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Abstract: Assessment of ship performance under in-service conditions is challenging due to the
complex effects of many environmental disturbances. ISO 15016 and ISO 19030 standards are
commonly used to evaluate ship operating performance. However, ISO 15016 requires numerous
variables, a complex calculation formula, and considerable time and cost, and ISO 19030 only
evaluates the reduction of ship speed caused by wind and neglects the effect of waves. To improve
both standards and achieve a more accurate ship performance assessment, this study proposes a new
performance prediction model, the multi-input single-output (MISO) system, which assumes that
each ship has specific frequency characteristics according to type and size. Based on this new model,
in-service navigation data collected from a 176k DWT bulk carrier, which amount to 5.7 million
data points, are analyzed to assess the speed performance of the vessel subject to environmental
disturbances. The proposed model was validated by comparing its results with ISO 19030 and
specifically assessing the speed–power curves and speed reduction measured in operational data
with the influence of environmental disturbances removed.

Keywords: ship speed performance; operational data; dynamic model; multi-input/single-output
(MISO) system

1. Introduction

The severity of climate change has become a global concern, significantly affecting
the global maritime community. In 2023, the International Maritime Organization (IMO)
adopted the 2050 Net-Zero strategy. There have come into effect various regulations such
as the EEDI (Energy Efficiency Design Index), EEXI (Energy Efficiency eXisting Ship Index),
and CII (Carbon Intensity Index) rating systems. This represents a significant strengthening
of energy efficiency regulations for existing ships as well as newbuilt ships. In order to meet
these regulations, a variety of energy-saving methods for ships have been adopted. With
the growing interest in the economic operation and associated new techniques, there has
arisen a high demand for accurate predictions of performance variations for competitive
ship navigation management. To achieve this, the use of ship operational big data analysis
technology to assess ship external forces and improve predictive methods for fuel consump-
tion and operational efficiency is essential. Since the 2010s, ship performance monitoring
systems have been automated and computerized, and accumulate vast amounts of opera-
tional data. Based on these data, the analysis of the impact of external forces experienced
during operation aids in understanding the causes behind performance variations. The
use of ship operational big data analysis technology has prompted the need for analyzing
the assessment of ship external forces and predictive methods for fuel consumption and
operational efficiency.
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The most important challenge in this regard is the accurate estimation of fuel con-
sumption, which has significant impact on environment, the economy, and regulatory
compliance [1–3]. Conventional methods of fuel consumption estimation mainly relied on
on-board measurement data and statistical models, which show inadequacy in tracking
the highly stochastic nature of marine environment and operational characteristics [4–6].
The fuel consumption of ocean-going vessels is affected by a variety of variables such as
weather conditions, sea currents, and route specifics [7–9].

The physics-based method tries to offer a deterministic means of approximating fuel
consumption based on specific assumptions [10]. Tillig and Ringberg [11] suggested a fuel
consumption prediction model based in an energy systems theory. Recently, Kim et al. [12]
proposed a comprehensive methodology consisting of ship resistance estimation and
propulsion efficiency.

Data-driven and/or machine learning approaches encompass various aspects, such as
research on big data preprocessing methods and the development of performance predic-
tion models based on machine learning. There have been reported several review papers
discussing the potential application of machine learning to predict the ship fuel consump-
tion [5,13,14]. Regarding big data preprocessing, the process of variable selection previously
relied heavily on experience. However, there is now a growing trend in conducting re-
search based on correlation analysis between variables, leading to more diverse approaches.
Petersen et al. [15] proposed a fuel consumption prediction model by performing principal
component analysis (PCA) in the data preprocessing stage to understand the relationships
between variables. They used artificial neural networks and Gaussian processes to develop
the model. Shin et al. [16] created an approximation model using mathematical models by
analyzing the sensitivity between the collected data to assess the impact of each variable.
Yoo and Kim [17] also developed prediction models for engine output and speed based on
the relationships between known physical systems of ships using regression analysis. As
the amount of data becomes extensive and the prediction based on general ship mechanical
relationships reaches its limits, research on performance prediction using machine learning
is actively pursued. Kim et al. [18] compared their prediction model using the Support
Vector Machine (SVM) algorithm with the ISO 15016 [19] method. Karagiannidis et al. [20]
proposed a method of processing ship operation data and developed an artificial intel-
ligence model aimed at reducing the carbon emissions of ships. Wahl [21] presented a
technique to predict the fuel consumption of ships in transit, taking into account external
environmental factors such as currents, winds, and waves. Uyanik et al. [22] performed a
machine learning study to predict the fuel consumption of a ship based on the ship engine
data. Gupta et al. [23] applied such machine learning methods as principal component
regression (PCR), partial least squares regression (PLSR), and artificial neural network
(ANN) to analyze the hydrodynamic performance of sea-going ships. Abebe et al. [24]
proposed a machine learning approach using the Automatic Identification System (AIS) to
predict ship speed; they also compared their deep learning model to the ISO 19030 method
to predict the increase in speed loss due to fouling.

A detailed inspection of the above-mentioned literature, however, indicates that the
accurate and reliable assessment of the performance of a ship in real operating conditions
has rarely been presented. Ocean-going vessels are ceaselessly exposed to environmental
disturbances such as wind, waves, and currents. The random nature of such disturbances
gives rise to random added resistance and added power. In real practice, ships are mainly
operated at a constant engine speed and power, and the speed of the ship fluctuates by the
balance between the power supply from the engine and the varying power demand due to
the disturbances. Consequently, the ship speed has a large amount of scatter at constant
power, which is contrary to the well-defined speed–power relationship obtained from a
model test or sea trial. In real operating conditions, engine power should be regarded as
the input and speed as the output. However, most of the existing literature maintains the
classic speed–power relationship, which attempts to predict power consumption at a given
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speed. That is one of the major hindrances to a reliable assessment of ship performance in
actual operating conditions.

