
Citation: Cho, J.; Ku, N. Developing a

Container Ship Loading-Planning

Program Using Reinforcement

Learning. J. Mar. Sci. Eng. 2024, 12,

1832. https://doi.org/10.3390/

jmse12101832

Academic Editor: Mihalis Golias

Received: 13 September 2024

Revised: 2 October 2024

Accepted: 11 October 2024

Published: 14 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Developing a Container Ship Loading-Planning Program Using
Reinforcement Learning
JaeHyeok Cho and NamKug Ku *

Department of Marine Design Convergence Engineering, Pukyong National University,
Busan 48513, Republic of Korea; chojh99@pukyong.ac.kr
* Correspondence: knk80@pknu.ac.kr; Tel.: +82-010-5395-4145

Abstract: This study presents an optimized container-stowage plan using reinforcement learning
to tackle the complex logistical challenges in maritime shipping. Traditional stowage-planning
methods often rely on manual processes that account for factors like container weight, unloading
order, and balance, which results in significant time and resource consumption. To address these
inefficiencies, we developed a two-phase stowage plan: Phase 1 involves bay selection using a
Proximal Policy Optimization (PPO) algorithm, while Phase 2 focuses on row and tier placement. The
proposed model was evaluated against traditional methods, demonstrating that the PPO algorithm
provides more efficient loading plans with faster convergence compared to Deep Q-Learning (DQN).
Additionally, the model successfully minimized rehandling and maintained an even distribution
of weight across the vessel, ensuring operational safety and stability. This approach shows great
potential for enhancing stowage efficiency and can be applied to real-world shipping scenarios,
improving productivity. Future work will aim to incorporate additional factors, such as container size,
type, and cargo fragility, to further improve the robustness and adaptability of the stowage-planning
system. By integrating these additional considerations, the system will become even more capable of
handling the complexities of modern maritime logistics.

Keywords: stowage plan; reinforcement learning; rehandling; Proximal Policy Optimization

1. Introduction
1.1. Research Background

In general, shipping companies develop a container-stowage plan to reduce logistics
costs for container ships and to consider the stability of the vessel by appropriately posi-
tioning the containers. Currently, planners often create stowage plans manually, taking
into account information such as loading and unloading ports, size, type, and weight of the
cargo. Since the container-stowage plan is directly related to the safety of the vessel, the
position of each container must be carefully determined. Heavy cargo should be loaded
first to maintain a low and stable center of gravity for the ship, and cargo that will be un-
loaded soon should be placed at the top to avoid rehandling during loading and unloading.
Handling all these complex conditions manually places a significant burden on planners.

To address this issue, many researchers have conducted studies on finding optimal
container-stowage plans that satisfy the constraints to be considered when loading cargo.
Various techniques such as genetic algorithms, simulation optimization, and mixed integer
linear programming (MILP) have been applied in research. Recently, there has also been
active research on utilizing artificial intelligence and machine-learning technologies to
further improve the accuracy and efficiency of stowage planning.

1.2. Previous Research

The container stowage-planning problem is defined by two main issues: the Con-
tainer/Block Relocation Problem (CRP/BRP) and the Container Ship Stowage Planning
Problem (CSPP).

J. Mar. Sci. Eng. 2024, 12, 1832. https://doi.org/10.3390/jmse12101832 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12101832
https://doi.org/10.3390/jmse12101832
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-0364-1279
https://doi.org/10.3390/jmse12101832
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12101832?type=check_update&version=2


J. Mar. Sci. Eng. 2024, 12, 1832 2 of 25

In relation to CRP/BRP, Dong-Hee Hong’s research applied a hierarchical clustering
method to containers with similar attributes, based on the yard map and loading instruc-
tions, to improve the efficiency of container terminals. The study organized containers
into stack-level clusters and defined constraints to prevent relocations, determining an
efficient container-loading sequence [1]. Young-Gyu Park and Gyu-Seok Kwak proposed a
method to reduce relocations in the yard by utilizing container weight information when
containers are brought into the storage yard. Based on the Minimum Difference First
(MDF) heuristic, their approach involved moving already stored containers if a future
relocation seemed likely, and then loading the new container to minimize the number of
future relocations [2]. M. Hakan Akyüz conducted research on the Dynamic Container
Relocation Problem (DCRP) using a beam search heuristic to maximize yard efficiency and
minimize the number of relocations [3].

Regarding CSPP (Container Stowage Planning Problem), many researchers have
developed container-stowage plans aimed at minimizing rehandling operations by utilizing
genetic algorithms (GA) [4–8]. Yuchuang Wang and colleagues optimized the ship’s stability
and trim while minimizing the number of container movements through a multi-objective
container stowage optimization problem based on an improved NSGA-III [9]. Francisco
Parreno, Dario Pacino, and others used the Greedy Randomized Adaptive Search Procedure
(GRASP) to establish an optimal container-stowage plan based on the type, size, and
weight of the cargo. They aimed to find the optimal stowage condition that satisfies all
constraints by starting with a random arrangement of containers and then adjusting their
placement [10].

However, even after the establishment of a stowage plan, there can be issues with
changes to the loading schedule or the containers that need to be loaded while loading is
underway. However, algorithms like genetic algorithms (GA) find it quite challenging to
re-optimize or modify constraints in real time as the environment changes. Consequently,
many researchers have pursued studies on establishing stowage plans using reinforcement
learning to address these dynamic changes [11–14].

Tiecheng Jiang and colleagues applied heuristic rule-based reinforcement learning to
the Container Relocation Problem (CRP) using Unity’s ML-Agent’s toolkit. They trained a
model using the Proximal Policy Optimization (PPO) algorithm to minimize the number of
relocations. Their research focused on developing a stowage plan for containers in the yard
and minimizing relocations. However, considerations related to the center of gravity were
not included in the study [15].

Yifan Shen, Ning Zhao, and colleagues applied the Deep Q-learning Network (DQN),
a reinforcement learning algorithm, to container stowage planning. Through this, they
developed an optimal container stowage plan that considered container weight, minimizing
yard crane movement, and adjacent row weight-difference constraints. Similarly [16], Jae-
Hyung Shin and Hyun-Seung Ryu developed a container stowage plan based on the
loading and unloading sequence planned by the shipping company. Using the same DQN
algorithm as in previous studies, they created an optimal container stowage plan that
considered both the loading/unloading sequence and the container weight [17].

However, the studies by Yifan Shen, Ning Zhao, Jae-Hyung Shin, and Hyun-Seung
Ryu [17] focused on stowage planning within a single bay, making it difficult to apply these
methods directly to actual ships.

Dongmin Jeon and Kiyong Kim conducted research on developing an optimal con-
tainer stowage plan for 60 containers in a 5 × 3 × 4 rectangular cuboid 3D grid space,
ensuring that no relocations occurred. However, the research by Dongmin Jeon, Kiyong
Kim, and others involves considering the bay plan, row, and tier plan simultaneously for a
3D stowage space, which leads to inputting the state in three dimensions into the neural
network. This results in longer training times and a more complex model structure [18].

