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Abstract: The rapid development of artificial intelligence has greatly ensured maritime safety and
made outstanding contributions to the protection of the marine environment. However, improving
maritime safety still faces many challenges. In this paper, the development background and industry
needs of smart ships are first studied. Then, it analyzes the development of smart ships for naviga-
tion from various fields such as the technology industry and regulation. Then, the importance of
navigation technology is analyzed, and the current status of key technologies of navigation systems
is deeply analyzed. Meanwhile, this paper also focuses on single perception technology and inte-
grated perception technology based on single perception technology. As the development of artificial
intelligence means that intelligent shipping is inevitably the trend for future shipping, this paper
analyzes the future development trend of smart ships and visual navigation systems, providing a
clear perspective on the future direction of visual navigation technology for smart ships.

Keywords: smart ship; visual navigation technology; situation awareness; maritime safety

1. Introduction

Research on navigation safety has a long history. With the continuous development of
science and technology, the design of safer and smarter navigation systems has become
mainstream. Maritime transportation has always been considered a high-risk job, and as
the size and number of ships continue to increase, factors affecting ship safety need to be
given high priority. The government expects maritime security organizations to ensure the
smooth running of maritime operations and at the same time handle maritime accidents
efficiently in order to secure the country’s economic interests. The majority of maritime
accidents during the period 2002–2016 were of a navigational nature, including groundings,
collisions, close quarters and contact, with a rate of 52.8 percent [1]. Figure 1 shows the
components of maritime accidents, and it is clear that the majority of accidents in 2014–2019
are caused by human factors [2]. On the other hand, maritime accidents not only bring
about loss of economic benefits, but also lead to air and water pollution, which has a bad
impact on the environment.

Shipping is one of the most internationalized and dangerous of all large industries
in the world. The history of shipping has been one of increasing safety of navigation and
efficiency of transportation. Human factors such as fatigue, work stress and environmental
factors are contributing factors to shipping accidents [3]. The development of smart
ships effectively replaces pilots to a certain extent. The advent of smart ships and drones
will reduce the number of people at risk at sea, and even if autopilot sailing does not
reduce the number of accidents, this means that the safety of maritime navigation will
increase. It is expected that the number of accidents will decrease with the introduction
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of smart ships due to the high impact of the human factor. However, quantifying what
percentage of accidents can be prevented by smart ships is difficult since accidents are
usually not caused by pure human error. de Vos J et al. (2021) evaluated the percentage
reduction in loss of life for different scenarios where autonomous shipping is applied,
assuming that the types of events affected are only related to navigation. The percentage
reductions for the scenarios were 47.4% for small cargo ships being unmanned, 69.5% for
all cargo ships being unmanned and 100% for all ships being unmanned. As can be seen
from the data, the number of maritime shipping accidents is likely to be reduced with
unmanned ships, and the development of smart ships will greatly enhance the safety of
maritime navigation [4]. In previous studies on the safety of ship navigation, researchers
have tended to focus mainly on how to quantify maritime risks and to focus on the
relationship between humans and maritime safety and on the impact of human situation
awareness on ship safety. Most of the studies only mention the development related
to smart ships and the improvement of autonomous collision avoidance systems. In
this paper, the development of collision avoidance technology and the importance of
improving situation awareness are also studied relevantly. However, unlike the traditional
approach of previous studies, this paper outlines the IMO-related guidelines and industry
specifications for smart ships, which provides a background for subsequent studies on
smart ships. At the same time, this paper also outlines the development and progress of
smart ships, not only studying the progress of collision avoidance technology, which has
mainly appeared since the development of smart ships, but also focusing on different kinds
of visual perception technology, integrating different technologies into one system. By
studying the organic combination of visual perception technology and collision avoidance
technology, we expect to further enhance the safety of maritime navigation. In addition, this
paper does not discuss a single visual perception technology, but analyzes and integrates
the main visual perception technologies, which effectively deepens the depth of the research
on visual perception. Through computer assistance, a visual navigation system visualizes
the decisions of a visual navigation unit in order to reduce the cognitive workload of the
staff and further enhance the situation awareness of the pilots. With the development of a
new generation of artificial intelligence technology, autonomous systems have been widely
used in the fields of unmanned vehicles, underwater vehicles and unmanned aircraft.
Various technologies and advanced research are applied in navigation systems, including
perception technology, motion control technology, collision avoidance technology and
communication technology. Through the research on these technologies, the application
of visual perception navigation technology to intelligent ships can greatly reduce the
possibility of maritime accidents caused by human factors.
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This article analyzes the current opportunities and challenges of navigation technology
for smart ships, providing the following contributions:

• A summary of the IMO guidelines and industry codes for smart ships;
• A review of the development of navigation technology and an analysis of its advancement;
• A characterization of the combination and application of different visual navigation

techniques;
• An overview of the current status and future development of visual navigation tech-

nology and smart ships.

2. Smart Ships and Navigation Technology
2.1. Smart Ships

With the development and application of smart ships, the operational pressure on
staff has been reduced, the safety of maritime navigation has been greatly improved and
pollution of the oceans has been drastically reduced. Section 2.1 describes and analyzes the
IMO’s guidance on smart ships and the industry requirements for smart ships, as well as
the progress and development of smart ships.

2.1.1. IMO Guidance and Industry Requirements for Smart Ships

The concept of an smart ship, first introduced in the 19th century, refers to a ship
that is capable of carrying out a series of well-defined operations without or with a small
number of crew members supervising it [5]. In order to give sustainable impetus to
the development of the shipping industry in Europe, Norway was the first to develop
technology for smart ships. There are three categories of more leading smart ship projects
that examine the feasibility of developing viable business models in the short to medium
term, reducing accident fatalities and analyzing the feasibility of smart ship scenarios [6].
Smart ships have been designed and developed for a number of reasons: to provide a
better working environment for crews; to mitigate possible future crew shortages; to reduce
risks in transportation; to be environmentally friendly; and to provide greater safety of
navigation. The introduction of smart ships will bring about a new shift in cost efficiency,
accident prevention and human resources. While smart ships are expected to be safer
than conventional ships, the emergence of new technologies also brings new risks, such
as the emergence of cybersecurity threats and misinformation. It is therefore important to
define standards for shore-based operators of smart ships and provide relevant training.
With regard to legal issues, the difference between the time it takes for technology to
mature and the time it takes for regulations to be developed and put into practice may
have a negative impact on the adoption of advanced technologies, and it is therefore
important to recalibrate the relevant regulatory approaches. Smart ships may also raise
ethical issues in emergency situations, such as problems of untimely human–machine and
machine-to-machine communication, as well as when searching for and rescuing ships,
crews or passengers in urgent need of help. A more comprehensive, international and
harmonized approach to the development of a new regulatory framework for smart ships is
important before they become fully operational. By understanding the impacts on different
sectors and their associated linkages, it will be possible to prevent maritime accidents,
protect the environment and maximize commercial benefits in the context of ongoing
developments [7].