In this study, improvements were made to address the limitations of previous research.
Firstly, we did not rely on ISO standard models or regression methods based on ship
mechanical relationships. Instead, our study pursued the correct, reversed causality in real
operating conditions, as shown in Figure 1. In other words, we propose a dynamic model
by which the correct speed can be predicted at measured shaft power and the analysis of
environmental disturbances. Secondly, we designed a prediction model that considers the
dynamic characteristics of a ship during operation, taking into account the influence of
external forces. The ISO 19030 standard calculates speed variations using performance
values (PV) and treats the effect of disturbances statically by excluding dynamic effects.
However, our study considered the dynamic effects of a ship’s navigation conditions where
external forces such as relative wind speed and wave height fluctuate (increase). As a
result, wind resistance, wave resistance, and other forces increase accordingly and cause
variations in speed performance. We assumed that there were frequency characteristics
(time delays) about the time constant of the ship, which varies based on the size and type
of the ship, and we interpreted these time constants. Thirdly, in the data interpretation
process, we opted to use most of the operational data without extensive preprocessing
such as filtering, except for the minimal removal of outliers (e.g., berthing data and data
with excessive speed change) in contrast to the practice based on the ISO 19030 standard
reported by Cho et al. [25].
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Based on the above assumptions, a novel multi-input single-output (MISO) linear
dynamic response model is established to identify factors that influence ship speed per-
formance degradation through correlation analysis between external forces and speed in
real sea states. In addition, we propose a performance prediction model that quantifies
the impact of each variable on speed performance by isolating each impact. While the
existing ISO 19030 standard can only assess speed performance degradation for a specific
ship, the present model, which considers the characteristics of real sea states, can preclude
the influences of environmental disturbances. This permits a more reasonable assessment
of ship performance and, thus, the comparison of performances between different ships.
With these improvements over existing research and standards, we present an enhanced
performance assessment model for ships in real operating conditions. It is also worth
mentioning that the present ship speed performance model could be integrated into a
more comprehensive model for the ships with an unconventional propulsion system or
autonomous control system. Exemplary models have been developed by Boychuk et al. [26]
and Zwierzewicz et al. [27].

The organization of the paper is as follows: Section 2 describes the shortcomings
of the existing ISO standards for ship performance assessment; Section 3 formulates the
new analysis model devised in this study and provides detailed information on the vessel
and operational data.; Section 4 describes how the new dynamic model is configured to
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analyze the input–output relationship between environmental disturbances and speed
fluctuations. Section 5 presents the main results obtained from the study’s MISO linear
dynamic response model and compares them with those from the existing ISO 19030
standard. Section 6 discusses the main findings and implications of the present study.
Finally, Section 7 provides the main conclusions.

2. Improvement of ISO Standard

Various models based on actual operation data for ship performance prediction are be-
ing proposed. In the past, ship performance prediction relied on non-standardized analysis
methods, leading to frequent disputes between designers and shipowners. To standardize
ship performance prediction, ISO 19030 standard [28,29] has been established and has
undergone several revisions, and is widely used. The authors’ previous papers [25,30] also
evaluated performance based on ISO 19030. While ISO standards provide a standardized
interpretation based on test results for fundamental aspects, there is still room for improve-
ment. Therefore, research on the improvement of ISO 19030 standard and the proposal
of new models using machine learning for big data analysis are actively conducted in
the field of ship performance prediction. The objective of this study is also to identify
improvement points in existing research and propose new models for the enhancement of
ship performance prediction in actual operating conditions.

The ISO 19030 standard explains the general principles for measuring changes in
hull and propeller performance and defines a set of performance indicators for hull and
propeller maintenance, repair, and retrofit activities. It employs the method of correcting
the collected data for wind resistance and filtering to obtain the propulsion power corrected
to calm sea conditions and defines the ship’s performance by comparing the expected
speed with the measured ship speed difference. It provides detailed explanations of data
preprocessing and force-correction methods, making it a user-friendly standard, but there
are some areas for improvement, including the following:

- Correction for External Forces: While ISO 19030 considers the influence of wind, it
does not account for the effects of waves and currents. As a result, the interpretation
of performance is done with the inclusion of wave and current effects, making it
challenging to compare the performance of different vessels. However, it allows for
the comparison of the same vessel’s hull and propeller performance over time with
the intention to measure performance changes for a specific vessel, as specified in the
ISO 19030 standard.

- Preprocessing of Operational Data: Preprocessing operational data according to the
ISO 19030 standard involves dividing the data into 10 min blocks and applying
Chauvenet filtering to major operational data such as speed through water, speed
over ground, and RPM. However, this filtering process can lead to a significant
amount of data, ranging from 30% to 70%, being filtered out due to environmental
factors. This raises concerns about whether the performance analysis results can
be considered representative of the vessel’s entire operational range [31]. Figure 2
shows the application of data filtering before and after according to the ISO 19030
standard for the first voyage of the target vessel (approximately two weeks). The blue
points represent the data distribution over the previous two-week period. However,
as evident from the plot, many data points deviate from the clustered data. Such
data points are filtered out through two rounds of filtering, leaving only the valid
data points represented by green diamond shapes, which are used for interpretation.
Consequently, the blue dots and orange crosses represent the data filtered during the
preprocessing and this filtered portion is roughly estimated to be approximately 70%
in this particular sample.
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3. Materials and Methods
3.1. Multi-Input, Single-Output (MISO) Linear Dynamic Response Model

