The Maneuvering Motion Model of USV and Path-Following Controller for USV
2.1. The Maneuvering Motion Model of USV

The 3-DOF Maneuvering Modeling Group (MMG) motion model of the USV is de-
scribed as follows [30]:

.
x = ucosφ− vsinφ
.
y = usinφ + vcosφ
.
φ = r
.
u = 1

m+mx

[(
m + my

)
rv + XH + XP + XR

]
.
v = 1

m+my
[−(m + mx)rv + YH + YP + YR]

.
r = 1

Izz+Jzz
(NH + NP + NR)

(1)

where X, Y, and N represent hydrodynamic forces and moments, while the subscripts H,
P, and R represent the hull, propeller, and rudder, respectively. x and y are the coordinates
of the USV in the geodetic coordinate system, φ is the angle of the bow, u represents the
longitudinal velocity of the USV in the local coordinate system, v is the lateral velocity,
and r denotes the angular velocity in the local coordinate system. mx is the additional
longitudinal mass, my is the additional transverse mass, and Izz is the inertia moment of
yaw. Jzz is the additional moment of inertia in yaw.

The model for calculating Xcalm, Ycalm, Ncalm was established using the MMG model.
Xcalm = XH + XP + XR
Ycalm = YH + YR
Ncalm = NH + NR

(2)

The force acting on the hull is approximate to the hydrodynamic derivative, XH, YH,
NH, and can be expressed asXH = X0 + Xu∆u + Xuu(∆u)2 + Xuuu(∆u)3 + Xvvv2 + Xrrr2 + Xvrvr

YH = Yvv + Yvvvv3 + Y .
v

.
v + Yrr + Yrrrr3 + Y.

r
.
r + Yvrrvr2 + Yvvrv2r

NH = Nvv + Nvvvv3 + N .
v

.
v + Nrr + Nrrrr3 + N.

r
.
r + Nvrrvr2 + Nvvrv2r

(3)

where ∆u = u− u0 is the speed difference of the ship relative to the initial ship speed and
−X0 is the resistance when the speed of ship is u0. The geometric and physical models
of the USV used in this study are depicted in Figure 1. Table 1 illustrates parameters of
the USV.

Using Computational Fluid Dynamics (CFD) and regression analysis, the hydrody-
namic derivatives for static water maneuvering have been obtained, as shown in Table 2.
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Figure 1. Model of the USV.

Table 1. Parameters of the USV.

Part Items Definition Value

Hull

Lpp[m] Length between Perpendiculars 1.5
B[m] Breadth of Waterline 0.444
d[m] Depth 0.107
CB Block Coefficient 0.395

xG [m] X-position of Gravity Center relative to Midship −0.12
zG [m] Z-position of Gravity Center relative to Baseline −0.3

Iz
[
kg·m2] Gyration about Z-axis 3.947

Ix
[
kg·m2] Gyration about X-axis 0.35

Propeller Dp [m] Diameter 0.029
ZP Number of Blades 5

Rudder
AR

[
m2] Longitudinal Projection Area 0.001675

HR [m] Rudder Height 0.05

Table 2. Hydrodynamic derivatives.

Hydrodynamic Derivative Value

X′0 −0.0026
X′u −0.000700
X′.u −0.000238
X′uu 0.002500
X′uuu −0.001800
X′vv 0.002744
X′rr −0.002807
X′vr 0.01247
Y′v −0.01471
Y′.v −0.007049

Y′vvv 0.112200
N′v −0.006399

N′vvv −0.006952
Y′r 0.003013
Y′.r −0.000777

Y′rrr −0.000467
N′r −0.001708
N′.v −0.000283
N′.r −0.000419

N′rrr −0.000261
Y′vvr −0.005687
Y′vrr −0.013020
N′vvr −0.015600
N′vrr −0.001047



J. Mar. Sci. Eng. 2024, 12, 1771 6 of 20

The hydrodynamic interaction coefficients between the ship, propeller, and rudder are
presented in Table 3.

