Regional Mean Sea Level Variability Due to Tropical Cyclones: Insights from August Typhoons
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. MSL in August
3.2. SLC by Ekman Transport
3.3. Interannual Variations in MSL and Wind-Induced Inflow
3.4. Wind-Induced Convergence and Divergence
4. Discussion
4.1. Typhoon Statistics in Periods H and L
4.2. SLC Due to Varying Typhoon Intensity
4.3. SLC Due to Regional Wind
4.4. SLC Due to Effects Other than Typhoon Wind
4.5. Implications for Coastal Management
4.6. Comparison with Other Regions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Horwath, M.; Gutknecht, B.D.; Cazenave, A.; Palanisamy, H.K.; Marti, F.; Paul, F.; Le Bris, R.; Hogg, A.E.; Otosaka, I.; Shepherd, A. Global sea-level budget and ocean-mass budget, with a focus on advanced data products and uncertainty characterisation. Earth Syst. Sci. Data 2022, 14, 411–447. [Google Scholar] [CrossRef]
- Lyu, K.; Zhang, X.; Church, J.A.; Slangen, A.B.; Hu, J. Time of emergence for regional sea-level change. Nat. Clim. Chang. 2014, 4, 1006–1010. [Google Scholar] [CrossRef]
- Carson, M.; Köhl, A.; Stammer, D.; Meyssignac, B.; Church, J.; Schröter, J.; Wenzel, M.; Hamlington, B. Regional sea level variability and trends, 1960–2007: A comparison of sea level reconstructions and ocean syntheses. J. Geophys. Res. Ocean. 2017, 122, 9068–9091. [Google Scholar] [CrossRef]
- Wang, J.; Church, J.A.; Zhang, X.; Chen, X. Reconciling global mean and regional sea level change in projections and observations. Nat. Commun. 2021, 12, 990. [Google Scholar] [CrossRef]
- Meyssignac, B.; Piecuch, C.; Merchant, C.; Racault, M.-F.; Palanisamy, H.; MacIntosh, C.; Sathyendranath, S.; Brewin, R. Causes of the regional variability in observed sea level, sea surface temperature and ocean colour over the period 1993–2011. Integr. Study Mean Sea Level Its Compon. 2017, 38, 191–219. [Google Scholar] [CrossRef]
- Pinardi, N.; Bonaduce, A.; Navarra, A.; Dobricic, S.; Oddo, P. The mean sea level equation and its application to the Mediterranean Sea. J. Clim. 2014, 27, 442–447. [Google Scholar] [CrossRef]
- Wang, K.; Yang, Y.; Reniers, G.; Li, J.; Huang, Q. Predicting the spatial distribution of direct economic losses from typhoon storm surge disasters using case-based reasoning. Int. J. Disaster Risk Reduct. 2022, 68, 102704. [Google Scholar] [CrossRef]
- Wunsch, C.; Stammer, D. Atmospheric loading and the oceanic “inverted barometer” effect. Rev. Geophys. 1997, 35, 79–107. [Google Scholar] [CrossRef]
- Holden, W.N. Mining amid typhoons: Large-scale mining and typhoon vulnerability in the Philippines. Extr. Ind. Soc. 2015, 2, 445–461. [Google Scholar] [CrossRef]
- Han, M.; Cho, Y.-K.; Kang, H.-W.; Nam, S.; Byun, D.-S.; Jeong, K.-Y.; Lee, E. Impacts of atmospheric pressure on the annual maximum of monthly sea-levels in the northeast Asian marginal seas. J. Mar. Sci. Eng. 2020, 8, 425. [Google Scholar] [CrossRef]
- Han, M.; Nam, S.; Cho, Y.-K.; Kang, H.-W.; Jeong, K.-Y.; Lee, E. Interannual variability of winter sea levels induced by local wind stress in the northeast Asian marginal seas: 1993–2017. J. Mar. Sci. Eng. 2020, 8, 774. [Google Scholar] [CrossRef]
- Li, Y.; Zuo, J.; Lu, Q.; Zhang, H.; Chen, M. Impacts of wind forcing on sea level variations in the East China Sea: Local and remote effects. J. Mar. Syst. 2016, 154, 172–180. [Google Scholar] [CrossRef]
- Hsueh, Y.; Romea, R.D.; DeWitt, P. Wintertime winds and coastal sea-level fluctuations in the Northeast China Sea. Part II Numer. Model. J. Phys. Oceanogr. 1986, 16, 241–261. [Google Scholar] [CrossRef]