The International Maritime Organization (IMO) is primarily concerned with the de-
velopment of international standards for the enhancement of safety and security and the
protection of the marine environment [8]. The IMO therefore has a responsibility to consider
the safety of international shipping for smart ships. Since the Maritime Safety Committee
(MSC) placed the issue of smart ships on its agenda in January 2017, the MSC has been
working to guide countries in the development and testing of autonomous navigation
technologies. The development and application of smart ship technologies from 2017 to
2020 has been driven by the MSC to achieve real progress. “Autonomous” ships are not
all similar, and the International Maritime Organization has classified MASSs into four
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categories [9], including ships with a crew and some automated systems (Class 1), ships
with a crew that can be remotely controlled (Class 2), remotely controlled ships without a
crew (Class 3), and ships capable of autonomous navigation without a crew and without
human remote control (Class 4). The current standard for navigation is Class 1 vessels,
whereas Class 2 vessels are supervised by on-board personnel who are ready to take over
the operation of the system, so it is Class 3 and 4 vessels that could potentially pose a
threat to the safety of shipping. The IMO, through its survey, and in order to safeguard
the safe and environmentally friendly navigation of smart ships, decided in 2017 to carry
out a Regulatory Scoping Exercise (RSE) aimed at assessing the extent to which the exist-
ing regulatory framework has been impacted in order to identify problems and gaps [10].
Four IMO committees—the Maritime Safety Committee (MSC), the Legal Committee (LEG),
the Facilitation Committee (FAL) and the Marine Environment Protection Committee—are
involved in this task, which affects many areas. At the same time, the introduction of
technologically advanced Information and Communications Technology (ICT) is expected
to lead to steady growth of the maritime industry [7]. The MSC has taken note of the test
standards for real ship experiments on smart ship development submitted by relevant
countries, provided advice on the development of standards, and contributed to the safety
of smart ships and the prevention of pollution of the environment. The MSC held its
101st session in 2019, and approved interim guidelines on MASS testing, which include
guidelines related to the safety, security and protection of the marine environment and list
the mandatory instruments of compliance. These guidelines also cover the staffing and
qualifications of participants in MASS experiments, human factors and infrastructure to
ensure the safe conduction of experiments, management of cyber risks, etc.

2.1.2. Progress and Development of Smart Ships

Autonomous driving has long been utilized in many areas, and the question of au-
tonomous driving in the shipping industry is no longer if it will happen, but when it will
happen. The degree of autonomy has been categorized into three phases: In the first phase
of autonomy, the crew, supported by the system, makes decisions from information or
data collected during the operation of the ship. In the second stage, under the supervision
and authorization of the crew, the ship can make decisions and initiate actions. And in
the last stage, a fully smart ship can be realized [11]. Smart ships also have an impact
on many aspects. The global maritime industry is characterized by rapid scientific and
technological developments, and while manned and smart ships have some aspects in
common, regulatory provisions should also take into account the characteristics of smart
ships and develop specific regulatory policies. In addition, the most important thing to
consider for smart ships is safety, and a range of technologies should be researched to
control autonomous functions in order to improve safety. In terms of the industry, which
has previously relied on the technology of the crew, autonomous technology will now
re-invent the field of shipping by way of smart ships. More ship design and port facilities
need to be considered to make smart ships efficient and reliable [7].

Intelligent ship autonomous technology is the integration of a variety of technologies,
including autonomous navigation technology (navigation situational awareness, behavioral
decision making and motion control), intelligent cabin operation and maintenance, commu-
nication technology, intelligent hulls, integrated experiments, etc. [12]. Intellectualization,
greening and automation will become mainstream in global ship development. With the
continuous improvement of ship intelligence, the development of unmanned cabin mainte-
nance, assisted piloting technology and self-diagnosis of faults will all gradually reduce the
labor demand of ships. In the future, the number of crew members with rich experience is
likely to decrease, which will increase our concern for ship safety. The accuracy of driving-
behavior decision making is directly related to the safety of water transportation, so the
research on related decision-making algorithms is of great significance. The long-term navi-
gation phase of smart ships requires comprehensive consideration of theoretical technology
levels, unmanned ship navigation rules, human–machine cooperation, etc. Therefore, the
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study of human–machine interaction in smart ships is also a key area for the development
of smart ships in the future. Human beings have advantages in understanding complex
situations and reasoning, while machines have the advantages of high computational
power and reliability in specific environments. Promoting the study of human–machine
cooperation theories and technologies for ships can give full play to the advantages of
human–machine cooperation and promote the prosperous development of smart ships.
One aspect of the digital transformation of the shipping industry is the increasing digi-
tization of shipboard systems, which is achieved by combining information technology
with operating systems, and this high degree of interconnectivity and interdependence
increases the likelihood of cyberattacks and cyber risks to a ship’s digital infrastructure.
Therefore, although the risk of cyberattacks can hardly be reduced to zero, it is necessary
to study the related cyber decision making and the design of security architectures for
ships. The most common propulsion systems used in modern ships are two-stroke diesel
engines, steam and gas turbines, or combined marine propulsion systems, and these require
the use of different fuels, lubricants, and so on. These complex systems require adequate
personnel on board to monitor and maintain them. And as ships move towards autonomy,
the number of crew members will be reduced and agencies will need to consider special-
ized training and education for personnel involved in special functions to further develop
smart ships.