Table 3. Ship–propeller–rudder hydrodynamic interaction coefficients.

Interaction Coefficients Definition Value

αH Rudder Force Correction Factor 0.5
tp Thrust Reduction Coefficient 0.01

wp0 Wake Fraction Coefficient 0.01
ε

Propeller–Rudder Interaction Coefficient
0.52

κ 0.23
tR 0.15
γ Speed Coefficient 1.55

KT Open Water Propeller Thrust Coefficient 0.5932− 0.1971Jp − 0.0481J2
p

These hydrodynamic coefficients are used to account for the interactions between the
ship, propeller, and rudder when calculating maneuvering forces.

2.2. The LOS Guidance Rule and PID Controller

The LOS strategy aims to guide the USV to track a virtual target along the desired
trajectory, minimizing the position and heading deviations between the USV’s actual
location and the target, ultimately ensuring the USV reaches the intended path. The
trajectory tracking strategy using LOS is illustrated in Figure 2.
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Figure 2. LOS guidance strategy.

In Figure 2, XOY denotes the global coordinate system, xO′y denotes the local coordi-
nate system, and the USV’s position is denoted as P, with heading angle φ, longitudinal
velocity u, lateral velocity v, and yaw rate r. The target trajectory is segmented into several
approximate straight-line segments, with the current segment being tracked lying between
points Pk−1 and Pk. The lateral tracking error is denoted as ye, the lookahead distance
as ∆, and the desired heading angle as ψd. During the curve tracking process, the sub-
target along the trajectory needs to be switched. The switch occurs from Pk−1 to Pk when
→

Pk−1P·
→

Pk−1Pk < 0.
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The PID controller is a linear regulator that compares the desired heading angle ψd(k)
with the actual heading angle φ(k) to form the heading angle deviation e(k):

e(k) = ψd(k)− φ(k) (4)

The desired rudder angle can be expressed as Equation (5):

δ(k) = Kpe(k) + Ki

k

∑
i=0

e(i)dt− Kd(e(k)− e(k− 1))/dt (5)

Considering the integral saturation condition of the PID controller, the PD parameters
are adjusted to ensure the USV quickly tend to the desired track and keep the USV navigat-
ing within the error range. Therefore, Equation (5) can also be expressed as Equation (6):

δ = Kpe + Kd
(
e− e′

)
(6)

where e′ is the error at the previous moment. The neural network is performed to produce
the appropriate PD parameters.

3. PID Parameter Calculating Model Based on an Improved DDPG Algorithm
3.1. Algorithm Description

The tracking control process of USVs is a time-sequential decision-making problem
characterized by MDPs. Thus, a USV can be regarded as an agent, with its motion control
expressed in the form of {s, A, P(s′|s, a), R}. Herein, the details are as follows:

a. P(s′|s, a) is the state transition matrix and refers to the probability of transitioning to
the next state s′ after applying action a in the current state s.

b. s, the state set encompasses all states and exhibits the Markov property; that is, future
states depend only on the current state and are independent of past states.

c. A, the action set, comprises all possible actions that the agent can select. State tran-
sitions depend not only on the environment but also on the agent’s ability to guide
state transitions by selecting different actions.

d. R, the reward function, maps states and actions to rewards, reflecting preferences for
different states.

Executing actions transitions the system from an initial state to a terminal state, form-
ing a trajectory τ, represented as

τ = (s0, a0, s1, a1, ...st, at) (7)

where s0 is the initial state, st is the terminal state, and ai is the action chosen at time step i.
The aim is to maximize the cumulative reward R(τ) along the trajectory, expressed as

R(τ) = ∑T
t=0 γtrt (8)

where T is the terminal time, rt is the reward at time t, and γ is the discount factor, with
values ranging between 0 and 1.