- Liu, J.-W.; Zhang, S.-P.; Xie, S.-P. Two types of surface wind response to the East China Sea Kuroshio front. J. Clim. 2013, 26, 8616–8627. [Google Scholar] [CrossRef]
- Trusenkova, O.; Nikitin, A.; Lobanov, V. Circulation features in the Japan/East Sea related to statistically obtained wind patterns in the warm season. J. Mar. Syst. 2009, 78, 214–225. [Google Scholar] [CrossRef]
- Guan, S.; Zhao, W.; Sun, L.; Zhou, C.; Liu, Z.; Hong, X.; Zhang, Y.; Tian, J.; Hou, Y. Tropical cyclone-induced sea surface cooling over the Yellow Sea and Bohai Sea in the 2019 Pacific typhoon season. J. Mar. Syst. 2021, 217, 103509. [Google Scholar] [CrossRef]
- Wang, K.; Hou, Y.; Li, S.; Du, M.; Chen, J.; Lu, J. A comparative study of storm surge and wave setup in the East China Sea between two severe weather events. Estuar. Coast. Shelf Sci. 2020, 235, 106583. [Google Scholar] [CrossRef]
- Kao, Y.-C.; Jong-Dao Jou, B.; Chan, J.C.; Lee, W.-C. An observational study of a coastal barrier jet induced by a landfalling typhoon. Mon. Weather Rev. 2019, 147, 4589–4609. [Google Scholar] [CrossRef]
- Zhang, H.; He, H.; Zhang, W.-Z.; Tian, D. Upper ocean response to tropical cyclones: A review. Geosci. Lett. 2021, 8, 1. [Google Scholar] [CrossRef]
- Chai, F.; Wang, Y.; Xing, X.; Yan, Y.; Xue, H.; Wells, M.; Boss, E. A limited effect of sub-tropical typhoons on phytoplankton dynamics. Biogeosciences 2021, 18, 849–859. [Google Scholar] [CrossRef]
- Wu, X.; Wang, H.; Bi, N.; Song, Z.; Zang, Z.; Kineke, G.C. Bio-physical changes in the coastal ocean triggered by typhoon: A case of Typhoon Meari in summer 2011. Estuar. Coast. Shelf Sci. 2016, 183, 413–421. [Google Scholar] [CrossRef]
- Ragone, F.; Meli, A.; Napoli, A.; Pasquero, C. Ocean surface anomalies after strong winds in the Western Mediterranean Sea. J. Mar. Sci. Eng. 2019, 7, 182. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Sun, L.; Wang, G.; Tang, D.; Huang, P.; Yan, H.; Gao, S.; Liu, C.; Gao, Z.; et al. Basin-wide responses of the South China Sea environment to super typhoon Mangkhut (2018). Sci. Total Environ. 2020, 731, 139093. [Google Scholar] [CrossRef]
- Rio, M.; Guinehut, S.; Larnicol, G. New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J. Geophys. Res. Ocean. 2011, 116, C07018. [Google Scholar] [CrossRef]
- AVISO; MDT. CNES-CLS18. Available online: https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mdt.html (accessed on 30 November 2022).
- Taburet, G.; Pujol, M.-I. Sea Level TAC-DUACS Products. Available online: https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-SL-QUID-008-032-062.pdf (accessed on 1 June 2022).
- CMEMS_portal. SEALEVEL GLO PHY L4 REP OBSERVATIONS 008 047. Available online: ftp://my.cmems-du.eu/Core/SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047/dataset-duacs-rep-global-merged-allsat-phy-l4 (accessed on 30 November 2022).
- Watson, P.J.; Lim, H.-S. An update on the status of mean sea level rise around the Korean Peninsula. Atmosphere 2020, 11, 1153. [Google Scholar] [CrossRef]
- Ding, Y.; Yu, H.; Bao, X.; Kuang, L.; Wang, C.; Wang, W. Numerical study of the barotropic responses to a rapidly moving typhoon in the East China Sea. Ocean Dyn. 2011, 61, 1237. [Google Scholar] [CrossRef]
- Ji, T.; Li, G.; Liu, R. Historical reconstruction of storm surge activity in the southeastern coastal area of China for the past 60 years. Earth Space Sci. 2020, 7, e2019EA001056. [Google Scholar] [CrossRef]
- Knapp, K.; Diamond, H.; Kossin, J.; Kruk, M.; Schreck, C. International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4.[WP]. Available online: https://www.ncei.noaa.gov/products/international-best-track-archive (accessed on 1 June 2021).