Smart ships have a positive impact in terms of capital savings, lower fuel costs,
energy savings, improved safety at sea and environmental protection. However, there are
challenges in terms of port operations, port capacity and insurance. Putting smart ships
into practical use reduces human error, which in turn reduces the costs associated with
accidents and subsequent insurance and optimizes operations and processes [13]. Increased
cargo handling capacity and up to a 90% reduction in labor costs will result as smart ships
achieve targeted efficiencies without the need for personnel [14]. Figure 2 shows the overall
percentages for the annual cost of cargo transportation. Smart ships can also increase
productivity and reduce fuel consumption, with each smart ship saving more than USD
7 million over 25 years in fuel consumption, crew wages and supplies [15]. In addition,
the use of smart ships can ensure more effective surveillance activities and facilitate the
integration and visualization of global trade supply chains. Through more advanced and
efficient automated energy management systems and improved navigation systems, smart
ships can also increase the effectiveness and efficiency of other shipping activities, such as
loading and unloading and lock access.
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The development of smart ships cannot be separated from the progress of technology,
and the development of smart ship technology is a gradual evolutionary process. Percep-
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tion technology is the basis for the development of smart ships, and it has undergone an
evolution from single sensors to multi-sensor fusion. Initially, perception technology relies
on basic sonar systems, which can only provide limited environmental information. As
technology progressed, perception technology began to integrate multiple sensors, such
as radar, infrared and vision systems, to collect richer data. These data include not only
static obstacle information, but also dynamic currents and weather conditions. With the
continuous optimization of algorithms, perception technology has become more accurate
and efficient, capable of processing a large amount of data in real time to provide strong
support for ship navigation and decision making. The development of communication
technology is closely linked to the progress of perception technology. Initially, ship com-
munication mainly relied on radio waves, and although this communication method can
realize basic information transmission, it is limited by its signal coverage and transmission
speed. With the emergence of satellite communication and broadband network technology,
the communication capability of ships has been greatly enhanced. Modern smart ships are
able to transmit a large amount of information in real time through high-speed data links,
including the ship’s position, status and environmental data, thus realizing more effective
ship management and maritime traffic coordination. Motion control technology is the core
of the autonomous navigation capability of smart ships. In the early days, the motion
control of ships mainly relied on manual operations, and the crew needed to adjust a ship’s
heading and speed based on experience. With the development of automation technology,
motion control systems began to integrate advanced algorithms and sensor data to realize
automatic navigation and path planning. The motion control system of modern smart ships
can automatically optimize routes, reduce fuel consumption, and maintain the stability
and safety of ships under complex sea conditions. Collision avoidance technology is the
key to ensuring the safe operation of smart ships. With a deeper understanding of ship
dynamics and the marine environment, collision avoidance technology has evolved from
relying on manual judgment and operations to advanced systems that can automatically
detect potential collision risks and take avoidance measures. The development of these
technologies has significantly improved the safety of ships in complex sea conditions. With
the development of single perception technologies, smart ships are beginning to explore
multi-sensor integrated perception technologies. Such fusion technologies are able to inte-
grate data from different sensors to provide a more comprehensive and accurate perception
of the environment. The combined application of technologies such as AIS, radar, infrared
and vision systems can provide more comprehensive environmental sensing capabilities.
This integrated perception not only improves the accuracy of the perception, but also
enhances the robustness of a system, which maintains an effective perception capability
even when some sensors fail. Through the gradual development and mutual integration of
these technological fields, smart ships are moving towards a higher level of automation and
intelligence and the innovation and development of the maritime transportation industry
continues to be promoted.

2.2. Navigation Technology

Navigation technology is the top priority of the whole smart ship system, and appro-
priate navigation technology can improve the safety of navigation, reduce operational costs
and improve the efficiency of navigation at the same time. Determining collision avoidance
strategies and paths by sensing and learning sea information in intelligent ships during
navigation is a problem that needs to be solved through further research. Effective collision
avoidance and safe navigation of smart ships on the sea rely heavily on efficient and useful
smart navigation systems. Therefore, the research on smart ship navigation technology in
Section 2.2 is mainly categorized into perception technology, communication technology,
motion control technology and collision avoidance technology. Their relationships can be
represented in Figure 3:
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2.2.1. Perception Technology

The sensing technology of ship navigation needs to use radar, LIDAR, ship automatic
identification system (AIS), probe, camera and other sensors to collect environmental data
when ships are sailing and build intelligent algorithms such as perception enhancement,
data fusion, target classification, decision recommendation, etc., to process and analyze the
sensed data automatically, distinguish potential dangers and abnormalities, and at the same
time formulate contingency measures, such as adjusting the ship’s sailing routes and speed,
so as to improve the safety of navigation [16]. For smart ships, smart perception technology
may have been developed to a more advanced stage. Ship identification, static obstacle
perception, visibility impact, speed perception, distance perception, observation angle and
cost are all issues that still need to be addressed [12]. Currently, radar is commonly used to
detect targets, but the echo of radar cannot feedback the shape and appearance of the target,
while the long distance and the motion of the ship itself will affect ship perception, so
Liu et al. (2019) proposed a novel ship recognition and tracking system based on a deep
learning framework, using a deep residual network and cross-layer jump connection strat-
egy to extract advanced ship features to improve the recognition classification accuracy [17].
Leng et al. (2019) proposed a new method for ship detection based on single-channel
synthetic aperture radar (SAR) image complex signal klick (CSK), which first detects the
potential location of a ship based on the area proposal and then obtains the final ship target
based on the target identification, which is free from the influence of false alarms caused
by radio-frequency interferences (RFIs) and avoids the leakage of the detection situation
under dense targets [18]. During navigation, the position of the ship to be sensed is often
uncertain, and the problem of recognizing multiple types of ships is also faced, all of which
undoubtedly add to the difficulty of perception. Wang et al. (2022) proposed a real-time
ship collision risk perception model based on two domain proximity parameters, DDV
(Degree of Domain Violation) and TDV (Time to Domain Violation), which adopts the
inverse computation method and incorporates the information of the home route in the
parameter computation and effectively solves the problem caused by the uncertainty of
ship position prediction [19]. In order to achieve the detection and recognition of multiple
types of ships, Zhou et al. (2021) improved the YOLOv5s algorithm by optimizing the loss
function, regrouping the K-mean of the target initial frame at the data input side and en-
larging the sensory field of view at the output frame, which greatly improved the precision
and accuracy of ship image detection [20]. The variability of the maritime environment
poses many challenges for the development of perception techniques; tracking a moving
vessel in the context of moving ocean dynamics is one of them, and researchers overcame
the challenge of tracking and recognizing moving vessels at sea by using background
subtraction with real-time approximation of curve evolution based on level sets to delineate
the contours of a moving vessel in the ocean [21].
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At present, the research on navigation systems is still inseparable from environment
perception in rain, snow, haze, low-light and other bad weather conditions; it is difficult
for navigation systems to realize fast and accurate environment perception and meet the
navigation and safety requirements of ships [22]. To ensure that ship detection remains
accurate in low visibility, Guo et al. (2022) proposed a low-visibility enhancement network
(called LVENet) based on the Retinex theory combined with depth-separable convolution
and further proposed synthetic degraded image generation and hybrid loss functions to
enhance visibility under low-light imaging conditions [23]. Liu et al. (2023) proposed
an integrated low-visibility enhancement network (called AiOENet) that uses a unified
encoder–decoder network architecture to flexibly recover low-visibility images, reducing
the impact of harsh conditions on navigational safety [24]. Wang et al. (2023) constructed
a foggy navigation database using a differentiated deep learning architecture and an
EfficientNet neural network and a new method for foggy images and perceived visibility,
which by replacing the SE module and combining the convergent block-attention module
and the focal point loss function identified the best enhancement algorithm depending
on the fog [25]. Li et al. (2024) proposed an inshore ship real-time detection transformer
(ISRt-detr) that combines multiple coordinated attention and contrast learning to enhance
the ability to perceive ships at night [26]. Detection of small targets at sea is an important
area of ship navigation perception. AIS and radar systems may have the problem of
missed detection; therefore, Wang et al. (2024) introduced an SSIM-based region of interest
search method and an ellipse-weighted fusion method, proposed the ship panoramic vision
stitching algorithm SSIM-EW, and proposed a perceptual model (YOLOv8-SGW) for sea-
surface target detection, which improves the intelligence level of ships [16]. Yan et al. (2022)
established relevant datasets of different complex sea states and introduced the improved
Faster R-CNN for target detection in small sample datasets, which solved the problem of
multiple complex sea-state data being difficult to collect simultaneously [27]. Traditional
multi-feature detectors can only handle three or fewer features. Xu et al. (2020) proposed a
multi-feature detector based on the Isolated Forest (iForest) algorithm in order to detect
small floating targets in sea clutter, which breaks through the limitation of the number of
features and reduces the cost of computation [28].