To maximize the cumulative reward R(τ), the policy π must be continuously opti-
mized. The policy π maps states s to actions a, and the agent chooses actions based on the
observed state according to the policy. The strategy that maximizes the cumulative reward
is called the optimal policy, denoted as π∗.

π∗ = argmaxπEτ∼π [R(τ)] (9)

where E is the expectation, τ ∼ π is the trajectory τ based on policy π.
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The goal of RL is to find the optimal policy π∗.

Q∗(s, a) = maxπ(Eτ∼π [R(τ)|st = s, at = a]) (10)

Q∗(s, a) denotes the optimal action value function, can be used to provide the best
action, and can be recursively expressed based on the Bellman equation:

Q∗(s, a) = Es′∼P
[
r
(
s, a, s′

)
+ maxa′

[
γQ∗

(
s′, a′

)]]
(11)

where s′ ∼ P denotes the next state derived from the environment transition probability P,
and a′ represents the subsequent action obtained from the policy π.

a∗(s) = argmaxaQ∗(s, a) (12)

a∗(s), the best actions, can be recursively expressed by the Bellman equation.
In policy-based methods, the policy is denoted as πθ , where θ represents a set of param-

eters constituting the policy. The goal is to maximize the expected return
J(πθ) = Eτ∼πθ

[R(τ)], and gradient ascent is employed to update the parameters θ and
optimize the policy.

θk+1 = θk + α∇J(πθ)|θk (13)

where ∇J(πθ) is the policy gradient.
The improved DDPG algorithm in this study utilizes an Actor–Critic architecture,

comprising four networks, detailed as follows:

(1) Current Actor Network

The input to the current Actor is the state space s, and the output is the action a. In
this study, the state space is defined as

s =
[
u, v, r, φ, epsi, ye, d, αk,

.
d,

.
epsi

]
(14)

where u and v are the longitudinal and lateral velocities, r is the yaw rate, φ is the heading
angle, epsi is the lateral deviation from the target trajectory, d is the rudder angle, and αk is
the inclination angle of the target trajectory. The action a is defined as

a =
[
kp, kd

]
(15)

The objective of updating the Actor is to maximize the Q-value evaluated by the
current Critic network. Thus, the gradient of the Actor is updated via backpropagation
through the Critic’s gradient.

The Actor network architecture, as shown in Figure 3, consists of an input layer, two
hidden layers, and an output layer. The input layer has a dimension of 10, the two hidden
layers contain 400 and 300 neurons, and the output layer has a dimension of 2. To extract
features effectively, and also to prevent gradient saturation and vanishing problems, ReLU
is used in the hidden layers and Tanh is used in the output layer.

Figure 4 illustrated the relationship between the Actor network and USV motion
controller. During training in the simulation system, the Actor outputs actions based
on the input state through its neural network. These actions, representing PID control
parameters, are utilized for USV motion control. The control deviation of the USV is
used as input to obtain the USV control output variables, such as steering actions in
heading control. Consequently, the USV executes steering actions, which are resolved
through the rudder force model in the simulation environment, resulting in the USV’s
subsequent motion posture.
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(2) Target Actor Network

The Target Actor network generates target actions a′, which are fed into the Target
Critic network. The structure of the Target Actor mirror that of the current Actor net-
work. Its weights are obtained via soft updates from the current Actor’s weights using
Polyak averaging:

θtarget ← τθcurrent + (1− τ)θtarget (16)

where θtarget represents the target network parameters, θcurrent is the current network
parameters, and τ is a small coefficient. The arrow symbol used here is used to update
θtarget. This slow update process maintains the stability and relative independence
of the target network, facilitating smoother changes that enhance algorithm stability
and convergence.