In the preceding section, we raised the issue that a new performance prediction model
needs to reduce the excessive data loss due to over-filtering during the preprocessing stages.
The main objective of this new model is to analyze the impact of interconnected marine
forces on a component-wise basis and reduce data loss. To achieve this, the proposed model
takes a more dynamic approach to the analysis. It considers the varying effects of maritime
forces, such as relative wind speed and wave height, during actual operations. By doing
so, the model aims to minimize the data loss caused by excessive filtering and provides a
more comprehensive understanding of how these forces influence vessel performance. The
fundamental concept is based on the general notion that changes in external forces during
actual vessel operations, such as relative wind speed and wave height, result in added
resistance, including wind resistance and wave resistance, which in turn, leads to variations
in the vessel’s speed over ground (SOG). Additionally, the proposed model assumes the
existence of frequency characteristics, represented by time constants, associated with the
size and type of the target vessel.

Real operational data are not only vast in quantity but also contain a wealth of informa-
tion, making their analysis very complicated. Therefore, for the analysis of operational data,
we propose a prediction model based on the data interpretation technique presented by
Bendat and Piersol [32]. This technique involves transforming the measured input/output
data into the frequency domain and identifying the optimal linear system between the
input and output. We have modeled the unknown frequency characteristics of various
variables that affect the vessel’s speed performance as a linear multi-input single-output
(MISO) system. By determining the optimal linear transfer function between the input
variables and the output, we can calculate speed performance variations without the in-
fluence of environmental variables. This dynamic model is distinct from the traditional
static model because it takes into account the time-varying nature of the vessel’s speed
performance and eliminates the effects of environmental variables. The general MISO
model for arbitrary inputs is shown in Figure 3a. Here, the Xi( f ), i = 1, 2, · · · , q term
represents the Fourier transformation of the input variables Xi(t). The linear frequency
response function is denoted by Hiy( f ), and the unknown external output noise in the ideal
model is represented by N( f ). The concept of the model for ordered conditional inputs in
Figure 3a is illustrated in Figure 3b. The Fourier transformations Xi ∼ Xq are computed
sequentially for input variables. The input variables are not interrelated, and the expression
for input Fourier transformation Xi( f ), i = 1, 2, · · · , q indicates that the linear effect of
Xi−1(t) has been removed from Xi(t) by the optimal linear system.
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Figure 3. Multi-input, single-output (MISO) model: (a) general model for arbitrary inputs; (b) modi-
fied model for ordered conditioned inputs.

The present study defines a performance prediction model for one ship speed output
with three external force inputs. As shown in Equation (1) and Figure 4, the model was
defined to sequentially remove the influence of each force and observe the speed variation
for each variable. It is worthwhile to mention that Equation (1) and Figure 4 are detailed
representations of Figure 1, indicating how the external forces due to environmental
fluctuations affect the ship speed in dynamic manner.

Y( f ) = L1yX1 + L2yX2·1 + L3yX3·2! + N (1)
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Figure 4. Multiple-input model for ordered conditioned inputs (three inputs and single output).

For the interpretation of Equation (1), the relevant equations are as follows: G is the
spectral density function, where Gii represents the auto-spectrum, and Gij represents the
cross-spectrum. Liy in Equation (4) is the optimal transfer function. As a result, each linear
system Liy is defined as the ratio of the cross-spectral density function between the input
and output to the auto-spectral density function of the input. When expressed as linear
systems for each input variable, it can be represented as Equations (5)–(8). The last term
on the right-hand side of Equation (1), N, represents the spectrum when calculated as a
non-linear term unrelated to each input. It accounts for speed performance degradation
factors other than external forces, such as fouling, aging, or any other causes that may lead
to speed performance degradation in the analysis of ship performance data.

Gii =
2
T

E[X∗
i Xi], Gij =

2
T

E
[
X∗

i Xj
]

(2)

Giy =
2
T

E[X∗
i Y] (3)

Liy =
Giy·(i−1)!

Gii·(i−1)!
(4)

L1y =
G1y

G11
=

E
[
X∗

1Y
]

E
[
X∗

1 X1
] , Yy·1 = Y − L1yX1 (5)
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L2y =
G2y·1
G22·1

=
E
[
X∗

2·1Yy·1
]

E
[
X∗

2·1X2·1
] , Yy·2! = Yy·1 − L2yX2·1 (6)

L3y =
G3y·2!

G33·2!
=

E
[
X∗

3·2!Yy·2!
]

E
[
X∗

3·2!X3·2!
] , N = Yy·2! − L3yX3·2! (7)

Xj·r! = Xj·(r−1)! − LrjXr·(r−1)! (8)

Here, X1, X2·1, X3·2!, and Xj·r! represent the Fourier transforms of conditioned inputs. After
the Fourier transforms Y( f ), Yy·1( f ), Yy·2!( f ), and N( f ) are calculated from the nested
calculations described in Equations (2)–(8) and Figure 4, the time histories of respective
speed drops in time domain are obtained by inverse Fourier transform.

During operation, when external factors such as relative wind speed and wave height
vary (increase), the resistance forces such as wind resistance and wave resistance also
increase, causing fluctuations in the speed over ground (SOG). In this context, it is assumed
that the time constant (time delay) associated with the size and type of the target vessel
exists, which affects the frequency characteristics. The concept of the time constant is
illustrated in Figure 5. The input transmitted is assumed to be a fixed random signal with
zero mean value. Here, α represents the constant attenuation factor, τ0 is the constant time
delay, and n(t) represents the noise in the output.
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3.2. Target Vessel

The vessel under consideration is a 176k DWT bulk carrier, whose principal particulars
are provided in Table 1. This vessel operates regularly between Australia and South Korea
as a bulk carrier. When traveling from Australia to South Korea, it operates in a “laden”
condition with cargo on board, and when traveling from South Korea to Australia, it
operates in a “ballast” condition with empty cargo holds. The voyages alternate between
two ports, and each voyage period lasts approximately two weeks.