The flow of ship perception is shown in Figure 4:
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2.2.2. Communication Technology

Maritime radio first appeared on board ships at the beginning of the 20th century and
in the early days was mainly used for transmitting and receiving telegrams from passen-
gers. Subsequently, the International Convention for the Safety of Life at Sea (the SOLAS
Convention) was introduced, and maritime radio communications were developed in the
fields of both applied technology and communication procedures, providing an effective
technical means for the exchange of information and communication between ship and



J. Mar. Sci. Eng. 2024, 12, 1781 9 of 24

shore and between ships. In the 1970s, telex, telephone, and facsimile communications were
gradually applied to ship communications. Narrowband direct printing telegraphy (NBDP)
and radiotelephone (RT) technology were applied to terrestrial communications systems in
the 1970s and 1980s. Satellite communication systems have also been used occasionally.
By the end of the 1980s, satellite systems became more widely used and had a larger share
of applications in ship-to-shore communications [12]. Amendments to the GMDSS on
radio-communications were adopted in 1998 and fully implemented in 1992 to improve
the safety of ships in the field of radio-communications [29]. At present, the information
exchange between ship and shore includes not only the ship’s report and some instruction
telegrams, but also image, voice and various other data about the ship. The information is
digitized and transmitted, laying a certain foundation for the development of intelligent
navigation in smart ships. Interference in communication networks between ships may
lead to data distortion. Xie et al. (2019) proposed a reliability modeling method for ship
communication networks based on the Apriori algorithm, constructed a transmission link
model for ship communication networks and adjusted the reliability of the forwarding
nodes of the links in ship communication networks through a fuzzy PID neural network
control model, which improved the accuracy of data transmission and greatly improved the
quality of communication [30]. Hoole et al. (2013) used the parameters of a communication
system for ship navigation to a predetermined port terminal, utilizing electromagnetic
beams to keep the ship within a marked trajectory boundary line, improving the accuracy of
ship navigation [31]. Bin et al. (2024) proposed the Stackelberg Q-learning-based multi-hop
cooperative routing algorithm (SQMCR) that balances packet forwarding benefits and
energy costs. They also formulated collaborative communication strategies to ensure the
reliability and efficiency of communication and further improve the performance of the
routing algorithm [32].

The communication architecture of a smart ship is shown in Figure 5:
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2.2.3. Motion Control Technology

Uncertainties in ship dynamics, random environmental perturbations and inaccuracies
in measurement information are the main problems facing ship motion control [33]. The
types of ship motion control are shown in Figure 6. The last three categories concern the
control of heading, path, speed and stability, with the focus on which control strategy to
choose. Different types of ship motion control correspond to different control algorithms.
The basic algorithms used for ship heading control are proportional–integral–differential
(PID) control [34], fuzzy logic control [35], predictive control [36], sliding mode control [37],
autoresistant control (ADRC) [38] and artificial intelligence (AI) [39] algorithms, among
others. On this basis, other algorithms are used to improve the effectiveness of heading
control, such as optimizing PID controllers using Particle Swarm Optimization (PSO) [40],
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applying Genetic Algorithms (GA) to the optimization of the parameters of fuzzy con-
trollers, and so on. For the study of ship stability control, the basic algorithms used are
PID control [41], fuzzy control [42], predictive control [43], sliding mode control [44],
ADRC [45], etc. Optimization algorithms are combined with basic algorithms on this ba-
sis, such as the combination of predictive algorithms with fuzzy control [46] and PID
algorithms [47], to ensure the stability of ship navigation. For path tracking, the basic
algorithms used include PID control [48], fuzzy logic control [49], predictive control [50],
sliding mode control [51], ADRC [52], etc. The basic algorithms can be used in combination,
with adaptivity being progressively improved as artificial intelligence is applied to path
tracking. For ship trajectory tracking, the basic algorithms used include PID control [53],
ADRC [54] and artificial intelligence algorithms [55]. Optimization algorithms, such as fuzzy
logic control combined with PID control [56], PSO combined with ADRC [57], and neural
networks combined with predictive control [58], are combined with basic algorithms, which
can be used to achieve trajectory tracking and ship collision avoidance in different situations.
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2.2.4. Collision Avoidance Technology

Early on, since humans were at the center of collision prevention, researchers devel-
oped navigational aids to enhance the situation awareness of human operators. More
recently, with the development of autonomous driving, the focus of research has become
solving collisions through machines [59]. The techniques involved in collision avoidance
are called collision prevention techniques and involve three basic processes, namely, motion
prediction, conflict detection and conflict resolution.

Motion prediction is the basic module of collision avoidance for ships and involves
the process of predicting the trajectories of operating systems and obstacles, which involves
the estimation of the future state of a ship’s motion. This is usually performed based on the
ship’s current position, speed, heading and possible influence of external factors, such as
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wind currents. A five- to ten-second prediction of the ship’s motion can give an operator
enough time to avoid a serious collision. Ding et al. (2022) proposed a new algorithm for
ship motion prediction based on the modified covariance (MCOV) method and a neural
network, which firstly utilizes the MCOV method for spectral analysis of a ship’s motion
and then utilizes the main spectra of the ship’s motion to build a ship motion model through
the neural network (NN), which advances the ship motion prediction time to ensure the
consistency of the accuracy [60]. Path planning for smart ships has been a difficult problem
in research. He et al. (2021) proposed an easy-to-implement multi-ship-encounter collision-
avoidance path-planning method for smart ships, which combines a ship motion model
and a PID controller to predict a ship’s automatic heading change process, providing an
effective method for collision avoidance [61]. Kim et al. (2022) proposed an algorithm that
can predict a ship’s state and plan the optimal route based on the uncertainty of the number
of ships, using the Untraceable Kalman Filter (UKF) to derive the Time to the Closest
Point of Approach (TCPA) and the Distance to the Closest Point of Approach (DCPA) from
the geometric data of the home ship and the target ship [62]. To reduce the limitations
associated with the low accuracy and high complexity of previous methods, Abebe et al.
(2022) investigated a hybrid Autoregressive Integrated Moving Average (ARIMA)–Long
Short-Term Memory (LSTM) model to accurately estimate near-term trajectories and assess
collision risk [63].