(3) Current Critic network

The current Critic network evaluates the value of action a in state s. Training the
current Critic network requires target values, which are computed using the Target Critic
and Target Actor networks. The current Critic is a feedforward neural network; its structure
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is depicted in Figure 5. The input is a concatenation of the environmental state s and action
a, outputting the state-action value Q(s, a). The hidden layers contain 400 and 300 neurons,
and the output layer dimension is 1, representing the state-action value.
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(4) Target Value Network (Target Critic)

The Target Critic network calculates the target Q-value Q′(s, a) and, combined with
the actual reward r, computes the TD error, which is used to update the weights of the
current Critic network. The structure of the Target Critic network mirrors that of the current
Critic but is used for target updates. Its weights are also obtained through soft updates
from the current Critic’s weights. The input consists of the environmental state s and action
a′, and the output is the state-action value Q′(s, a).

3.2. Ornstein–Uhlenbeck (OU) Noise

OU noise is a time-correlated stochastic process initially used to describe Brownian
motion in physics. In RL, it is employed to generate smooth and orderly noise sequences
that aid in exploring the action space. The mathematical expression for the OU process is

dxt = θ(µ− xt)dt + σdWt (17)

where xt is the value of the noise at time t, θ is the parameter controlling the speed of noise
regression to the mean, µ is the long-term mean of the noise, σ is the intensity of noise
fluctuations, and dWt is the standard Brownian motion.

At each time step, the noise is updated according to the following OU process:

xt+1 = xt + θ(µ− xt)∆t + σ
√

∆tN (0, 1) (18)

where N (0, 1) is a normal distribution with mean 0 and variance 1. When executing the
strategy, the generated OU noise is added to the actions derived from the deterministic strategy.

3.3. Binary Experience Pool Based on Adaptive Batching

To address the slow training speed of the DDPG algorithm, the experience pool
is divided into a success experience pool and a failure experience pool. To eliminate
correlations between data, an adaptive batch size function is designed, where B experiences
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are sampled from each of the success and failure pools. New experience is gained from
the environment (including the current state, action taken, reward received, next state, and
termination status), and it is added to the buffer. During each current network training
session, a random batch of experiences is sampled from the buffer, effectively breaking
the temporal correlation between experiences and ensuring that training data are more
independently and identically distributed.

σ = 1 +
ne

nmax
(19)

B = ⌊σn⌋ (20)

In this context, ne represents the number of training iterations, and nmax denotes the
total number of training iterations set.

The overall algorithmic process is as follows:

1. The Actor generates a set of actions, to which OU noise is added.
2. The agent obtains the next state based on the current action and inputs it into the

reward function. The data from (st, at, r, st+1) is categorized into the successful expe-
rience pool or the failed experience pool based on success or failure.

3. A sample of n experiences is drawn from the experience pool, and both st and st+1
are input into the Actor network, while (st, at, r, st+1) are fed into the Critic network,
where iterative updates are performed.

4. The Target Actor network receives st and st+1; inputs action a and random noise
into the agent, which interacts with the environment to obtain the next action at+1;
and outputs it to the Target Critic network. The action values Q are then received to
update the network.

5. The Target Critic network receives st+1 and at+1 and calculates the Q-values. These
values are then combined with the rewards to compute the labels used for iterative
network updates. See Figure 6.
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3.4. Reward Definition and Analysis

Based on the maneuvering characteristics of USVs and the features of path tracking
control, the reward function is defined as follows:

rpsi =

{
0, epsi ≤ 0.1

−epsi − 0.1epsi_last, epsi > 0.1
(21)

rye =

{
0, ye ≤ 0.1
−0.1, ye > 0.1

(22)

r = rye + rpsi (23)

The reward function comprehensively considers both the lateral deviation and heading
angle deviation in trajectory tracking, with the expectation that both deviations remain
minimal. According to the reward setting, if the heading angle deviation is less than 0.1,
the reward is 0. Conversely, if the heading angle deviation exceeds 0.1, a negative reward
is generated, with the magnitude of the negative reward positively correlated with the
consecutive heading angle deviations. This design aims to use RL to reduce the heading
angle deviation. For lateral deviation, the requirement is to keep it within 1 m. Within this
range, the lateral deviation reward is 0, but if it exceeds 1 m, a negative reward of −0.1 is
applied, aiming to reduce lateral deviation through RL.