Table 1. Principal particulars of the 176k DWT bulk carrier.

Designation Symbol Value

Length overall LOA 291.80 m

Breadth B 45.00 m

Mean draft, laden condition TL 18.25 m

Mean draft, design condition TD 16.50 m

Mean draft, ballast condition TB 7.95 m

3.3. Operational Data

The operational data used in this study was automatically obtained by the Ship
Performance Monitoring System (SPMS) installed on the 176k DWT bulk carrier since
November 2014. The parameters of the automatic identification system (AIS) and weather
data following the manner described in Abebe et al. [23] were automatically collected
at 10 s intervals. The data sets in this study partly overlap those used in Cho et al. [24].
The analyzed data include information from three years after the first dry docking and
approximately two years after the second dry docking. The main events and operational
periods covered in the data range from November 2015 to November 2020. The entire data
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set analyzed in this study contains approximately 5.7 million instantaneous data points.
For more specific details, refer to Table 2. Table 3 shows the voyage information, average
drafts, and acquired data during the second service period of approximately three years
of operational data. The voyage information is based on the information provided by the
shipping company.

Table 2. Key events and service periods for the 176k DWT bulk carrier.

Event Time/Period Voyage No.

SPMS installation November 2014

First dry docking November 2015

Second service period (3 years) November 2015~November
2018 Ballast 38~64/laden 38~64

Second dry docking December 2018

Third service period (2 years) January 2019~November 2020 Ballast 65~78/laden 65~78

Table 3. Voyage details (second service period).

Voyage Loading
Condition

Departure
[YYYY-MM-DD]

Arrival
[YYYY-MM-DD]

Mean
Draft [m] No. of Data

39
Ballast 2015-11-20 2015-11-21 8.65 10,571

Laden 2015-12-07 2015-12-20 14.96 9429

39
Ballast 2015-12-25 2016-01-04 7.55 7406

Laden 2016-12-25 2016-01-27 17.98 8119

. . ..

62
Ballast 2018-09-18 2018-10-02 7.93 114,163

Laden 2018-10-10 2018-10-27 17.71 126,279

63
Ballast 2018-11-03 2018-11-18 8.29 84,592

Laden 2018-11-19 2018-12-02 18.08 105,038

4. Inputs and Outputs for the Dynamic MISO Model
4.1. Data Preparation

Real operational data are not only vast in quantity but also contain a wealth of infor-
mation, making their analysis very complex. Therefore, the inclusion of all the information
may compromise the accuracy of data interpretation. However, excessive filtering may
also lead to performance analysis that fails to capture the unique characteristics of the
operational data. In many studies involving operational performance big data, the data pre-
processing stage is considered essential, and complex steps for data filtering and variable
selection are often performed. Aside from using ISO standards for filtering methods, expert
judgment from performance analysts is also employed to filter out outliers. However, in
this study, the proposed model did not apply additional preprocessing beyond filtering
for mechanical anomalies and environmental factors based on ISO 19030 standards during
the data collection phase. As a result, more than 80% of the collected operational data for
the specific vessel were used for interpretation. While the disadvantage of having a large
amount of operational data is the potential increase in interpretation time, the proposed
predictive model, considering its limited number of interpretation variables, did not incur
any penalties in terms of interpretation time compared to the ISO 19030 standard method,
which requires multiple data for performance analysis.
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4.2. Selection of Independent Variable Using Correlation Analysis

The proposed multi-input single-output (MISO) model relies on carefully selecting
the input variables. The input variables that affect the output variable, which is speed
performance, were chosen based on the correlation analysis between the input variables
and the output variable, speed over ground. The variables used in the correlation analysis
were selected based on the key parameters of the ISO 19030 standard and feature extraction
from Abebe et al. [23]. The six selected variables are relative wind speed, current speed
(from hindcast data), calculated current speed (difference between the speed through water
(STW) and the speed over ground (SOG)), wave height (from hindcast data), bow relative
motion, and shaft horsepower. These variables were chosen to assess their correlation
with the output variable, which is the SOG. Figure 6 displays the correlation coefficients of
the six variables with the SOG. For each SOG, high positive and negative correlations are
observed, indicating strong relationships. The correlation evaluation revealed that relative
wind speed, calculated current speed (=STW − SOG), wave height, and shaft horsepower
have high correlations with the speed over the ground. The ranking of input variables was
evaluated based on the variables with high correlations.
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4.3. Selection of Independent Variable Using Coherence Function

The proposed model aims to predict the extent of the influence on speed performance
by sequentially excluding the impact of other variables included in the input. Therefore, the
order of input variables is crucial. To determine the order of input variables, the ordinary
coherence (the contribution between input and output) was evaluated. After excluding the
variables with low correlation, the contribution evaluation results for the remaining four
variables according to Equation (9) are shown in Table 4.

r2
xy =

∣∣Gxy( f )
∣∣2

Gxx( f )Gyy( f )
(9)