- Camelo, J.; Mayo, T. The lasting impacts of the Saffir-Simpson Hurricane Wind Scale on storm surge risk communication: The need for multidisciplinary research in addressing a multidisciplinary challenge. Weather Clim. Extrem. 2021, 33, 100335. [Google Scholar] [CrossRef]
- PSMSL. Tide Gauge Data. Available online: http://www.psmsl.org/data/obtaining/ (accessed on 13 June 2024).
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 2013, 29, 493–504. [Google Scholar] [CrossRef]
- Mathers, E.; Woodworth, P. Departures from the local inverse barometer model observed in altimeter and tide gauge data and in a global barotropic numerical model. J. Geophys. Res. Ocean. 2001, 106, 6957–6972. [Google Scholar] [CrossRef]
- Park, J.H.; Yeo, D.E.; Lee, K.; Lee, H.; Lee, S.W.; Noh, S.; Kim, S.; Shin, J.; Choi, Y.; Nam, S. Rapid decay of slowly moving Typhoon Soulik (2018) due to interactions with the strongly stratified northern East China Sea. Geophys. Res. Lett. 2019, 46, 14595–14603. [Google Scholar] [CrossRef]
- Wong, M.L.; Chan, J.C. Tropical cyclone motion in response to land surface friction. J. Atmos. Sci. 2006, 63, 1324–1337. [Google Scholar] [CrossRef]
- Xiong, J.; Yu, F.; Fu, C.; Dong, J.; Liu, Q. Evaluation and improvement of the ERA5 wind field in typhoon storm surge simulations. Appl. Ocean Res. 2022, 118, 103000. [Google Scholar] [CrossRef]
- Basconcillo, J.; Cha, E.-J.; Moon, I.-J. Characterizing the highest tropical cyclone frequency in the Western North Pacific since 1984. Sci. Rep. 2021, 11, 14350. [Google Scholar] [CrossRef] [PubMed]
- Basconcillo, J.; Moon, I.-J. Recent increase in the occurrences of Christmas typhoons in the Western North Pacific. Sci. Rep. 2021, 11, 7416. [Google Scholar] [CrossRef] [PubMed]
- Hu, A.; Bates, S.C. Internal climate variability and projected future regional steric and dynamic sea level rise. Nat. Commun. 2018, 9, 1068. [Google Scholar] [CrossRef]
- Molden, D.J.; Shrestha, A.B.; Immerzeel, W.W.; Maharjan, A.; Rasul, G.; Wester, P.; Wagle, N.; Pradhananga, S.; Nepal, S. The Great Glacier and Snow-Dependent Rivers of Asia and Climate Change: Heading for Troubled Waters. In Water Security Under Climate Change; Springer: Singapore, 2022; pp. 223–250. [Google Scholar]
- Durand, F.; Piecuch, C.G.; Becker, M.; Papa, F.; Raju, S.V.; Khan, J.U.; Ponte, R.M. Impact of continental freshwater runoff on coastal sea level. Surv. Geophys. 2019, 40, 1437–1466. [Google Scholar] [CrossRef]
- Kang, S.K.; Cherniawsky, J.; Foreman, M.; Min, H.S.; Kim, C.H.; Kang, H.W. Patterns of recent sea level rise in the East/Japan Sea from satellite altimetry and in situ data. J. Geophys. Res. Ocean. 2005, 110, C07002. [Google Scholar] [CrossRef]
- Kranenburg, W.M.; Tiessen, M.C.; Blaas, M.; Van Veen, N.P. Circulation, stratification and salt dispersion in a former estuary after reintroducing seawater inflow. Estuar. Coast. Shelf Sci. 2023, 282, 108221. [Google Scholar] [CrossRef]
- Wu, L.; Wang, R.; Feng, X. Dominant role of the ocean mixed layer depth in the increased proportion of intense typhoons during 1980–2015. Earth’s Future 2018, 6, 1518–1527. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, H.; Wang, C.; Cao, J.; Liang, J. Understanding of the effect of climate change on tropical cyclone intensity: A review. Adv. Atmos. Sci. 2022, 39, 205–221. [Google Scholar] [CrossRef]