After reviewing the relevant literature, it is evident that, as in previous studies, focus-
ing on a single bay makes it difficult to apply the findings to real vessels. Additionally,
considering the bay, tier, and row simultaneously results in longer neural network training



J. Mar. Sci. Eng. 2024, 12, 1832 3 of 25

times, making it challenging to find an optimal solution for the stowage plan. To address
this, we propose dividing the stowage plan into two phases: in Phase 1, selecting the bay
where the container will be loaded, and in Phase 2, selecting the row and tier for container
placement. Additionally, to handle real-time changes in the arrangement of containers to
be loaded, the study proposed using PPO (Proximal Policy Optimization), one of the most
efficient reinforcement learning algorithms. Notably, this study is the first to propose ap-
plying the PPO algorithm when considering bay, row, and tier simultaneously in container
stowage planning. PPO offers advantages over other reinforcement learning algorithms
due to its faster convergence to the optimal solution and shorter training time. To validate
the performance of the PPO algorithm, it was compared with the DQN algorithm, which is
recognized for its superior performance in reinforcement learning by applying both to the
same container stowage problem and comparing the results. In summary, the contribution
points of this study are as follows:

1. A method is proposed to divide the process into Phase 1 and Phase 2 to establish an
optimal stowage plan efficiently and stably for a 3D loading space.

2. This study is the first to propose the application of the PPO algorithm for the container-
stowage planning problem considering bay, row, and tier simultaneously.

In this study, Section 2 provides a brief explanation of reinforcement learning. Section 3
explains Phase 1, which focuses on the bay plan, and presents its results. In Section 4, the
Phase 2 plan for rows and tiers is established using only POD numbers. Following this,
Section 5 introduces weight constraints to optimize the stowage plan. Finally, Section 6
presents the results of loading containers into a 10 × 10 × 10 stowage space, and Section 7
explains the process of designing the program’s Graphical User Interface (GUI).

2. Reinforcement Learning
2.1. Overview of Reinforcement Learning

In this study, the reinforcement learning (RL) method used for container-stowage
planning is a branch of machine learning where an agent interacts with an environment
to learn optimal actions. The agent receives an input in the form of a state, takes an
action, and transitions to the next state. During this process, the agent receives rewards,
and it learns to maximize the actions based on the expected value of the reward, defined
through the state value function and the action value function. Reinforcement learning is
modeled based on the Markov Decision Process (MDP), a mathematical framework that
supports decision-making processes. MDP consists of the following components: state,
action, reward function, discount factor, and policy. The expected values of the state and
action, following a policy, are expressed through the state value function and the action
value function. Common reinforcement learning algorithms include DQN, PPO, A2C, and
Q-learning.

2.2. Proximal Policy Optimization Algorithm

The Proximal Policy Optimization (PPO) algorithm is one of the policy optimization
algorithms, similar to Advantage Actor-Critic (A2C) and Trust Region Policy Optimization
(TRPO).

As shown in Figure 1, the PPO algorithm uses two neural networks. The state is input
into the neural networks to predict the probability of actions, as in Figure 1a, and the state
value, as in Figure 1b.



J. Mar. Sci. Eng. 2024, 12, 1832 4 of 25J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 4 of 24 
 

 

  
(a) (b) 

Figure 1. (a) PPO algorithm policy-estimation process; (b) PPO algorithm state value-estimation 
process. 

State value represents how good the current state is and refers to the total expected 
reward the agent can obtain from that state onward. The advantage value is estimated 
using the state value to evaluate how good or bad a certain action is in the current state. 
If an action results in a good outcome, the probability of taking that action is increased, 
whereas if it results in a bad outcome, the probability is decreased. 

PPO improves the training stability of existing A2C and TRPO algorithms by intro-
ducing a clipping mechanism, which limits the range of policy updates, allowing for more 
stable and efficient learning. This clipping mechanism reduces computational complexity, 
enabling faster convergence even in high-dimensional state spaces [19]. 

PPO’s computational complexity is reduced due to the clipping mechanism and the 
use of first-order optimization. The clipping mechanism prevents large policy updates, 
allowing for stable and localized optimization, which enables multiple policy updates 
without additional constraints. Additionally, the use of first-order optimization, such as 
gradient descent, requires significantly less computational cost compared to second-order 
optimization methods like those used in TRPO. As a result, PPO maintains computational 
efficiency and converges quickly, even in high-dimensional state spaces. 

3. Applying Reinforcement Learning for Phase 1—Bay Plan 
3.1. Problem Definition 

In this study, the process of loading cargo onto a container ship is divided into two 
stages: the bay plan and the row-and-tier plan. The bay plan is defined as Phase 1, and the 
row-and-tier plan is defined as Phase 2, with the goal of establishing an optimal stowage 
plan. In Phase 1 of this chapter, the bay where the cargo will be loaded onto the container 
ship is determined. 

To apply reinforcement learning, a total of 10 bays were defined, with each bay as-
sumed to hold 16 containers. It was also assumed that containers are provided one by one 
in sequence during loading, and the agent does not know which container will be loaded 
next. Additionally, containers cannot be loaded outside the designated loading space. In 
Phase 1, the stowage plan was developed with the goal of ensuring that the ship’s longi-
tudinal center of gravity (LCG) does not shift excessively towards the bow or stern. 

3.2. Definition of Input Variables and Parameters 
In this study, the input variables and parameters were defined as follows to model 

the formulated stowage-planning problem. W௜ ∶ Container weight (1) 

𝐵𝐶௫ ∶ 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑙𝑜𝑎𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑥 െ 𝑡ℎ 𝑏𝑎𝑦 (2) 

𝐵𝑊௫  ∶ 𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑙𝑜𝑎𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑥 െ  𝑡ℎ 𝑏𝑎𝑦  (3) 

Figure 1. (a) PPO algorithm policy-estimation process; (b) PPO algorithm state value-estimation process.

State value represents how good the current state is and refers to the total expected
reward the agent can obtain from that state onward. The advantage value is estimated
using the state value to evaluate how good or bad a certain action is in the current state.
If an action results in a good outcome, the probability of taking that action is increased,
whereas if it results in a bad outcome, the probability is decreased.

PPO improves the training stability of existing A2C and TRPO algorithms by intro-
ducing a clipping mechanism, which limits the range of policy updates, allowing for more
stable and efficient learning. This clipping mechanism reduces computational complexity,
enabling faster convergence even in high-dimensional state spaces [19].

PPO’s computational complexity is reduced due to the clipping mechanism and the
use of first-order optimization. The clipping mechanism prevents large policy updates,
allowing for stable and localized optimization, which enables multiple policy updates
without additional constraints. Additionally, the use of first-order optimization, such as
gradient descent, requires significantly less computational cost compared to second-order
optimization methods like those used in TRPO. As a result, PPO maintains computational
efficiency and converges quickly, even in high-dimensional state spaces.

3. Applying Reinforcement Learning for Phase 1—Bay Plan
3.1. Problem Definition

In this study, the process of loading cargo onto a container ship is divided into two
stages: the bay plan and the row-and-tier plan. The bay plan is defined as Phase 1, and the
row-and-tier plan is defined as Phase 2, with the goal of establishing an optimal stowage
plan. In Phase 1 of this chapter, the bay where the cargo will be loaded onto the container
ship is determined.