Based on the coherence analysis results, the order of input variables is as follows: “Cur-
rent Speed—Shaft Horsepower (SHP)—Wave Height—Relative Wind Speed”. However, it
was decided to exclude the variable “Shaft Horsepower”. In ideal conditions, any change
in the shaft horsepower should give rise to speed change according to the speed–power
curve, thereby making the coherence value near unity. In other words, the shaft power is
considered to be input for the voluntary speed adjustment. However, the low coherence
values around 0.1 between the SHP and the SOG imply that the SHP fluctuations measured
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in real operation are essentially irrelevant measurement noise that can hardly result in
speed change. The main engines of the ships are operated predominantly at constant power
mode, which also makes it irrelevant to consider the SHP fluctuations. It is also worthwhile
to mention that the relevant inputs for this study are the environmental disturbances that
give rise to involuntary speed drop through added resistance. Consequently, the final
order of input variables and their rankings are as follows: “Current Speed—Wave Height—
Relative Wind Speed.” When the determined input variables are applied to Equation (1), the
proposed ship’s performance prediction model (three inputs/single output) is represented
as Equation (10). The values on the right-hand side represent the speed variations caused
by each external force.

Y( f ) = L1yX1(current) + L2yX2·1(wave) + L3yX3·2!(wind) + N (10)

Table 4. Values of ordinary coherence functions.

Draft Voyage rel. Wind
Speed Wave Height SHP Current Speed_CAL

(=STW − SOG)

Ballast

65 0.072 0.174 0.204 0.256

66 0.065 0.209 0.170 0.266

67 0.040 0.068 0.096 0.332

68 0.039 0.044 0.060 0.308

69 0.096 0.165 0.168 0.276

70 0.045 0.095 0.127 0.156

71 0.048 0.145 0.103 0.212

Average 65~71 0.058 0.129 0.133 0.258

Laden

65 0.054 0.162 0.116 0.290

67 0.042 0.083 0.079 0.451

68 0.032 0.055 0.056 0.338

69 0.032 0.070 0.073 0.387

70 0.074 0.162 0.095 0.291

Average 65~70 0.047 0.106 0.084 0.351

Figure 7, a graphical representation of Equation (10), illustrates the differences between
the proposed MISO model and ISO 19030. Here, the total speed drop corresponds to Y(f )
in Equation (10). The ISO 19030 standard compensates only for speed reduction caused
by wind, while the MISO model sequentially eliminates speed reductions due to currents,
waves, and wind based on the order determined by the contribution of input variables.
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During the analysis of the entire navigation data, the frequency characteristics of
each variable are used for Fourier transformation. To perform the Fourier transformation,
the entire data is divided into 2n variable blocks. Initially, the variable block size was
considered for a single-input single-output (SISO) model, and it was found to converge
with 1024 blocks (210) or more. Therefore, the data were divided into 1024 blocks, each
containing data points from 10 s at 10 s intervals, resulting in a total duration of 10,240 s.
Each variable is defined as the fluctuation (deviation) from the mean value in each block.
By finding the optimal linear transfer function (Liy) between the input variables and the
output, the proposed model sequentially removes the influence of each external force while
examining the speed variation for each variable.

5. Results of Speed Performance Analysis Using MISO Model
5.1. Behavior of Speed Performance with Respect to Voyage

In ISO 19030, the principal value (PV), which is a measure of the speed loss in real
operation, can be calculated at every time instant. Similarly, the present Dynamic MISO
model is capable of predicting the speed loss components at every time instant by means
of Equation (10). Due to the vast amount of data and the highly stochastic nature, it is
often convenient to take the average of such instantaneous speed loss over the entire time
duration of each voyage. The resulting speed losses with respect to voyage pertaining
to each input variable (external force) are listed in Tables 5 and 6 for the ballast condi-
tion and the laden condition, respectively. The corresponding graphs are presented in
Figures 8 and 9. The total losses represent the difference between the expected speed based
on the operation horsepower and the actual measured speed, for each voyage. They also
provide information on how the three external forces influenced the total loss. The N-loss,
obtained after excluding the effects of each external force, represents the non-linear impact,
such as fouling.

Table 5. Speed loss percentage for input variables—ballast condition.

Draft Voyage
Expected

Speed
[knots]

Measured
Speed
[knots]

Total Loss
[knots]

X1 Loss
(Current)

[%]

X2 Loss
(Wave

Height) [%]

X3 Loss
(rel. Wind
Speed) [%]

N-Loss
(Fouling,

Aging) [%]

Ballast
(second
service)

40 16.195 15.574 0.621 (0.38%) 0.98 0.31 0.22 2.33

41 14.847 14.159 0.688 (4.63%) 1.08 0.33 0.24 2.98

42 15.553 14.675 0.878 (5.65%) 1.21 0.33 0.25 3.86

43 14.093 13.498 0.595 (4.22%) 1.08 0.31 0.21 2.63

44 13.961 13.088 0.873 (6.25%) 1.01 0.35 0.24 4.65

46 14.617 14.070 0.547 (3.74%) 0.98 0.36 0.22 2.19

47 13.874 13.278 0.596 (4.30%) 0.99 0.32 0.25 2.74

49 15.634 14.078 1.556 (9.95%) 0.93 0.28 0.10 8.65

50 15.481 15.096 0.385 (2.49%) 1.03 0.26 0.13 1.07

51 13.954 13.318 0.636 (4.56%) 1.04 0.32 0.14 3.06

52 15.435 14.872 0.563 (3.65%) 1.02 0.25 0.17 2.22

53 15.444 14.497 0.947 (6.13%) 1.02 0.25 0.17 4.70

54 15.454 14.646 0.808 (5.23%) 1.05 0.25 0.16 3.77

55 15.826 15.272 0.554 (3.50%) 0.99 0.16 0.13 2.22

60 15.579 14.310 1.269 (8.15%) 1.17 0.38 0.19 6.41

61 15.856 14.594 1.262 (7.96%) 1.08 0.22 0.16 6.50

62 15.677 14.792 0.885 (5.65%) 1.10 0.24 0.13 4.17

63 15.597 14.528 1.069 (6.85%) 1.07 0.24 0.13 5.40
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Table 5. Cont.