Below is an analysis of typical scenarios based on this reward setting (see Figure 7):

(a) ye > 1 [m], epsi > 0.1 [rad]: As illustrated in the scenario, both the lateral and heading
angle deviations receive significant negative rewards (on the order of −0.1). During
training, actions receiving nearly 0 rewards will be emphasized, guiding the USV to
alter its heading angle toward the LOS target point and reduce lateral error. According
to the reward setting, the priority between altering the motion direction toward the
LOS target point and approaching the tracking trajectory to reduce lateral deviation is
dynamically adjusted.

(b) ye > 1 [m], epsi < 0.1 [rad]: In this scenario, the lateral deviation receives a significant
negative reward (on the order of −0.1), while the negative reward for heading angle
deviation is minor (close to 0). During training, actions with nearly 0 rewards are
reinforced, guiding the USV to approach the tracking trajectory to reduce lateral error
without excessively adjusting the heading angle, which could lead to increased lateral
deviation and negative rewards for heading angle deviation. According to the reward
setting, the priority between turning toward the LOS target point and approaching
the tracking trajectory is dynamically adjusted.

(c) ye < 1 [m], epsi > 0.1 [rad]: Here, the lateral deviation receives a minor negative
reward (close to 0), while the heading angle deviation incurs a significant negative
reward (on the order of −0.1). During training, actions yielding nearly 0 rewards are
emphasized, guiding the USV to adjust its heading angle toward the LOS target to
reduce the heading angle deviation. However, due to the inertia of USV motion and
the narrow 1 m reward boundary for lateral deviation, if the heading angle deviation is
substantial, the USV might overshoot the 1 m boundary during adjustment, resulting
in oscillation around the tracking trajectory. To avoid this, the USV should not have
excessive heading angle deviation when entering this scenario.

(d) ye < 1 [m], epsi < 0.1 [rad]: In this case, both lateral and heading angle deviations
receive minor negative rewards (close to 0). The USV’s trajectory tracking control
tends to stabilize, meeting the tracking requirements and maintaining this condition
despite wave disturbances. However, if the USV enters this scenario and maintains
stability, there may exist a steady-state lateral error of less than 1 m. With 0 rewards
for both lateral and heading angle deviations, this steady-state error might not be
corrected. This issue can be addressed by dynamically changing the LOS target point,
but this requires a longer training time.
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4. Simulation Results and Analysis

To validate the effectiveness of the proposed improved DDPG-based PID control
algorithm for USV trajectory tracking, this study conducts a comprehensive comparison
with both an adaptive PID control algorithm and a standard DDPG-based PID control
algorithm. The hardware used for model training includes a desktop computer equipped
with an Intel Core i5-12700 CPU (Intel, Santa Clara, CA, USA) and 8 GB of RAM. The
software environment consists of the Windows 11 operating system, TensorFlow version
2.1.19 (GPU), and Python version 3.9.1. During the adaptive navigation control, the RL
parameter tuner was trained for a total of 1500 steps per episode, with a sampling time of
0.1 s. The desired trajectory was set as a straight line parallel to the y-axis, and a total of
2000 episodes were trained. Each episode terminated either upon reaching the specified
number of training steps or upon arriving at the designated end point on the straight line.
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The simulation environment was designed to include scenarios with wave disturbances.
To assess the system’s stability and resilience against external disturbances, a transverse
force of

[
−0.2× 103, 0.2× 103] [N] and a turning moment of

[
−0.2× 103, 0.2× 103] [N·m]

were introduced as perturbations. This is modeled as f (x) = 0.2U(t), where U(t) represents
an independent random variable at each time point, following a uniformly distributed
random function U(t) ∼ f _u(−1, 1), with f _u() denoting the random distribution. The
applied transverse disturbance force is depicted in Figure 8, while the turning disturbance
moment is illustrated in Figure 9.
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4.1. Comparative Analysis of Zigzag Trajectory Tracking