To apply reinforcement learning, a total of 10 bays were defined, with each bay
assumed to hold 16 containers. It was also assumed that containers are provided one by
one in sequence during loading, and the agent does not know which container will be
loaded next. Additionally, containers cannot be loaded outside the designated loading
space. In Phase 1, the stowage plan was developed with the goal of ensuring that the ship’s
longitudinal center of gravity (LCG) does not shift excessively towards the bow or stern.

3.2. Definition of Input Variables and Parameters

In this study, the input variables and parameters were defined as follows to model the
formulated stowage-planning problem.

Wi : Container weight (1)

BCx : The number o f containers loaded in the x − th bay (2)

BWx : The total weight o f containers loaded in the x − th bay (3)

LCGx : Longitudinal center o f gravity (LCG) o f the ship (4)



J. Mar. Sci. Eng. 2024, 12, 1832 5 of 25

3.3. Application of Reinforcement Learning

The problem defined to apply reinforcement learning in Phase 1 has been described as
an MDP with the following definitions for state, action, and reward. The state was assigned
a total of 21 values, as shown in Figure 2.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 5 of 24 
 

 

𝐿𝐶𝐺௫ ∶ 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 ሺ𝐿𝐶𝐺ሻ 𝑜𝑓 𝑡ℎ𝑒 𝑠ℎ𝑖𝑝 (4) 

3.3. Application of Reinforcement Learning 
The problem defined to apply reinforcement learning in Phase 1 has been described 

as an MDP with the following definitions for state, action, and reward. The state was as-
signed a total of 21 values, as shown in Figure 2. 

 
Figure 2. Phase 1_state definition. 

The first position of the state is assigned the weight of the container that needs to be 
loaded currently. From the second to the eleventh positions, the availability of each bay 
to hold containers is indicated; if a bay is full, it is assigned a 1. Otherwise, it is assigned a 
0. From the twelfth position to the last, the total weight of the containers loaded in each 
bay is assigned. 

For example, the second position is assigned a value of 0 because Bay 1 has 5 con-
tainers loaded, which is fewer than the maximum capacity of 16 containers. For Bays 5 
and 6, where the number of loaded containers has reached the maximum capacity of 16, 
a value of 1 is assigned, indicating no further containers can be loaded. The twelfth posi-
tion is assigned a value of 64, representing the total weight of 64 tons for the containers 
loaded in Bay 1. Next, the action space is defined as determining which bay to load the 
next container into. The agent can choose from 10 actions, corresponding to the 10 bays. 
Finally, to apply reinforcement learning to Phase 1, rewards were assigned as shown in 
Table 1. 

Table 1. Phase 1 reward assignment. 

Condition Reward െ0.1 ൏ 𝐶𝑂𝐺௫ ൏  ൅0.1 +1 െ0.1 ൐ 𝐶𝑂𝐺௫, 0.1 ൏ 𝐶𝑂𝐺௫ −2 𝐵𝐶௫ ൒ 16 −500 𝐵𝑊௫ ൑ 232 +1 𝐵𝑊௫ ൐ 232 −2 െ3 ൏ 𝐵𝐶௫ െ 𝐵𝐶௫ିଵ ൏ 3 +1 𝐵𝐶௫ െ 𝐵𝐶௫ିଵ ൐ 3, 𝐵𝐶௫ െ 𝐵𝐶௫ିଵ ൏ െ3 −2 െ3 ൏ 𝐵𝐶௫ െ 𝐵𝐶௫ାଵ ൏ 3 +1 െ3 ൏ 𝐵𝐶௫ െ 𝐵𝐶௫ାଵ ൏ 3 −2 
  

Figure 2. Phase 1_state definition.

The first position of the state is assigned the weight of the container that needs to be
loaded currently. From the second to the eleventh positions, the availability of each bay to
hold containers is indicated; if a bay is full, it is assigned a 1. Otherwise, it is assigned a 0.
From the twelfth position to the last, the total weight of the containers loaded in each bay
is assigned.

For example, the second position is assigned a value of 0 because Bay 1 has 5 containers
loaded, which is fewer than the maximum capacity of 16 containers. For Bays 5 and 6,
where the number of loaded containers has reached the maximum capacity of 16, a value
of 1 is assigned, indicating no further containers can be loaded. The twelfth position is
assigned a value of 64, representing the total weight of 64 tons for the containers loaded in
Bay 1. Next, the action space is defined as determining which bay to load the next container
into. The agent can choose from 10 actions, corresponding to the 10 bays. Finally, to apply
reinforcement learning to Phase 1, rewards were assigned as shown in Table 1.

Table 1. Phase 1 reward assignment.

Condition Reward

−0.1 < COGx < +0.1 +1
−0.1 > COGx, 0.1 < COGx −2

BCx ≥ 16 −500
BWx ≤ 232 +1
BWx > 232 −2

−3 < BCx − BCx−1 < 3 +1
BCx − BCx−1 > 3, BCx − BCx−1 < −3 −2

−3 < BCx − BCx+1 < 3 +1
−3 < BCx − BCx+1 < 3 −2

3.4. Development of a Stowage Model Using the PPO Algorithm

The PPO algorithm trains two neural networks using the state as input, predicting the
probability of each action and the value of the current state. The state used as input for the
neural networks is modeled according to the state allocation method defined in Phase 1.



J. Mar. Sci. Eng. 2024, 12, 1832 6 of 25

The action selection strategy in the PPO algorithm follows the probability of each
action. Figure 3 shows an example of the agent selecting actions based on these probabilities.
The agent predicts the value of the current state using the neural network and determines
whether each action is good or bad, updating the neural network weights accordingly.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 6 of 24 
 

 

3.4. Development of a Stowage Model Using the PPO Algorithm 
The PPO algorithm trains two neural networks using the state as input, predicting 

the probability of each action and the value of the current state. The state used as input 
for the neural networks is modeled according to the state allocation method defined in 
Phase 1. 

The action selection strategy in the PPO algorithm follows the probability of each action. 
Figure 3 shows an example of the agent selecting actions based on these probabilities. The 
agent predicts the value of the current state using the neural network and determines whether 
each action is good or bad, updating the neural network weights accordingly. 

 
Figure 3. Phase 1 loaded containers and action select. 

3.5. Phase 1 Training Results 
The values of the parameters related to the training were set as shown in Table 2. 

Among these parameters, the learning rate determines how quickly the model learns by 
controlling the magnitude of the updates to the neural network’s weights. The gamma 
parameter defines how much the agent values future rewards, while lambda adjusts how 
much distant data is used when calculating the difference between rewards and the value 
function. The clipping parameter represents the magnitude of changes during policy up-
dates, and the number of nodes refers to the number of neurons in the hidden layers of 
the neural network. Finally, the optimizer, which determines how the neural network’s 
weights are updated, was set to Adam in this study. 

For the experiment, a total of 160 containers were randomly assigned weights of 13 
tons, 14 tons, 15 tons, or 16 tons, and the model was trained for 200,000 iterations. As 
shown in Figure 4, the model converged towards the optimal policy, reaching close to the 
maximum score of 300 points between 175,000 and 200,000 episodes. 