Draft Voyage
Expected

Speed
[knots]

Measured
Speed
[knots]

Total Loss
[knots]

X1 Loss
(Current)

[%]

X2 Loss
(Wave

Height) [%]

X3 Loss
(rel. Wind
Speed) [%]

N-Loss
(Fouling,

Aging) [%]

Ballast
(third

service)

65 14.052 13.372 0.680 (4.84%) 2.05 0.77 0.68 1.34

66 15.158 14.628 0.530 (3.50%) 1.81 0.57 0.55 0.57

67 14.589 13.659 0.930 (6.37%) 1.29 0.40 0.42 4.26

68 15.394 13.244 2.150 (14.0%) 1.10 0.32 0.31 12.23

69 15.065 13.087 1.978 (13.1%) 1.38 0.52 0.50 10.73

70 14.840 14.462 1.378 (9.29%) 1.42 0.67 0.53 6.66

71 14.454 12.370 2.084 (14.4%) 1.47 0.64 0.50 11.81

72 14.062 12.670 1.392 (9.90%) 1.43 0.59 0.43 7.45

73 13.837 12.783 1.054 (7.62%) 1.52 0.52 0.40 5.17

74 14.072 12.675 1.397 (9.93%) 1.32 0.45 0.39 7.76

75 14.335 12.164 2.171 (15.1%) 1.27 0.40 0.29 13.18

76 14.140 11.845 2.295 (16.2%) 0.13 0.57 0.41 15.12

77 13.935 11.974 1.961 (14.1%) 1.50 0.68 0.50 11.39

Table 6. Speed loss percentage for input variables—laden condition.

Draft Voyage
Expected

Speed
[knots]

Measured
Speed
[knots]

Total Loss
[knots]

X1 Loss
(Current)

[%]

X2 Loss
(Wave

Height) [%]

X3 Loss
(rel. Wind
Speed) [%]

N-Loss
(Fouling,

Aging) [%]

Laden
(second
service)

39 14.684 14.14 0.540 (3.68%) 0.99 0.54 0.38 1.76

40 13.890 13.184 0.706 (5.08%) 1.14 0.26 0.33 3.35

41 14.624 14.047 0.577 (3.95%) 1.16 0.18 0.59 2.02

42 13.412 12.727 0.685 (5.11%) 0.94 0.35 0.27 3.55

43 13.164 12.634 0.530 (4.03%) 1.00 0.32 0.26 2.45

46 14.024 13.311 0.713 (5.08%) 1.03 0.35 0.25 3.46

47 14.124 13.143 0.981 (6.95%) 0.98 0.23 0.22 5.52

49 13.767 13.253 0.514 (3.73%) 1.22 0.24 0.14 2.14

50 13.630 12.756 0.874 (6.41%) 1.19 0.32 0.14 4.77

51 14.164 13.352 0.812 (5.73%) 1.09 0.30 0.17 4.17

52 14.006 12.915 1.091 (7.79%) 1.04 0.24 0.16 6.35

53 14.055 13.577 0.478 (3.40%) 1.10 0.24 0.14 1.93

54 14.105 12.881 1.224 (8.68%) 1.06 0.23 0.13 7.26

59 13.764 12.609 1.155 (8.39%) 0.96 0.23 0.16 7.04

60 14.083 13.624 0.459 (3.26%) 1.13 0.19 0.14 1.80

61 14.025 13.504 0.521 (3.71%) 1.01 0.26 0.14 2.30

62 14.086 12.729 1.357 (9.63%) 1.04 0.24 0.11 8.24

63 14.056 12.944 1.112 (7.91%) 1.05 0.22 0.12 6.52
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Table 6. Cont.

Draft Voyage
Expected

Speed
[knots]

Measured
Speed
[knots]

Total Loss
[knots]

X1 Loss
(Current)

[%]

X2 Loss
(Wave

Height) [%]

X3 Loss
(rel. Wind
Speed) [%]

N-Loss
(Fouling,

Aging) [%]

Laden
(third

service)

65 13.836 13.089 0.747 (5.40%) 1.50 0.51 0.35 2.70

67 14.077 12.622 1.455 (10.34%) 1.17 0.32 0.22 8.24

68 14.009 12.898 1.111 (7.93%) 1.02 0.42 0.29 3.48

69 13.881 13.204 0.677 (4.88%) 1.37 0.50 0.32 2.29

70 13.648 11.368 2.280 (16.7%) 1.41 0.75 0.47 8.02

71 13.481 10.825 2.656 (19.7%) 1.16 0.90 0.65 5.96

72 13.957 12.739 1.218 (8.73%) 1.23 0.34 0.37 6.41

73 13.599 12.609 0.990 (7.28%) 1.29 0.38 0.33 5.08

74 12.878 11.337 1.541 (12.0%) 1.22 0.39 0.38 10.15

76 13.384 12.028 1.356 (10.1%) 1.41 0.50 0.35 7.63

77 13.753 12.384 1.369 (9.95%) 1.36 0.38 0.34 7.18
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5.2. Comparison with ISO 19030 Standard Analysis Results