- Moon, J.-H.; Lee, J. Shifts in multi-decadal sea level trends in the East/Japan Sea over the past 60 years. Ocean Sci. J. 2016, 51, 87–96. [Google Scholar] [CrossRef]
- Kim, S.B.; Fukumori, I. A near uniform basin-wide sea level fluctuation over the Japan/East Sea: A semienclosed sea with multiple straits. J. Geophys. Res. Ocean. 2008, 113, 338–358. [Google Scholar] [CrossRef]
- Waryszak, P.; Gavoille, A.; Whitt, A.A.; Kelvin, J.; Macreadie, P.I. Combining gray and green infrastructure to improve coastal resilience: Lessons learnt from hybrid flood defenses. Coast. Eng. J. 2021, 63, 335–350. [Google Scholar] [CrossRef]
- Jibiki, Y.; Kure, S.; Kuri, M.; Ono, Y. Analysis of early warning systems: The case of super-typhoon Haiyan. Int. J. Disaster Risk Reduct. 2016, 15, 24–28. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, F. Land-use planning adaptation in response to SLR based on a vulnerability analysis. Ocean Coast. Manag. 2020, 196, 105297. [Google Scholar] [CrossRef]
- Hurlimann, A.; Barnett, J.; Fincher, R.; Osbaldiston, N.; Mortreux, C.; Graham, S. Urban planning and sustainable adaptation to sea-level rise. Landsc. Urban Plan. 2014, 126, 84–93. [Google Scholar] [CrossRef]
- Li, Z.; Fung, J.C.; Wong, M.F.; Lin, S.; Cai, F.; Lai, W.; Lau, A.K. Future changes in intense tropical cyclone hazards in the Pearl River Delta region: An air-wave-ocean coupled model study. Nat. Hazards 2024, 120, 7139–7154. [Google Scholar] [CrossRef]
- Bilskie, M.V.; Hagen, S.; Medeiros, S.; Cox, A.; Salisbury, M.; Coggin, D. Data and numerical analysis of astronomic tides, wind-waves, and hurricane storm surge along the northern Gulf of Mexico. J. Geophys. Res. Ocean. 2016, 121, 3625–3658. [Google Scholar] [CrossRef]
- Dinan, T. Projected increases in hurricane damage in the United States: The role of climate change and coastal development. Ecol. Econ. 2017, 138, 186–198. [Google Scholar] [CrossRef]
Quantity | Area | Period H | Period L |
---|---|---|---|
) | B | ||
) | C | ||
) anomaly | B | ||
) anomaly | C | ||
Horizontal convergence (+) or divergence (−) ) | NEAMS | ||
(m) | NEAMS |
Maximum Sustained Wind Speed (m s−1) | Jul. | Aug. | Sep. |
---|---|---|---|
Wind ≤ 17 | 0.33 | −0.08 | 0.04 |
17 < Wind ≤ 33 | 0.36 | 0.46 | −0.02 |
33 < Wind ≤ 43 | 0.19 | 0.68 | −0.07 |
43 < Wind ≤ 49 | −0.03 | 0.56 | 0.04 |
49 < Wind ≤ 58 | 0.14 | 0.36 | 0.19 |
58 < Wind ≤ 70 | 0.17 | 0.19 | −0.06 |
Wind > 70 | −0.17 | −0.13 | 0.18 |
All Wind | 0.27 | 0.62 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.; Nam, S.; Lim, H.-S. Regional Mean Sea Level Variability Due to Tropical Cyclones: Insights from August Typhoons. J. Mar. Sci. Eng. 2024, 12, 1830. https://doi.org/10.3390/jmse12101830
Han M, Nam S, Lim H-S. Regional Mean Sea Level Variability Due to Tropical Cyclones: Insights from August Typhoons. Journal of Marine Science and Engineering. 2024; 12(10):1830. https://doi.org/10.3390/jmse12101830
Chicago/Turabian StyleHan, MyeongHee, SungHyun Nam, and Hak-Soo Lim. 2024. "Regional Mean Sea Level Variability Due to Tropical Cyclones: Insights from August Typhoons" Journal of Marine Science and Engineering 12, no. 10: 1830. https://doi.org/10.3390/jmse12101830
APA StyleHan, M., Nam, S., & Lim, H. -S. (2024). Regional Mean Sea Level Variability Due to Tropical Cyclones: Insights from August Typhoons. Journal of Marine Science and Engineering, 12(10), 1830. https://doi.org/10.3390/jmse12101830