Table 2. Parameter setting of Phase 1 PPO model. 

Parameter Value 
Learning rate 0.0001 

Gamma 0.9 
Lambda 3 
Clipping 0.1 

Number of Nodes 128, 64, 32 
Optimizer Adam 

Figure 3. Phase 1 loaded containers and action select.

3.5. Phase 1 Training Results

The values of the parameters related to the training were set as shown in Table 2.
Among these parameters, the learning rate determines how quickly the model learns by
controlling the magnitude of the updates to the neural network’s weights. The gamma
parameter defines how much the agent values future rewards, while lambda adjusts how
much distant data is used when calculating the difference between rewards and the value
function. The clipping parameter represents the magnitude of changes during policy
updates, and the number of nodes refers to the number of neurons in the hidden layers of
the neural network. Finally, the optimizer, which determines how the neural network’s
weights are updated, was set to Adam in this study.

For the experiment, a total of 160 containers were randomly assigned weights of
13 tons, 14 tons, 15 tons, or 16 tons, and the model was trained for 200,000 iterations. As
shown in Figure 4, the model converged towards the optimal policy, reaching close to the
maximum score of 300 points between 175,000 and 200,000 episodes.

Table 2. Parameter setting of Phase 1 PPO model.

Parameter Value

Learning rate 0.0001
Gamma 0.9
Lambda 3
Clipping 0.1

Number of Nodes 128, 64, 32
Optimizer Adam



J. Mar. Sci. Eng. 2024, 12, 1832 7 of 25
J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 4. Average reward value according to 200k learning counts of Phase 1 PPO model. 

Figure 4 shows the training results of the PPO algorithm in Phase 1. The performance 
of the Phase 1 model trained using the PPO algorithm was evaluated. For performance 
validation, a stowage plan was established by randomly assigning a total of 90 containers, 
each weighing 13 tons, 14 tons, 15 tons, or 16 tons, to 10 bays with 16 loading spaces each. 

Figure 5 shows the results of loading 90 randomly assigned containers using the 
trained Phase 1 PPO model. The results demonstrate a well-balanced stowage plan, with 
no significant shift in the center of gravity or excessive concentration of containers in a 
single bay. 

 
Figure 5. The loading results of Phase 1 PPO model. 

4. Application of Reinforcement Learning for Minimizing Relocations in Phase 2—
Row, Tier Plan 
4.1. Problem Definition 

Rehandling refers to a situation where containers destined for unloading at a current 
port are stacked on top of containers destined for a farther port, necessitating unnecessary 
temporary movement of containers. Rehandling is determined by comparing the Port Of 
Discharge (POD) of containers. In this study, the POD of the first container to be unloaded 
is defined as NO.1, the next as NO.2, and so forth, with the last POD being NO.4. 

To apply reinforcement learning for minimizing rehandling, a 4 × 4 loading space 
was defined, consisting of four stacks, each capable of holding four containers. It is as-
sumed that containers are provided one at a time during loading, and the agent does not 
know which container will be loaded next. Additionally, containers cannot be loaded out-
side the designated loading space. 

Figure 4. Average reward value according to 200 k learning counts of Phase 1 PPO model.

Figure 4 shows the training results of the PPO algorithm in Phase 1. The performance
of the Phase 1 model trained using the PPO algorithm was evaluated. For performance
validation, a stowage plan was established by randomly assigning a total of 90 containers,
each weighing 13 tons, 14 tons, 15 tons, or 16 tons, to 10 bays with 16 loading spaces each.

Figure 5 shows the results of loading 90 randomly assigned containers using the
trained Phase 1 PPO model. The results demonstrate a well-balanced stowage plan, with
no significant shift in the center of gravity or excessive concentration of containers in a
single bay.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 4. Average reward value according to 200k learning counts of Phase 1 PPO model. 

Figure 4 shows the training results of the PPO algorithm in Phase 1. The performance 
of the Phase 1 model trained using the PPO algorithm was evaluated. For performance 
validation, a stowage plan was established by randomly assigning a total of 90 containers, 
each weighing 13 tons, 14 tons, 15 tons, or 16 tons, to 10 bays with 16 loading spaces each. 

Figure 5 shows the results of loading 90 randomly assigned containers using the 
trained Phase 1 PPO model. The results demonstrate a well-balanced stowage plan, with 
no significant shift in the center of gravity or excessive concentration of containers in a 
single bay. 

 
Figure 5. The loading results of Phase 1 PPO model. 

4. Application of Reinforcement Learning for Minimizing Relocations in Phase 2—
Row, Tier Plan 
4.1. Problem Definition 

Rehandling refers to a situation where containers destined for unloading at a current 
port are stacked on top of containers destined for a farther port, necessitating unnecessary 
temporary movement of containers. Rehandling is determined by comparing the Port Of 
Discharge (POD) of containers. In this study, the POD of the first container to be unloaded 
is defined as NO.1, the next as NO.2, and so forth, with the last POD being NO.4. 

To apply reinforcement learning for minimizing rehandling, a 4 × 4 loading space 
was defined, consisting of four stacks, each capable of holding four containers. It is as-
sumed that containers are provided one at a time during loading, and the agent does not 
know which container will be loaded next. Additionally, containers cannot be loaded out-
side the designated loading space. 

Figure 5. The loading results of Phase 1 PPO model.

4. Application of Reinforcement Learning for Minimizing Relocations in Phase 2—Row,
Tier Plan
4.1. Problem Definition

Rehandling refers to a situation where containers destined for unloading at a current
port are stacked on top of containers destined for a farther port, necessitating unnecessary
temporary movement of containers. Rehandling is determined by comparing the Port Of
Discharge (POD) of containers. In this study, the POD of the first container to be unloaded
is defined as NO.1, the next as NO.2, and so forth, with the last POD being NO.4.

To apply reinforcement learning for minimizing rehandling, a 4 × 4 loading space was
defined, consisting of four stacks, each capable of holding four containers. It is assumed



J. Mar. Sci. Eng. 2024, 12, 1832 8 of 25

that containers are provided one at a time during loading, and the agent does not know
which container will be loaded next. Additionally, containers cannot be loaded outside the
designated loading space.

Containers with smaller POD numbers, indicating the order in which they need
to be unloaded first, should be loaded on top to minimize rehandling. As depicted in
Figure 6, in Stack 1, containers are loaded from the bottom up in the order of POD NO.4,
POD NO.2, POD NO.2, and POD NO.1, with the largest POD numbers at the lowest tier,
ensuring no rehandling. Similarly, in Stack 2, containers are loaded from the bottom up
as POD NO.4, POD NO.3, POD NO.3, and POD NO.1, also resulting in no rehandling.
In Stacks 3 and 4, containers with the largest POD numbers are loaded from the bottom
up, preventing rehandling. This method of loading ensures that all containers are loaded
without rehandling, successfully achieving the objective defined in this chapter.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 8 of 24 
 

 

Containers with smaller POD numbers, indicating the order in which they need to be 
unloaded first, should be loaded on top to minimize rehandling. As depicted in Figure 6, 
in Stack 1, containers are loaded from the bottom up in the order of POD NO.4, POD NO.2, 
POD NO.2, and POD NO.1, with the largest POD numbers at the lowest tier, ensuring no 
rehandling. Similarly, in Stack 2, containers are loaded from the bottom up as POD NO.4, 
POD NO.3, POD NO.3, and POD NO.1, also resulting in no rehandling. In Stacks 3 and 4, 
containers with the largest POD numbers are loaded from the bottom up, preventing re-
handling. This method of loading ensures that all containers are loaded without rehan-
dling, successfully achieving the objective defined in this chapter. 