The results of the present model, represented by the N-loss values, were compared
with the performance values (PV) from the ISO 19030 standard. These values represent
the speed loss after compensating for the proposed external forces in each model. The
comparisons are shown in Figures 10 and 11; the red dotted lines represent the results from
the ISO 19030 standard, while the black solid lines represent the results from the MISO
model. The PV values from the ISO 19030 standard, which only compensate for the increase
in resistance due to wind, show a nearly constant deviation of about 5% when compared
to the N-loss values, which include compensation for all three forces (wind, waves, and
currents). This indicates that the approximately 5% speed loss difference can be attributed
to differences in speed correction due to waves and currents. This trend is observed for
both ballast and laden conditions.
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5.3. Comparison of Speed–Power Curves

Comparison of the speed–power curves for the original navigation data, ISO 19030
standard, and MISO model interpretation was performed. The reference speed–power
curves are based on model test results and defined in the form of a power law equation
as shown in Equation (11). The coefficients A and B for ballast conditions are 3.492 and
0.764, respectively, while for laden conditions, they are 3.16 and 2.725, respectively. The
speed–power curves of the ISO 19030 standard method and MISO model were calculated
by assuming a curve that shifts the original speed–power curve by an amount as shown in
Equation (12), to minimize the mean square error (MSE).

Power = BVA (11)

Power = B(V − V0)
A (12)

For each voyage, we calculated the R2 (Equation (13)) and mean absolute percentage
error (MAPE, (Equation (14)), comparing the predicted values with the actual values. The
sum of squares error (SSE) represents the difference between the measured and predicted
values, the sum of squares due to regression (SSR) represents the difference between the
predicted values and the mean, and the sum of squares total (SST) represents the difference
between the observed values and the mean. The results for the ballast draft and the laden
draft are plotted in Figure 12a,b, respectively. In all voyages, the present MISO model
provided R2 values closer to 1 and a smaller MAPE than ISO 19030. This supports that the
MISO model led to a significant improvement in prediction accuracy over the ISO 19030.
This improvement is even more remarkable for the laden draft cases.

R2 = 1 − ∑N
i=1 (Ppredicted

i − Pactual
i )2

∑N
i=1 (Ppredicted

i − Pactual
i )2

= 1 − SSE
SST

=
SSR
SST

(13)

MAPE =
100
N

×
N

∑
i=1
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Figure 13 provides a clear illustration of the external force corrections based on the
ISO 19030 standard and the MISO model, as explained in Figure 9. There are plotted
four graphs, each of which corresponds to the individual voyage either in ballast draft
(Figure 13a) or laden draft (Figure 13b). The symbol in the graph denotes each operational
speed-power data, which is colored blue (raw data), red (ISO 19030), and green (MISO).
At first sight, a significant scatter of blue symbols (raw data) is noted. This is a commonly
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observed feature in the literature [22] and is associated with the random nature of external
marine forces. The red symbols obtained from ISO 19030 still have a considerable degree of
scatter. This implies that ISO 19030 seldom provides the correction of each speed–power
datum except the filtering capability. However, it is remarkable that the green symbols
by the present MISO model exhibit much smaller scatter in all voyages of Figure 13. It
is noteworthy that the MISO model did not adopt filter preprocessing, which is used in
the ISO 19030. Instead, the inputs and output were rectified by an optimal linear transfer
function. The reduced extent of data scatter proves that such correction was effective to
identify more reliable speed–power relationships in real operating conditions.
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The solid curve in the same color represents the least-square fit in Equation (12) to
the same colored symbols. As described earlier, the horizontal shift of the fitted speed–
power curve V0 was determined to minimize the MSE between the data points and the
fitted curve. Also, it can be regarded as the estimated speed drop from the respective
correction method. The values were adjusted to achieve the minimum MSE and shift the
speed–power curve. When corrected for wind resistance from the blue original data, it
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becomes the red ISO 19030 standard analysis. Further correction for wave and current
resistance results in the green MISO model analysis. Finally, when non-linear factors such
as fouling are compensated for, the speed–power curve aligns with the speed–power curve
from the ship design stage’s model tests. The ISO 19030 method only corrects for wind
resistance, allowing us to observe the speed degradation trend of a specific ship. The
MISO model corrects for all three external forces (wind, waves, and current resistance),
making it possible to conduct further supplementary research. It is possible to compare the
operational performances of different vessels based on the present MISO model.

5.4. Time Delays between Environmental Disturbances and Speed Response

The speed–power curves of the ISO 19030 standard method and MISO model were
calculated by assuming a curve that shifts the original speed–power curve by an amount as
shown in Equation (12), to minimize the mean square error (MSE). The MISO model was
designed based on the assumption that changes in external forces lead to an increase in
resistance, resulting in speed variations. Additionally, the model takes into consideration
the time delay (time delay, τ0) in the frequency characteristics of the target vessel, which
may vary depending on its size and type. This dynamic modeling approach distinguishes it
from traditional static performance prediction models used in previous research. The MISO
model predicts time delays for each external force, making it a dynamic model capable of
capturing the temporal effects of different forces on the speed of the vessel.

Figure 14 shows the results of the ship’s speed and time delay (phase shift) for each
external force (wind, waves, and currents). It is observed that there is a specific time delay
for each external force regardless of the voyage, i.e., approximately 40 s for wave, 7 s for
current, and almost zero for wind. This confirms that the initial assumption of the proposed
prediction model, which considers dynamic effects during ship operation, is valid.
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6. Discussions

Analyzing the results of the present predictive model, the speed variations based
on input variables show relatively consistent patterns across different voyages. This is
attributed to the fact that the ship operates on the same route and experiences similar
external forces for each voyage. Both total loss and N-loss exhibit similar trends, indicating
that the primary factor influencing speed loss is noise, such as fouling. Furthermore,
comparing the N-loss component of the predictive model with the performance values
(PV) from the ISO 19030 standard, the two predictive models exhibited a consistent trend
with a steady deviation (attributed to additional resistance from waves and currents). It is
noteworthy that the present MISO model contributed to a significant reduction in the data
scatter of the speed–power relationship, thereby enhancing the reliability of the evaluation
of the in-service speed performance of the ship. Consequently, this MISO model could
potentially enable performance comparison between different vessels during operations,
which has not been the case with the conventional ISO 19030 standard.