Conflict detection refers to whether and when a ship should take evasive action
and is based on motion prediction to determine whether two or more ships are at risk
of collision in the future. Conflict detection in practice consists of three steps: recogniz-
ing a potential collision and alerting the operator; triggering the ship’s self-help system
to find ways to avoid the collision; and evaluating the risks posed by alternative solu-
tions or avoidance actions [59]. The first two focus on risk-informed scenarios, and the
last step focuses on decision making in response to risk. Ship collision risk modeling
and probabilistic and collision risk assessment can all provide effective strategies to re-
duce the risk of ship collisions. Liu et al. (2021) developed a dynamic ship domain
model to propose a systematic approach to detect possible collision scenarios and identify
the distribution of collision risk hotspots in a given area, providing support for iden-
tifying areas of high collision risk and the distribution of risk in time and space [64].
Szlapczynski et al. (2021) proposed a new ship collision risk model utilizing the ship
domain concept and domain-based collision risk parameters for collision risk assessment
using many auxiliary parameters derived from the ship domain concept, such as Time to
Domain Violation (TDV), Time to Domain Exit (TDE), etc. [65]. Liu et al. (2022) further
modeled and visualized ship collision prediction analysis by introducing the Quadratic
Ship Domain (QSD) into the Vessel Conflict Ranking Operator (VCRO), visualizing risk
using the Kernel Density Estimation (KDE) model and finally predicting future risk using
the Convolutional Long and Short-Term Memory Network (ConvLSTM) model [66]. In
terms of probability and collision risk estimation, many scholars have utilized AIS data
for analysis. Liu et al. (2020) established a unified collision risk assessment framework
based on an autoencoder (AE) to clean up historical ship movement data and estimate the
frequency of ship collisions [67]. Xin et al. (2021), on the other hand, quantified the uncer-
tainty distribution of trajectories using AIS data, and a two-stage Monte Carlo simulation
algorithm was used to ensure the accuracy of the estimates [68]. Shi et al. (2022) established
a framework for collision risk assessment at sea considering trajectory-to-trajectory collision
based on a multi-factor Douglas–Peucker algorithm adapted to ship trajectory compression
considering speed and turning constraints [69].

At the heart of ship collision avoidance is conflict resolution, which is the process
of taking appropriate measures to avoid a collision after the risk of collision has been
detected. Many technologies for ship collision avoidance have emerged today, which can
be broadly categorized into six main groups. The first one is rule-based collision avoidance.
Perera et al. (2011) formulated and implemented a new fuzzy inference system based on an
if–then-rule-based decision-making process and integration using the MATLAB software
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platform; this fuzzy logic-based intelligent decision-making system greatly improves the
safety of ships through collision avoidance [70]. The second one is to determine a ship’s
motion using a virtual vector field. Park et al. (2021) used a Bayesian theory-based
Relevance Vector Machine (RVM) to estimate a ship’s collision risk, and it improves the
accuracy and efficiency of ship parameter prediction [71]. The third one is to discretize the
possible scenarios and thus select the optimal one. Chen et al. (2020) proposed an improved
Time-Discretized Non-Linear Velocity Obstacle (TD-NLVO) algorithm and determined
hazardous scenarios based on predefined criteria, which improves the accuracy of analyzing
the geometrical probability of the risk of collision of ships [72]. Tengesdal et al. (2021),
on the other hand, introduced a Cross-Entropy (CE)-based estimation of ship collision
probability, which is able to obtain a low variance estimate of the probability of small
collisions [73]. The fourth is to represent collisions as constraints, and Cheng et al. (2024)
used the Velocity Obstacle (VO) algorithm to support collision avoidance with a trajectory
non-linearly predictable target vessel and reflect the effect of the remaining collision time
on the outcome by being sensitive to the effect of the remaining collision time, which can
provide early warning of dangerous encounters and buy more valuable time for the ship
to perform collision avoidance maneuvers [74]. In order to minimize collision avoidance
operation times, Li et al. (2019) proposed a multi-vessel rolling optimization method for
predicting and calculating the collision risk between vessels [75]. The fifth is the replanning
method, which converts the ship collision avoidance problem into a path planning problem.
Zhu et al. (2023) proposed the improved route-plan-guided Artificial Potential Field (APF)
method, the Fast Local Path Planning (FLPP) method and a dynamic goal-guided (APF)
method, which provide technical support for ships’ autonomous navigation and collision
avoidance [76]. Ren et al. (2021) proposed an autonomous collision avoidance algorithm
for ships based on the improved speed barrier method that includes a path replanning
algorithm by fusing the dynamics model of unmanned ships, the motion model of the
encountering ship and the international maritime collision avoidance rules [77]. The
last one consists of hybrid algorithms, such as the hybrid algorithm for smart ship path
planning, which improves the typical Artificial Potential Field (APF) algorithm and the
Velocity Obstacle (VO) method while combining them with the international rules for
collision avoidance at sea [78], and the intelligent hybrid collision avoidance algorithm
based on deep reinforcement learning, which improves the original sampling mechanism
of DDPG, among others [79].

A comparison of the collision avoidance decision processes for manned ships and
smart ships is shown in Figure 8:
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3. Visual Perception Navigation Technology

Visual aid navigation is an important function of autonomous navigation in smart
ships. In order to reduce the workload of smart ship pilots, a visual assistance system
visualizes and processes the decisions of intelligent navigation devices for computer-
aided visual navigation, which improves the situation awareness of smart ship pilots.
The navigation information of the existing visual navigation system mainly comes from
the traditional equipment on the ship’s bridge, such as AISs, radar, infrared sensors,
electronic nautical charts, etc. Through augmented reality technology, the above navigation
information will be matched to the video imagery of the ship’s video camera so as to
realize the overlap of the virtual information and the real imagery and adjust the routes
and sailing speeds according to the current situation of the ship, as well as make avoidance
decisions so as to improve the safety of the ship [80]. In a navigation system, it is crucial
to accurately detect the navigation information of the target ship. The environmental
perception of ship navigation also means using AIS, radar, depth sounder, camera and
other sensors to collect environmental data for ship navigation and constructing algorithms,
such as data integration and perception enhancement algorithms, to automatically process
and analyze perceived data, identify potential dangers, implement collision avoidance
measures and safeguard the safety of navigation. The visual perception technology of
ships cannot be separated from the environmental data perceived by the sensors; however,
the use of any one of these methods for perception alone may have the problems of
inconsistent information and insufficient data accuracy. At this stage, in addition to single-
sensor perception, the main source of environmental data is multi-sensor data fusion.
Generally, when designing a multi-sensor data fusion architecture, centralized fusion,
distributed fusion and hybrid fusion are involved. We first analyze the technologies
related to single perception, followed by a further study of integrated perception based on
single perception.