 
Figure 6. Loading status of provided containers. 

4.2. Definition of Input Variables and Parameters 
In this study, the input variables and parameters were defined as follows to model 

the stowage-planning problem. 𝑖 ∶ 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 (5) 

𝑗 ∶ 𝐿𝑜𝑎𝑑𝑒𝑑 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 (6) 

𝑦 ∶ Stack number (7) 

𝑉௦ ∶ 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 ሺ𝐿𝐶𝐺ሻ 𝑜𝑓 𝑡ℎ𝑒 𝑠ℎ𝑖𝑝 (8) 

𝐷௝௬ ∶  𝑃𝑂𝐷 𝑜𝑓 𝑡ℎ𝑒 𝑗 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑜𝑛 𝑠𝑡𝑎𝑐𝑘 𝑦  (9) 

𝑇௬ ∶ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤 𝑖𝑛 𝑠𝑡𝑎𝑐𝑘 𝑦 (10) 

𝑆𝐶ሺ௜,௬ሻ ൌ  ൝ 1 , 𝐷௜ ൐ 𝐷௝௬ 𝑜𝑟  𝑇௬ ൌ 40 ,  𝐷௜ ൑ 𝐷௝௬ 𝑜𝑟  𝑇௬ ൏ 4 (11) 

4.3. Application of Reinforcement Learning 
The problem defined to apply reinforcement learning in Phase 1 has been described 

as an MDP with the following definitions for state, action, and reward. First, the state is 
represented using characteristic values that can identify both the containers currently 
loaded and the container that needs to be loaded. 𝑆𝑡𝑎𝑡𝑒 ∶ ൣ𝑖, 𝑇ଵ, 𝑇ଶ, 𝑇ଷ, 𝑇ସ, 𝑆𝐶ሺ௜,ଵሻ, 𝑆𝐶ሺ௜,ଶሻ, 𝑆𝐶ሺ௜,ଷሻ, 𝑆𝐶ሺ௜,ସሻ൧ (12) 

The state is defined with a total of nine elements: the POD number of the container 
to be loaded, the count of containers already loaded in each of stacks 1 through 4, and 

Figure 6. Loading status of provided containers.

4.2. Definition of Input Variables and Parameters

In this study, the input variables and parameters were defined as follows to model the
stowage-planning problem.

i : Container loading number (5)

j : Loaded container number (6)

y :Stack number (7)

Vs : Longitudinal center o f gravity (LCG) o f the ship (8)

Dy
j : POD o f the j container on stack y (9)

Ty : Number o f row in stack y (10)

SC(i,y) =

{
1 , Di > Dy

j or Ty = 4
0 , Di ≤ Dy

j or Ty < 4
(11)

4.3. Application of Reinforcement Learning

The problem defined to apply reinforcement learning in Phase 1 has been described
as an MDP with the following definitions for state, action, and reward. First, the state
is represented using characteristic values that can identify both the containers currently
loaded and the container that needs to be loaded.

State :
[
i, T1, T2, T3, T4, SC(i,1), SC(i,2), SC(i,3), SC(i,4)

]
(12)

The state is defined with a total of nine elements: the POD number of the container
to be loaded, the count of containers already loaded in each of stacks 1 through 4, and



J. Mar. Sci. Eng. 2024, 12, 1832 9 of 25

whether rehandling is necessary for each stack, calculated as 0 or 1, to indicate the absence
or presence of rehandling, respectively.

In Figure 7, an example is used to illustrate the definition of the state. The first position
of the state is assigned the POD number 3 of the container that needs to be loaded. The
number of tiers in Stacks 1 to 4 are 3, 1, 2, and 3, respectively, so these values are assigned
to the second through fifth positions of the state. Since rehandling occurs when loading
containers in Stack 1, a value of 1 is assigned to the sixth position; Stack 2 does not require
rehandling and is capable of loading, so a value of 0 is assigned to the seventh position;
rehandling occurs when loading into Stacks 3 and 4, so a value of 1 is assigned to each, in
the eighth and ninth positions, respectively. Defining the state in this way ensures that the
state size does not grow exponentially with the number of tiers, even as the loading space
increases. Next, the action space is defined as determining which stack to load the next
container into. The agent can choose from four actions, corresponding to the four stacks.
Finally, to apply reinforcement learning to Phase 2, rewards were assigned as shown in
Table 3.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 9 of 24 
 

 

whether rehandling is necessary for each stack, calculated as 0 or 1, to indicate the absence 
or presence of rehandling, respectively. 

In Figure 7, an example is used to illustrate the definition of the state. The first posi-
tion of the state is assigned the POD number 3 of the container that needs to be loaded. 
The number of tiers in Stacks 1 to 4 are 3, 1, 2, and 3, respectively, so these values are 
assigned to the second through fifth positions of the state. Since rehandling occurs when 
loading containers in Stack 1, a value of 1 is assigned to the sixth position; Stack 2 does 
not require rehandling and is capable of loading, so a value of 0 is assigned to the seventh 
position; rehandling occurs when loading into Stacks 3 and 4, so a value of 1 is assigned 
to each, in the eighth and ninth positions, respectively. Defining the state in this way en-
sures that the state size does not grow exponentially with the number of tiers, even as the 
loading space increases. Next, the action space is defined as determining which stack to 
load the next container into. The agent can choose from four actions, corresponding to the 
four stacks. Finally, to apply reinforcement learning to Phase 2, rewards were assigned as 
shown in Table 3. 

 
Figure 7. State first definition. 

Table 3. Phase 2 reward assignment. 

Parameter Value 
Learning rate 0.0001 

Gamma 0.9 
Lambda 3 
Clipping 0.1 

Number of Nodes 128, 64, 32 
Optimizer Adam 

4.4. Development of a Stowage Model Using the PPO Algorithm 
In Phase 2, the application of the PPO algorithm also involves training a neural net-

work using the state as input, just as in Phase 1, and predicting the probability of each 
action and the value of the current state. The neural network uses the state described in 
Section 4.3 as its input, and similar to Phase 1, it predicts the probability of each action 
and the value of the current state using two neural networks. 

  

Figure 7. State first definition.

Table 3. Phase 2 reward assignment.

Parameter Value

Learning rate 0.0001
Gamma 0.9
Lambda 3
Clipping 0.1

Number of Nodes 128, 64, 32
Optimizer Adam

4.4. Development of a Stowage Model Using the PPO Algorithm

In Phase 2, the application of the PPO algorithm also involves training a neural
network using the state as input, just as in Phase 1, and predicting the probability of each
action and the value of the current state. The neural network uses the state described in
Section 4.3 as its input, and similar to Phase 1, it predicts the probability of each action and
the value of the current state using two neural networks.