As pointed out in the introduction, there have been proposed many energy-saving
methods for ships. Such energy-saving methods can be retrofit to existing ships, and
it becomes necessary to assess the energy-saving efficiency between ships through the
performance comparison between vessels with and those without energy-saving methods.
The afore-mentioned advantage of MISO model can be particularly notable in this regard.

7. Conclusions

In order to respond to the environmental regulations of the International Maritime
Organization (IMO) and to ensure competitive ship operation management, accurate pre-
diction of performance changes in actual operating conditions is crucial. Currently, the
ISO 19030 standard method is widely used for the interpretation of actual operating perfor-
mance. In addition, various research efforts are underway to achieve precise predictions.
However, there is a need for improvement in terms of clarifying input/output variables
based on dynamic relationships and addressing the necessity for enhancements due to
excessive data filtering. In this study, we propose a predictive model for operational per-
formance to improve existing performance prediction models and the ISO 19030 standard.
In actual operations, variations in external factors such as relative wind speed and wave
conditions lead to increased resistance from wind and waves, resulting in speed fluctu-
ations. During such scenarios, it is assumed that there are specific time delays based on
the ship’s size and type, along with corresponding frequency characteristics. Based on
these assumptions, we modeled the unknown frequency characteristics as a multi-input
single-output system to evaluate the influence of each external force on speed performance.
The characteristics of the proposed predictive model are as follows:

- No additional filtering is applied beyond removing outliers caused by mechanical
faults in the data.

- Correlations between various variables and the ship’s speed performance are evalu-
ated to determine input variables.

- The optimal transfer functions between environmental disturbances and the speed
fluctuations have been derived to identify the dynamic response characteristics of
the ship.

- The impact of speed variation due to first-level input variables is assessed first, then,
other variables are sequentially evaluated by excluding the influence of the preced-
ing ones.

A closer inspection of the speed–power data given in Figure 13 reveals the superiority
of the present MISO model over the existing ISO 19030 standard in that it gives better
collapse to the underlying physics of the speed–power curve. However, the present MISO
model has its own limit of a linear model, which is not consistent with the nonlinear nature
of speed–power curve. Although this limit can be alleviated by the linearization technique
employed in this study, there still remains unresolved issue of non-linearity. The nonlinear
regression capability of a neural network can make it a relevant candidate to tackle this
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issue. The grey-box approach, which combines the present dynamic linear MISO model
and a neural network, is considered to be the topic of future research.

Author Contributions: Conceptualization, I.L.; methodology, Y.C.; software, Y.C.; validation, I.L.;
formal analysis, Y.C.; investigation, Y.C.; resources, I.L.; data curation, Y.C.; writing—original draft
preparation, Y.C.; writing—review and editing, I.L.; visualization, Y.C.; supervision, I.L.; project
administration, I.L.; funding acquisition, I.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by a grant from the National Research Foundation of Korea (NRF)
funded by the Ministry of Science and ICT of Korea (No. 2022R1A2C2010821), by the “Regional
Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by
the Ministry of Education (Grant No. 2023RIS-007), and by BK21 FOUR Graduate Program for
Green-Smart Naval Architecture and Ocean Engineering of Pusan National University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Merlo, S.; Gabarrell Durany, X.; Pedroso Tonon, A.; Rossi, S. Marine Microalgae Contribution to Sustainable Development. Water

2021, 13, 1373. [CrossRef]
2. Barreiro, J.; Zaragoza, S.; Diaz-Casas, V. Review of Ship Energy Efficiency. Ocean Eng. 2022, 257, 111594. [CrossRef]
3. Handayani, M.P.; Kim, H.; Lee, S.; Lee, J. Navigating Energy Efficiency: A Multifaceted Interpretability of Fuel Oil Consumption

Prediction in Cargo Container Vessel Considering the Operational and Environmental Factors. J. Mar. Sci. Eng. 2023, 11, 2165.
[CrossRef]

4. Chen, Z.S.; Lam, J.S.L.; Xiao, Z. Prediction of Harbour Vessel Fuel Consumption Based on Machine Learning Approach. Ocean
Eng. 2023, 278, 114483. [CrossRef]

5. Fan, A.; Yang, J.; Yang, L.; Wu, D.; Vladimir, N. A Review of Ship Fuel Consumption Models. Ocean Eng. 2022, 264, 112405.
[CrossRef]

6. Zhou, T.; Hu, Q.; Hu, Z.; Zhen, R. An Adaptive Hyper Parameter Tuning Model for Ship Fuel Consumption Prediction under
Complex Maritime Environments. J. Ocean Eng. Sci. 2022, 7, 255–263. [CrossRef]

7. Zhang, M.; Tsoulakos, N.; Kujala, P.; Hirdaris, S. A Deep Learning Method for the Prediction of Ship Fuel Consumption in Real
Operational Conditions. Eng. Appl. Artif. Intell. 2024, 130, 107425. [CrossRef]

8. Poulsen, R.T.; Viktorelius, M.; Varvne, H.; Rasmussen, H.B.; von Knorring, H. Energy Efficiency in Ship Operations—Exploring
Voyage Decisions and Decision-Makers. Transp. Res. Part D Transp. Environ. 2022, 102, 103120. [CrossRef]
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