Figure 10 presents the results of Zigzag trajectory tracking under wave disturbance
using adaptive PID algorithms, PID parameters calculated by the DDPG algorithm, and
PID parameters determined by the improved DDPG algorithm. The trajectory path points
are set as polylines between the coordinates (0, 0), (45, 45), (85, 5), and (125, 45). The figures
indicate that, due to disturbances, all three algorithms exhibit significant overshoot in the
initial stage. However, the USV is eventually able to adjust to the desired trajectory. During
target point transitions, each algorithm demonstrates effective control performance, with
lateral deviation errors fluctuating within acceptable limits and heading angle deviations
rapidly diminishing until stabilization; the rudder angle changes are also smooth. Notably,
both RL algorithms outperform the adaptive PID controller in managing lateral deviations
and heading tracking. Moreover, the method employing PID parameters calculated using
the improved DDPG algorithm results in a smoother desired heading angle, indicating
superior tracking performance. Its steering curve is also more stable. See also Table 4.
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Table 4. Comparison of Zigzag trajectory tracking metrics.

Controller Stable Mean
Lateral Error/m

Relative
Cross-Track Error

Mean Heading Angle
Tracking Deviation/◦

Improved DDPG and PID 0.109 0.245 3.601
DDPG and PID 0.388 0.874 3.952
Adaptive PID 0.985 2.218 6.584

4.2. Comparative Analysis of Curved Trajectory Tracking

Figure 11 illustrates the comparison of tracking a circular trajectory with a radius of
10 m under sea state 4 with a 90 degree wave, using the three different aforementioned
algorithms for PID parameter calculating. It is evident that the USV can quickly adjust to the
desired trajectory, demonstrating effective control performance. The lateral deviation errors
fluctuate within acceptable limits, and the heading angle deviations rapidly decrease and
stabilize. The changes in rudder angle are also smooth. Both RL algorithms outperform the
adaptive PID controller in managing lateral deviation and heading tracking. When using
the adaptive PID controller and the controller based on DDPG-calculated PID parameters,
significant initial mistakes can lead to difficulties in quickly eliminating errors. Combined
with the inertia of the USV and wave disturbances, this can result in oscillations. In contrast,
the improved DDPG algorithm for PID control dynamically adjusts control parameters
according to the trend in tracking error changes, reducing oscillations near the trajectory
and achieving better control performance. The resulting desired heading angle and steering
curve are smoother, indicating that this controller is highly adaptable and robust, providing
superior tracking performance. See also Table 5.
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Table 5. Comparison of circle trajectory tracking metrics.

Controller Stable Mean
Lateral Error [m]

Relative
Cross-Track Error

Mean Heading Angle
Tracking Deviation [deg]

Improved DDPG and PID 0.402 0.905 1.98
DDPG and PID 0.568 1.279 2.56
Adaptive PID 0.652 1.468 2.98