3.1. Single Perception
3.1.1. AISs

AIS is the acronym for a universal shipborne automatic identification system; it is a
kind of maritime mobile-band VHF broadcasting system, which is mainly used in the field
of ship navigation and monitoring, realizing the data exchange between ship and ship and
between ship and shore through the VHF radio band. The core function of an AIS system is
to send and receive the dynamic and static information about a ship. Dynamic information
includes the ship’s position, speed, heading, destination and expected arrival time, while
static information involves the ship’s name, call sign, type, size, deadweight tonnage
and other basic attributes [81]. The real-time updating and exchange of this information
enables the ship to understand the surrounding environment and the dynamics of other
ships in a timely manner so as to make more accurate navigational decisions. AISs track
ship movements through the electronic exchange of navigational data between ships via
shipboard transceivers and terrestrial or satellite base stations and uses the information
collected for maritime security [82]. In order to detect multi-vessel encounters, Zhu et al.
(2022) proposed a model to mine multi-vessel encounter situation awareness, analyze
the spatial process of encounters and make collision avoidance decisions from automatic
identification system (AIS) data, which overcomes the problem that the traditional collision
risk assessment methods are only applicable to the differences between two ships and
ship awareness [83]. Meanwhile, Rong et al. (2022) proposed a new method based on an
improved sliding window algorithm to automatically identify ship collision avoidance
behavior from ship trajectories, which can be used to accurately detect ship collision
avoidance behavior from AIS trajectory data [84]. With continuous research and discoveries,
researchers started to analyze AIS data using visual analysis tools. Öztürk et al. (2021)
proposed a tangible visual analysis tool to analyze the changes in maritime traffic using the
spatio-temporal basis of AISs—a novel way to advance the development of judging the
safety of navigation of vessels and waters [85]. He et al. (2021) focused more on the visual
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model and human–computer interaction and designed and applied a visual analytics (VA)
method called AIS Data Quality Visualization (ADQvis) to assess and explore the data
quality of AISs [86]. Navigation technologies for smart ships utilize collected information
to generate computer images, but these images also need to be converted into usable
navigation data through human interpretation, increasing the likelihood of human error.
To address this problem, Carter et al. (2023) designed an AIS-based visually enhanced
simulation system for ship navigation that superimposes computer-generated navigation
information onto real-world scenarios in real time, improving the safety and usability of
the navigation system [87].

3.1.2. Radar

Radar, radio detection and ranging technology comprise an electronic system that uses
electromagnetic waves for target detection and localization. It realizes precise measurement
of the position, speed and shape of a target by transmitting electromagnetic waves and
receiving reflected signals. The working principle of radar is based on the propagation
characteristics of electromagnetic waves, and target information is obtained by analyzing
the time delay, frequency change and phase difference of the echo signal. Radar technology
is also being developed to be gradually applied in visual perception navigation systems.
Xia et al. (2022) innovatively proposed a visual transformer framework based on contextual
joint representation learning, referred to as CRTransSar, for the synthetic aperture radar
(SAR) target detection task, combining the global contextual information perception capa-
bility of a transformer with the local feature representation capability of a convolutional
neural network (CNN), which improves detection accuracy [88]. Chen et al. (2023) pro-
posed a novel robust CFAR procedure for background clutter fitting, which provides a new
interdisciplinary perspective for SAR image segmentation and achieves excellent detection
performance [89]. Mou et al. (2019) introduced a maritime target detection method based
on improved Faster R-CNN for navigation radar PPI (Plane Position Indicator) images,
which improved the target detection performance of radar [90]. In addition to ordinary
sea navigation, ice navigation is likewise an important research problem in path planning.
Hsieh et al. (2021) used nautical radar imaging to reconstruct ice navigation scenarios,
establish a sea-ice warning visualization function and select the optimal path planning
scheme [91]. Naus et al. (2021), on the other hand, evaluated the accuracy of ship posi-
tioning based on the observation of navigational radar echoes from electronic nautical
charts, providing the prerequisites for an autonomous navigation system that replaces the
Global Navigation Satellite System (GNSS) [92]. Chen et al. (2022) proposed a maritime
target detection method based on Marine-Faster R-CNN algorithm in complex environ-
ments, which utilizes convolutional neural networks (CNNs) for feature extraction and
target identification of PPI images generated by radar echoes with enhanced generalization
capability [93]. In order to solve the problems of the low target resolution of traditional
radar and insufficient intuition of ship navigation, Li et al. (2022) proposed a multi-camera
ship “video radar” enhanced navigation system and a deep learning-based feature point
detection method (SRSuperpoint) to improve the navigation interface stitching effect and
present a more comprehensive and intuitive navigational environment [94]. Xu et al. (2023)
used radar sequence images to estimate ship dynamic features, which provides a reliable
method for ship collision risk assessment in ship traffic service centers and improves
operator interactivity [95].