4.5. Training Results of the PPO Algorithm in Phase 2

For the agent’s training, parameters related to learning were set as described in Table 4.
POD numbers 1, 2, 3, and 4 were randomly assigned to 16 containers, and the number of
training iterations was set at 200,000.



J. Mar. Sci. Eng. 2024, 12, 1832 10 of 25

Table 4. Parameter setting of Phase 2 PPO model.

Parameter Value

Learning rate 0.0001
Gamma 0.9
Lambda 3
Clipping 0.1

Number of Nodes 128, 64, 32
Optimizer Adam

Figure 8 shows the training results of the PPO algorithm. Table 5 presents the perfor-
mance validation of the trained PPO model across nine different test container cases. The
validation of the trained model was conducted by sequentially loading containers from the
leftmost container in the test container list. The test results indicated that a stowage plan
was established without any rehandling for all test container cases.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 10 of 24 
 

 

4.5. Training Results of the PPO Algorithm in Phase 2 
For the agent’s training, parameters related to learning were set as described in Table 

4. POD numbers 1, 2, 3, and 4 were randomly assigned to 16 containers, and the number 
of training iterations was set at 200,000. 

Table 4. Parameter setting of Phase 2 PPO model. 

Parameter Value 
Learning rate 0.0001 

Gamma 0.9 
Lambda 3 
Clipping 0.1 

Number of Nodes 128, 64, 32 
Optimizer Adam 

Figure 8 shows the training results of the PPO algorithm. Table 5 presents the perfor-
mance validation of the trained PPO model across nine different test container cases. The 
validation of the trained model was conducted by sequentially loading containers from 
the leftmost container in the test container list. The test results indicated that a stowage 
plan was established without any rehandling for all test container cases. 

 
Figure 8. Average reward value according to 200k learning counts of Phase 2 PPO model. 

Table 5. Test results of Phase 2 PPO model trained. 

Rehandling Occurs: O, Rehandling Does Not Occur: X 

Case Container List (POD NO) 
Rehandling 

Status 
1 3 2 2 1 3 2 2 1 3 2 2 1 3 3 2 1 X 
2 3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 X 
3 4 3 2 2 4 4 3 3 4 3 2 1 4 3 2 1 X 
4 4 3 3 1 4 3 2 1 3 2 2 1 3 3 3 2 X 
5 4 4 4 4 4 4 3 3 2 2 1 1 1 1 1 1 X 
6 4 4 2 1 4 4 2 1 4 3 2 1 4 3 2 1 X 
7 4 3 3 3 3 2 2 2 4 4 3 3 2 2 1 1 X 
8 3 2 2 3 4 4 3 3 2 2 3 3 1 1 1 1 X 
9 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 X 

Figure 8. Average reward value according to 200 k learning counts of Phase 2 PPO model.

Table 5. Test results of Phase 2 PPO model trained.

Rehandling Occurs: O, Rehandling Does Not Occur: X

Case Container List (POD NO) Rehandling
Status

1 3 2 2 1 3 2 2 1 3 2 2 1 3 3 2 1 X
2 3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 X
3 4 3 2 2 4 4 3 3 4 3 2 1 4 3 2 1 X
4 4 3 3 1 4 3 2 1 3 2 2 1 3 3 3 2 X
5 4 4 4 4 4 4 3 3 2 2 1 1 1 1 1 1 X
6 4 4 2 1 4 4 2 1 4 3 2 1 4 3 2 1 X
7 4 3 3 3 3 2 2 2 4 4 3 3 2 2 1 1 X
8 3 2 2 3 4 4 3 3 2 2 3 3 1 1 1 1 X
9 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 X

Figure 9a,b shows the results of loading for Cases 1 and 4 from Table 5, respectively.



J. Mar. Sci. Eng. 2024, 12, 1832 11 of 25

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 11 of 24 
 

 

Figure 9a,b shows the results of loading for Cases 1 and 4 from Table 5, respectively. 

  
(a) (b) 

Figure 9. (a) The loading results of Phase 2 PPO model for Test Container Case No.1; (b) the loading 
results of Phase 2 PPO model for Test Container Case No.4. 

4.6. Performance Comparison with the DQN Algorithm 
The Deep Q-Network (DQN) algorithm is one of the methods used in reinforcement 

learning, enhancing Q-learning by utilizing artificial neural networks. Q-learning is an 
algorithm in which an agent learns a policy to maximize rewards for provided states and 
actions, calculating the total expected reward for taking a specific action in a specific state 
through the Q-function. However, Q-learning faces a challenge as the size of the table 
storing the Q-values grows exponentially with the increase in combinations of states and 
actions. To address this, the DQN algorithm uses artificial neural networks to approxi-
mate and learn the Q-function [20]. Figure 10 shows the results of training using the DQN 
algorithm under the same conditions to compare its performance with the PPO algorithm. 

 
Figure 10. Average reward value according to 200 k learning counts of DQN model. 

Table 6 presents the performance validation of the DQN Model across nine different 
test container cases. The DQN algorithm, like the PPO algorithm, successfully established 
a stowage plan without rehandling for all test container cases. Figure 11a,b shows the 
results of loading for Cases 1 and 4 from Table 6, respectively. 

  

Figure 9. (a) The loading results of Phase 2 PPO model for Test Container Case No.1; (b) the loading
results of Phase 2 PPO model for Test Container Case No.4.

4.6. Performance Comparison with the DQN Algorithm

The Deep Q-Network (DQN) algorithm is one of the methods used in reinforcement
learning, enhancing Q-learning by utilizing artificial neural networks. Q-learning is an
algorithm in which an agent learns a policy to maximize rewards for provided states and
actions, calculating the total expected reward for taking a specific action in a specific state
through the Q-function. However, Q-learning faces a challenge as the size of the table
storing the Q-values grows exponentially with the increase in combinations of states and
actions. To address this, the DQN algorithm uses artificial neural networks to approximate
and learn the Q-function [20]. Figure 10 shows the results of training using the DQN
algorithm under the same conditions to compare its performance with the PPO algorithm.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 11 of 24 
 

 

Figure 9a,b shows the results of loading for Cases 1 and 4 from Table 5, respectively. 

  
(a) (b) 

Figure 9. (a) The loading results of Phase 2 PPO model for Test Container Case No.1; (b) the loading 
results of Phase 2 PPO model for Test Container Case No.4. 

4.6. Performance Comparison with the DQN Algorithm 
The Deep Q-Network (DQN) algorithm is one of the methods used in reinforcement 

learning, enhancing Q-learning by utilizing artificial neural networks. Q-learning is an 
algorithm in which an agent learns a policy to maximize rewards for provided states and 
actions, calculating the total expected reward for taking a specific action in a specific state 
through the Q-function. However, Q-learning faces a challenge as the size of the table 
storing the Q-values grows exponentially with the increase in combinations of states and 
actions. To address this, the DQN algorithm uses artificial neural networks to approxi-
mate and learn the Q-function [20]. Figure 10 shows the results of training using the DQN 
algorithm under the same conditions to compare its performance with the PPO algorithm. 