5. Experimental Results and Analysis

It is challenging to conduct curve tracking experiments due to the wave maker located
in the ship towing tank, which has a limited width. Therefore, this study conducted Zigzag
trajectory tracking control experiments under wave conditions only. The positioning
equipment used was an indoor UWB system, and the USV was equipped with a gyroscope
for heading, a servo motor for propeller adjustment, and a rudder servo for steering.
The main control board was an STM32, facilitating wireless serial communication with
the host computer. The host computer sent commands to the model ship, and the USV
transmitted real-time sensor data back to the host for display. Simultaneously, the host
computer performed control calculations based on the collected data, utilizing the proposed
improved DDPG algorithm for calculating PID parameters.
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The experiment involved six irregular trajectory points. Initially, the propeller speed
was adjusted in still water to achieve a USV speed of 0.8 [m/s], corresponding to a Froude
number of 0.21. The USV’s heading was adjusted based on its real-time position relative to
the first target point of the trajectory. Once the wave-making machine established a stable
waveform with the desired amplitude and wavelength, intelligent control was activated
on the host computer. The USV dynamically adjusted its rudder angle according to the
algorithm, ensuring movement along the trajectory points. The aforementioned method
was used to measure and record the motion data of the USV. The experimental process is
depicted in Figure 12, and the six trajectory points along with the USV’s motion trajectory
are shown in Figure 13.
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The experiment demonstrated that, despite wave disturbances, the USV effectively
tracked all trajectory points with a smooth path, achieving a maximum trajectory error
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of approximately 200 [mm]. This error is small and is primarily attributed to deviations
in trajectory point acquisition caused by the UWB positioning accuracy and the resulting
control deviations. Under the current hardware conditions and operating modes, the
positioning accuracy was optimized using filtering techniques; however, it is still affected
by equipment precision, UWB positioning methods, and electromagnetic interference from
water waves and metal tracks in the tank. Despite these challenges, the experiment and
error analysis indicate that the intelligent matching technique for control parameters based
on the proposed method achieves an excellent control accuracy under existing conditions.

Figure 14 illustrates the real-time feedback of the rudder angle and the measured
heading angle during the experiment. The changes in heading reveal five major trend
adjustments required for path tracking, corresponding to the five segments in the actual
trajectory. The heading changes were smooth, with a maximum rudder angle of 50 degrees
at sharp turns along the target trajectory. The adaptive control yielded favorable results.
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6. Conclusions

In this study, we present a novel algorithm that integrates DDPG with a PID con-
troller to achieve path following in the presence of complex conditions, particularly wave
interference. The algorithm begins by leveraging a 3-DOF MMG maneuvering motion
model, which serves as the foundation for subsequent DDPG training. CFD simulations
and regression analysis are employed to extract hydrodynamic derivatives and interaction
coefficients necessary for precise motion prediction. We further detail the LOS guidance
strategy, which directs the USV to follow a virtual target along the desired trajectory, with
PID parameters adjusted dynamically via the DDPG framework.

The design of both the Actor and Critic networks is carefully structured, and to
address the issue of slow training speeds in DDPG, we implement a dual-experience
pool, separating the successful and failed experiences. Additionally, an adaptive batch
size function is introduced to minimize data correlations, further enhancing the training
efficiency. The reward function is rigorously formulated to account for both the lateral
deviation and heading angle deviation, and its effectiveness is thoroughly examined under
various operating conditions.

Simulations and experimental trials involving path following in Zigzag and turn-
ing maneuvers, conducted under wave disturbance, demonstrate the algorithm’s robust
performance. The USV maintained superior tracking accuracy, even under continuously
varying wave directions, highlighting the algorithm’s strong generalization capabilities
and robustness.

Two key practical insights emerge from this work: First, the desired trajectory must
align with the USV’s maneuvering limits. Trajectory points that exceed the USV’s steer-
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ing capabilities, especially under full rudder conditions, will render the target trajectory
unattainable in the presence of external disturbances. This not only compromises tracking
performance but also hinders the Reinforcement Learning process. Second, while improv-
ing tracking accuracy, setting excessively small thresholds for error in the reward function
can lead to instability in the neural network. Lowering the static error threshold makes
successful experiences more difficult to achieve, thereby slowing the agent’s learning rate
and significantly increasing the training time.
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Nomenclature

USV Unmanned Surface Vehicles
DDPG Deep Deterministic Policy Gradient
PID Proportion Integration Differentiation
RL Reinforcement Learning
ASVs Autonomous Surface Vessels
Gas Genetic Algorithms
GPC-PID PID cascade controller based on Generalized Predictive Control
RBF Radial Basis Function
UUV Unmanned Underwater Vehicle
DQN Deep Q Networks
MDP Markov Decision Process
DRL CFD: Computational Fluid Dynamics
MMG Maneuvering Modeling Group
OU Ornstein–Uhlenbeck
LOS Line Of Sight
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