3.1.3. Infrared

Infrared technology (IRT), or IRT for short, is an advanced navigation aid technol-
ogy that detects and recognizes objects based on their thermal radiation properties. The
technology uses infrared sensors to capture the thermal radiation signals emitted by the
target object, and by analyzing the wavelength, intensity and distribution of these signals,
it realizes the precise measurement of the target’s position, speed and shape. Its high-
precision detection capability enables ships to navigate the sea more safely and efficiently.
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Infrared technology is applied in the form of infrared thermometers, infrared spectrom-
eters, infrared communication devices, etc., and infrared cameras are major tools in the
application of infrared technology for sensing and thus assisting navigation systems, so
we mainly analyze the research on the technology related to infrared cameras. Zhou et al.
(2021) proposed a robust foreground detection method based on background modeling
combined with multiple features in the Fourier domain (BMMFF) for ship target detection
in dynamic sea-surface backgrounds, which outperforms the relevant comparable algo-
rithms in different challenging sea-surface scenes [96]. When the weather at sea is clear,
the maritime target is located exactly between the sunlight and the infrared camera, and
the gray value of the background of the infrared image is larger than that of the target.
Dong et al. (2019) designed an infrared maritime target detection algorithm based on
the Visual Attention Model (VAM), which improves the accuracy and efficiency of the
search for maritime targets in backlit environments [97]. In order to improve the target
tracking efficiency of ships, Liu et al. (2022) proposed an efficient method of SiamRPN++
based on cross-connected and spatially transformed networks of AlexNet, which effectively
improved the method to 63.9 FPS [98]. Infrared thermal imaging technology has been
widely used in the field of target detection. It can not only adapt to different light-intensity
environments; at the same time, it has the characteristics of strong concealment, strong
detection ability, long detection distance and high detection sensitivity. Cao et al. (2023)
proposed an improved Canny segmentation algorithm based on the maximum interclass
variance method on the basis of infrared thermal imaging, which stabilized the flow field
of background light to achieve the effective segmentation of a ship’s image and obtained
a high-definition operational target [99]. In addition to the above advantages, infrared
technology also has an inherent advantage in small-target detection. Gao et al. (2023) took
the lightweight model of infrared small-ship detection as the research object, constructed
an infrared small-ship dataset and preprocessed the images using gamma transforma-
tion, and the model parameters were reduced by 83% compared with the YOLOv5m
model [100]. To compensate for the limitations of radar and AISs, such as blind spots
and limited detection ranges, Park et al. (2024) utilized an infrared radiometric camera
to supplement conventional perception sensors which is capable of accurately detect-
ing obstacles at sea and estimating their dynamic motions based on enhanced tracking
results [101].

3.1.4. Visual Technology

Visual Technology, as a high-tech means of simulating human visual perception, gives
machines the ability to “see” through image capture, processing and analysis. This tech-
nology captures images of the surrounding environment through high-resolution cameras
and utilizes advanced image processing and pattern recognition algorithms to provide
real-time visual information to ships. It is capable of recognizing channel markers, ob-
stacles and other vessels, thus assisting navigation decisions. The application of vision
technology not only enhances the ability of ships to navigate in complex sea conditions,
but also provides additional security for maritime safety. Li et al. (2019) designed an
overlapping-sector laser-propagation navigation system that utilizes red and green lasers
to form a sector-shaped safety zone for safe navigation, which is easy to operate and highly
sensitive [102]. Pan et al. (2020) proposed a fine-grained classification RMA (ResNet–Multi-
Scale–Attention) model based on deep learning for analyzing subtle and local differences
between different types of beacons for beacon recognition [103]. Electro-optical (EO) sen-
sors such as video cameras are used to complement marine radar for accurate detection
of objects on the sea surface, and Shao et al. (2022) proposed an enhanced convolutional
neural network, called VarifocalNet*, that improves the detection of objects in harsh ma-
rine environments [104]. There is still a lack of low-cost and reliable sensing devices.
Bi et al. (2023) designed a vision-based method to recognize ships and their microscopic
features for navigational planning of ship collision avoidance, which can effectively and
efficiently identify the navigation signals of the target ship [105]. There are many challenges
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in maritime navigation, such as narrow visibility for ship navigators, the limited view
length angle of a single camera, complex maritime environments, etc. Wang et al. (2024)
proposed panoramic visual perception-assisted navigation technology, introduced an SSIM-
based region-of-interest search method and an ellipsoid-weighted fusion method, and put
forward the ship panoramic visual stitching algorithm SSIM-EW. This technology obviously
improves the ability to detect small targets at sea, which can expand the mariner’s field of
view, identify the targets missed by AIS and radar systems, guarantee navigation safety,
and improve the level of ship intelligence [16].

3.2. Integrated Perception

With the continuous development and advancement of technology, integrated percep-
tion technology plays an increasingly important role in the field of visual perception. It
realizes comprehensive understanding and accurate mapping of complex environments
by integrating data from different sensors and utilizing image processing and machine
learning algorithms. The core advantage of integrated perception is its ability to overcome
the limitations of a single perception method and significantly improve the accuracy and
reliability of target identification through the synergistic effect of multi-source data. For the
fusion of AIS and vision technologies, AIS data can provide the vessel of interest with a
unique Maritime Mobile Service Identity (MMSI), position coordinates, ground heading
and ground speed, while cameras can directly display the visual appearance of the vessel.
Qu et al. (2023) fused AIS and vision data to improve maritime traffic surveillance and
were able to obtain more accurate ship tracking results and motion characteristics, taking
full advantage of multiple sources of data [106]. To address the lack of detailed infor-
mation important for real-world applications in deep learning object detection methods,
Gülsoylu et al. (2024) developed a technique for fusing automatic identification system
(AIS) data with ships detected in images to create a dataset enriched with ship images [107].
Ding et al. (2024) also combined AIS data with visual data and showed that this technique
outperformed the pure AIS data technique during the daytime and outperformed the pure
visual data technique at night, providing more reliable data for collision avoidance [108].

For the fusion of visual data and radar, both electronic charts and radar are essential
equipment in a ship’s navigation system, and the fusion of the two ensures that the ship is
able to clearly display the dangers on the sea surface. Guo et al. (2020) proposed a deep
learning-based data fusion algorithm which extracts robust features from radar images
and merges marine radar and electronic chart data to provide more comprehensive infor-
mation [109]. Zhang et al. (2021) proposed a radar image denoising algorithm based on
the concept of the Generative Adversarial Network (GAN) with Wasserstein distance to
reduce the noise interference brought by external factors and hardware and utilize the
sparse theory to parallelize the high-frequency and low-frequency sub-band coefficients
of detected images obtained by Fast Fourier Transformation to realize the fusion of im-
ages [110]. For the combination of visual and infrared data, Gao et al. (2022) used refined
feature fusion and Sobel loss for the fusion of marine infrared and visible images [111],
while Jeon et al. (2023) introduced an integrated approach to visual and infrared detection
and ranging, combining deep learning-based computer vision techniques with real-time
physics-based EO/IR data processing algorithms [112], all of which enhance the ability of
ships to navigate autonomously in a variety of marine environments.