 
Figure 10. Average reward value according to 200 k learning counts of DQN model. 

Table 6 presents the performance validation of the DQN Model across nine different 
test container cases. The DQN algorithm, like the PPO algorithm, successfully established 
a stowage plan without rehandling for all test container cases. Figure 11a,b shows the 
results of loading for Cases 1 and 4 from Table 6, respectively. 

  

Figure 10. Average reward value according to 200 k learning counts of DQN model.

Table 6 presents the performance validation of the DQN Model across nine different
test container cases. The DQN algorithm, like the PPO algorithm, successfully established a
stowage plan without rehandling for all test container cases. Figure 11a,b shows the results
of loading for Cases 1 and 4 from Table 6, respectively.



J. Mar. Sci. Eng. 2024, 12, 1832 12 of 25

Table 6. Test results of DQN model trained.

Rehandling Occurs: O, Rehandling Does Not Occur: X

Case Container List (POD NO) Rehandling
Status

1 3 2 2 1 3 2 2 1 3 2 2 1 3 3 2 1 X
2 3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 X
3 4 3 2 2 4 4 3 3 4 3 2 1 4 3 2 1 X
4 4 3 3 1 4 3 2 1 3 2 2 1 3 3 3 2 X
5 4 4 4 4 4 4 3 3 2 2 1 1 1 1 1 1 X
6 4 4 2 1 4 4 2 1 4 3 2 1 4 3 2 1 X
7 4 3 3 3 3 2 2 2 4 4 3 3 2 2 1 1 X
8 3 2 2 3 4 4 3 3 2 2 3 3 1 1 1 1 X
9 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 X

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 12 of 24 
 

 

Table 6. Test results of DQN model trained. 

Rehandling Occurs: O, Rehandling Does Not Occur: X 

Case Container List (POD NO) 
Rehandling 

Status 
1 3 2 2 1 3 2 2 1 3 2 2 1 3 3 2 1 X 
2 3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 X 
3 4 3 2 2 4 4 3 3 4 3 2 1 4 3 2 1 X 
4 4 3 3 1 4 3 2 1 3 2 2 1 3 3 3 2 X 
5 4 4 4 4 4 4 3 3 2 2 1 1 1 1 1 1 X 
6 4 4 2 1 4 4 2 1 4 3 2 1 4 3 2 1 X 
7 4 3 3 3 3 2 2 2 4 4 3 3 2 2 1 1 X 
8 3 2 2 3 4 4 3 3 2 2 3 3 1 1 1 1 X 
9 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 X 

 

  
(a) (b) 

Figure 11. (a) The loading results of DQN Model for Test Container Case No.1; (b) the loading re-
sults of DQN Model for Test Container Case No.4. 

Both the model trained with the PPO algorithm and the model trained with the DQN 
algorithm successfully established stowage plans without rehandling for all nine test con-
tainer lists. However, the PPO algorithm demonstrated faster convergence and less noise 
compared to the DQN algorithm. In terms of training speed, the PPO algorithm took 
around 50 minutes for 200,000 iterations, while the DQN algorithm took about 2 hours 
and 10 minutes. Therefore, the PPO algorithm is considered to be a more efficient and 
superior reinforcement learning method compared to the DQN algorithm. 

5. Container Stowage Planning with Weight Constraints Added in Phase 2 
5.1. Problem Definition 

The container-stowage plan with added weight constraints follows the same problem 
definition as described in Section 4, with the addition of weight-specific rewards. The 
weight reward ensures that the weight limit for each stack is not exceeded, heavier con-
tainers are prioritized for loading at the bottom, and the total weight of the containers 
loaded on both sides of the ship, relative to the centerline, is balanced to prevent tilting. 
This stowage method lowers the ship’s center of gravity and increases GM, thereby en-
hancing the ship’s stability. 

As shown in the stowage state in Figure 12, containers with larger POD numbers are 
loaded from the bottom in all stacks, resulting in no rehandling. Additionally, the total 
weight of the containers in Stack 1 and Stack 2 is 113 tons, while the total weight in Stack 
3 and Stack 4 is 117 tons, with only a 4-ton difference between the left and right sides. 
Under the condition of prioritizing the loading of heavier containers, the heavier contain-
ers are loaded first from the bottom, and the container weight decreases as the tiers go up. 
This example demonstrates that all containers were loaded without rehandling and in 
compliance with the weight constraints, achieving the objective defined in this chapter. 

Figure 11. (a) The loading results of DQN Model for Test Container Case No.1; (b) the loading results
of DQN Model for Test Container Case No.4.

Both the model trained with the PPO algorithm and the model trained with the
DQN algorithm successfully established stowage plans without rehandling for all nine
test container lists. However, the PPO algorithm demonstrated faster convergence and
less noise compared to the DQN algorithm. In terms of training speed, the PPO algorithm
took around 50 min for 200,000 iterations, while the DQN algorithm took about 2 h and
10 min. Therefore, the PPO algorithm is considered to be a more efficient and superior
reinforcement learning method compared to the DQN algorithm.

5. Container Stowage Planning with Weight Constraints Added in Phase 2
5.1. Problem Definition

The container-stowage plan with added weight constraints follows the same problem
definition as described in Section 4, with the addition of weight-specific rewards. The
weight reward ensures that the weight limit for each stack is not exceeded, heavier contain-
ers are prioritized for loading at the bottom, and the total weight of the containers loaded
on both sides of the ship, relative to the centerline, is balanced to prevent tilting. This
stowage method lowers the ship’s center of gravity and increases GM, thereby enhancing
the ship’s stability.

As shown in the stowage state in Figure 12, containers with larger POD numbers are
loaded from the bottom in all stacks, resulting in no rehandling. Additionally, the total
weight of the containers in Stack 1 and Stack 2 is 113 tons, while the total weight in Stack
3 and Stack 4 is 117 tons, with only a 4-ton difference between the left and right sides.
Under the condition of prioritizing the loading of heavier containers, the heavier containers
are loaded first from the bottom, and the container weight decreases as the tiers go up.
This example demonstrates that all containers were loaded without rehandling and in
compliance with the weight constraints, achieving the objective defined in this chapter.



J. Mar. Sci. Eng. 2024, 12, 1832 13 of 25J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 13 of 24 
 

 

 
Figure 12. Loading status of particular containers’ added weight constraints. 