For the fusion of radar and AIS systems, in the maritime environment, radar signals
are often blocked by islands and large ships, resulting in degradation of radar target
detection and performance. Sun et al. (2023) utilized a priori environmental knowledge
from electronic nautical charts (ENCs) and information from automatic identification
systems (AISs) to propose an AIS-Assisted Integrated Probabilistic Data Association (A-
IPDA) algorithm, which is well able to counteract long-time target occlusion in complex
environments at sea and maintain tracking continuity and tracking accuracy [113]. To
address the fact that false echoes in radar images and packet loss in AIS data transmission
can lead to uncertainty in ship speed and heading estimation, Xu et al. (2023) proposed
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a ship speed and heading estimation method utilizing the fusion of radar sequential
images and AIS data to quantitatively characterize the state of ship navigation [114]. In
addition to the two-by-two combination of sensing technologies, some scholars have also
studied the combination of multiple sensing data to enhance the navigation safety of smart
ships. The use of any one ship motion sensing method alone may have problems such
as inconsistent information and inaccurate data. Therefore, Wu et al. (2022) proposed a
multi-sensor integrated perception system for motion detection of ships and constructed a
multi-sensor integrated ship motion perception system hardware platform consisting of
radar, AIS, camera and other attachments, which significantly improved the consistency of
the information and the accuracy of the data for monitoring ship motion [115].

4. Future Trends
4.1. Trends in Intelligence and Automation

The relevant data for our study can be found in [4,14,16,115] as well as Rolls-Royce
data, which provide us with a solid foundation for the study of smart ship navigation
technology. In particular, the Rolls-Royce data provide valuable references for our research
by providing information about the composition of ship cargo costs, which provides us
with the advantages brought about by the development of smart ships. Through these data,
we were able to gain an in-depth understanding of the pulse of the development of smart
ship navigation technologies, as well as the performance and potential of each technology
in practical applications. The accumulation of these research results adds persuasive
power to our thesis and provides clear guidelines for our future research direction. By
comprehensively reviewing the development history of smart ships, industry guidelines
and current navigation technologies, this paper provides a clear perspective on the future
direction of visual navigation technology for smart ships. Future ship visual navigation
systems will realize the integrated processing of AIS, radar, infrared and visual data
through the fusion of multi-modal perception technologies, thus improving the robustness
and adaptability of the systems. The development of smart ships will benefit from the
convergence of cross-domain technologies, especially the Internet of Things, big data
analytics and cloud computing. The integration of these technologies will provide smart
ships with powerful data processing and analysis capabilities, enabling real-time remote
monitoring and decision support.

With the rapid development of artificial intelligence technology, the intelligent trans-
formation of the future shipping industry has become an irreversible trend. The core of
smart ship technology lies in the intelligence and automation of the ship’s visual navigation
system. The future direction of this system will rely on the in-depth application of deep
learning and machine learning algorithms to achieve accurate identification and analysis
of dynamic changes in the marine environment. Through these advanced algorithms, the
system will be able to provide comprehensive information support to the crew, enhance
their understanding of the surrounding environment and improve their ability to anticipate
potential risks, thereby significantly improving their situation awareness.

4.2. Future Challenges and Opportunities for Smart Ship Visual Navigation Systems

Smart ships are becoming more autonomous, but the challenges that come with this
cannot be ignored. Human–machine collaboration still plays a crucial role in ensuring
safe ship operation. Future smart ship designs will need to focus more on optimizing
human–machine interaction, providing intuitive user interfaces and decision support
tools that will enable crew members to effectively supervise and control ship automation
systems. In addition, with the development of technology, how to ensure data security
and privacy protection against cyberattacks is also a major challenge that smart ship visual
navigation systems need to face. The core of ship visual navigation is security and risk
management. With the advancement of data analysis technology, intelligent systems will
be able to assess navigation risks more effectively, issue timely warnings to crews and
help them take preventive measures, thus improving the safety of navigation. However,
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this also requires intelligent systems to have a high degree of reliability and stability,
and any technical failure or miscalculation may lead to serious consequences. In future
developments, the field of ship navigation will focus more on environmental adaptability
and sustainability, adopting more environmentally friendly technologies, optimizing energy
consumption and reducing the impact on the marine environment. At the same time, the
application fields of ship visual navigation technology will continue to expand, extending
from the traditional shipping field to a wider range of fields, such as marine scientific
research, marine operations and environmental monitoring, providing more diversified
technical support for the development and protection of marine resources and promoting
the sustainable development of the marine economy.

The future of visual navigation systems for smart ships at sea is full of challenges
and opportunities. Continuing advances in technology will drive smart ships towards
higher levels of autonomy and safety. However, this will also bring new requirements, and
the smart ship industry needs to work closely with governments, research institutes and
international organizations to address the challenges and ensure the healthy development
and widespread application of smart ship technology [116]. This includes the development
of new regulations and standards to accommodate the special needs of smart ships, as well
as the development of new education and training programs to ensure that crews are able
to adapt to future technological changes. It is only through these combined efforts that
smart ship visual navigation systems can realize their full potential and revolutionize the
shipping industry.

5. Conclusions

As the scale of maritime transportation continues to expand, maritime safety issues
are becoming more and more prominent, and the research and development of visual
navigation systems for smart ships as a key technology to enhance navigation safety is of
great significance. By comprehensively reviewing the development history of smart ships,
the industry guidelines of the International Maritime Organization (IMO) and current
navigation technologies, this paper provides a clear perspective on the future direction of
the development of visual navigation technology for smart ships.

This paper first summarizes the IMO guidelines and industry codes for smart ships
and reviews the development of smart ships. The emergence of smart ships has not only
reduced the risk of maritime navigation; it has also reduced the impact on the environment
and improved operational efficiency. Through the integrated application of smart ship
technologies, the autonomy of ships has been significantly improved and operators’ situa-
tion awareness has been enhanced. Then, this paper discusses the latest progress in the
key technology areas of perception technology, communication technology, motion control
technology and collision avoidance technology, and analyzes the combination and applica-
tion characteristics of different visual navigation technologies. Together, these technologies
contribute to the performance enhancement of visual navigation systems for smart ships by
improving ships’ environmental sensing capabilities, communication efficiency and motion
control accuracy and the effectiveness of collision avoidance strategies. This paper also
emphasizes the importance of integrated perception techniques. By integrating data from
different sensors, such as AIS, radar, infrared and vision systems, it is possible to provide
a more comprehensive and accurate understanding of the environment, significantly im-
proving the accuracy and reliability of target recognition. Finally, this paper looks forward
to the future development trend of visual navigation systems for smart ships. With the
integration of technologies such as artificial intelligence, the Internet of Things, big data
analysis and cloud computing, future smart ships will realize higher levels of autonomy
and safety. At the same time, human–machine collaboration will continue to be a key factor
in ensuring the safe operation of ships, and the design of future smart ships will pay more
attention to the optimization of human–machine interaction.

The research on visual navigation technology for smart ships is not only of great
significance for enhancing maritime navigation safety, but also has a profound impact in
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terms of promoting the sustainable development of the marine economy. Future research
should continue to focus on technological innovation, cross-domain technology integration,
optimization of human–machine collaboration and sustainability.
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