5.2. Definition of Input Variables and Parameters 
In this chapter, the input variables and parameters were additionally defined as fol-

lows to model the weight constraints in the stowage-planning problem defined earlier. 𝑊௜ ∶ 𝑖 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 (13) 𝑊௝௬ ∶ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑗 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑙𝑜𝑎𝑑𝑒𝑑 𝑖𝑛 𝑠𝑡𝑎𝑐𝑘 𝑦 (14) 𝑅𝑊௬ ∶  total weight of containers loaded in stack y (15) 𝑉𝑊௬ ∶ min ሺ𝑊௝௬ሻ െ 𝑊௜ (16) 

5.3. Application of Weight Constraints in Phase 2 
In this chapter, the PPO algorithm is used over the DQN algorithm, as it reaches the 

highest point faster during training and exhibits less noise. To apply container stowage 
planning with weight constraints to reinforcement learning, additional weight constraint 
conditions were defined for the state, action, and reward as outlined in Section 3. To in-
corporate the weight constraints, nine more characteristic values were added to the state, 
which was originally defined with nine values. These additional values include the weight 
of the container to be loaded, the total weight of containers already loaded in each stack, 
and the weight difference between the container being loaded and the one directly below 
it. The details are as follows. 𝒔𝒕𝒂𝒕𝒆 ∶ ൤𝒊, 𝑾𝒊, 𝑻𝟏, 𝑻𝟐, 𝑻𝟑, 𝑻𝟒, 𝑺𝑪ሺ𝒊,𝟏ሻ, 𝑺𝑪ሺ𝒊,𝟐ሻ, 𝑺𝑪ሺ𝒊,𝟑ሻ, 𝑺𝑪ሺ𝒊,𝟒ሻ,𝑹𝑾𝟏, 𝑹𝑾𝟐, 𝑹𝑾𝟑, 𝑹𝑾𝟒, 𝑽𝑾𝟏, 𝑽𝑾𝟐, 𝑽𝑾𝟑, 𝑽𝑾𝟒 ൨ # (17)

In Figure 13, among the values assigned to the state, the first position is assigned the 
POD number 3 of the container to be loaded, and the second position is assigned the 
weight 15 of the container to be loaded. From the third to the tenth positions, the values 
related to the POD are used, as in the previous stowage plan that only considered rehan-
dling constraints. Positions 11 through 14 represent the total weight of containers loaded 
in each stack. For example, in the eleventh position, the total weight of the containers 
loaded in stack 1 is 16 tons + 15 tons + 14 tons = 45 tons, so a value of 45 is assigned. From 
the fifteenth position, the difference between the weight of the container to be loaded and 
the weight of the container at the top of each stack is assigned. For example, in the fifteenth 
position, the difference between the weight of the container at the top of stack 1, and the 
container to be loaded is 14–15 tons = −1 ton, so a value of −1 is assigned. As in the stowage 
plan with rehandling as the only constraint, the agent has four possible actions, corre-
sponding to the number of stacks. On the other hand, unlike the stowage plan that only 

Figure 12. Loading status of particular containers’ added weight constraints.

5.2. Definition of Input Variables and Parameters

In this chapter, the input variables and parameters were additionally defined as follows
to model the weight constraints in the stowage-planning problem defined earlier.

Wi : i Container weight (13)

Wy
j : weight o f the j container loaded in stack y (14)

RWy : total weight o f containers loaded in stack y (15)

VWy : min
(

Wy
j

)
− Wi (16)

5.3. Application of Weight Constraints in Phase 2

In this chapter, the PPO algorithm is used over the DQN algorithm, as it reaches the
highest point faster during training and exhibits less noise. To apply container stowage
planning with weight constraints to reinforcement learning, additional weight constraint
conditions were defined for the state, action, and reward as outlined in Section 3. To
incorporate the weight constraints, nine more characteristic values were added to the state,
which was originally defined with nine values. These additional values include the weight
of the container to be loaded, the total weight of containers already loaded in each stack,
and the weight difference between the container being loaded and the one directly below it.
The details are as follows.

state :
[

i, Wi, T1, T2, T3, T4, SC(i,1), SC(i,2), SC(i,3), SC(i,4),
RW1, RW2, RW3, RW4, VW1, VW2, VW3, VW4

]
# (17)

In Figure 13, among the values assigned to the state, the first position is assigned the
POD number 3 of the container to be loaded, and the second position is assigned the weight
15 of the container to be loaded. From the third to the tenth positions, the values related
to the POD are used, as in the previous stowage plan that only considered rehandling
constraints. Positions 11 through 14 represent the total weight of containers loaded in each
stack. For example, in the eleventh position, the total weight of the containers loaded in
stack 1 is 16 tons + 15 tons + 14 tons = 45 tons, so a value of 45 is assigned. From the fifteenth
position, the difference between the weight of the container to be loaded and the weight
of the container at the top of each stack is assigned. For example, in the fifteenth position,
the difference between the weight of the container at the top of stack 1, and the container
to be loaded is 14–15 tons = −1 ton, so a value of −1 is assigned. As in the stowage plan
with rehandling as the only constraint, the agent has four possible actions, corresponding
to the number of stacks. On the other hand, unlike the stowage plan that only considered
container rehandling, the weight constraint condition was added to the reward using the
method outlined in Table 7.



J. Mar. Sci. Eng. 2024, 12, 1832 14 of 25

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 14 of 24 
 

 

considered container rehandling, the weight constraint condition was added to the re-
ward using the method outlined in Table 7. 

 
Figure 13. State definition for applying the PPO algorithm with weight constraints. 

Table 7. Phase 2 reward assignment with weight constraints. 

Condition Reward 𝑅𝑊௫ ൑ 58 ton +0.1 𝑅𝑊௫ ൐ 58 ton −0.2 𝑉𝑊௫ ൑ 0 +0.2 𝑉𝑊௫ ൐ 0 −0.4 ሺ𝑅𝑊ଵ ൅ 𝑅𝑊ଶሻ െ ሺ𝑅𝑊ଷ ൅ 𝑅𝑊ସሻ ൑ 3 +0.3 ሺ𝑅𝑊ଵ ൅ 𝑅𝑊ଶሻ െ ሺ𝑅𝑊ଷ ൅ 𝑅𝑊ସሻ ൐ 3 −0.6 

5.4. Model Training Results 
The values for the training-related parameters were set as shown in Table 8. The ex-

periment in this chapter was conducted similarly to Section 4, where 16 containers were 
randomly assigned POD NO.1, POD NO.2, POD NO.3, and POD NO.4, and the container 
weights were randomly set to 13 tons, 14 tons, 15 tons, and 16 tons to train the PPO model. 

The training results of the PPO model with added weight constraints are shown in Figure 
14. The PPO model for Phase 2, with added weight constraints, was also evaluated using the 
same nine test container lists as Phase 2, which only considered rehandling. Table 9 shows the 
test container lists used for performance validation and the results. The validation results in-
dicate that all nine test container lists resulted in stowage plans without any rehandling. Fig-
ure 15a,b shows the stowage results for Test Container Lists 6 and 9, respectively. 

Table 8. Parameter setting of PPO model with weight constraints. 

Parameter Value 
Learning rate 0.0001 

Gamma 0.9 
Lambda 3 
Clipping 0.1 

Number of Nodes 128, 64, 32 
Optimizer Adam 

Figure 13. State definition for applying the PPO algorithm with weight constraints.

Table 7. Phase 2 reward assignment with weight constraints.

Condition Reward

RWx ≤ 58 ton +0.1
RWx > 58 ton −0.2

VWx ≤ 0 +0.2
VWx > 0 −0.4

(RW1 + RW2)− (RW3 + RW4) ≤ 3 +0.3
(RW1 + RW2)− (RW3 + RW4) > 3 −0.6

5.4. Model Training Results

The values for the training-related parameters were set as shown in Table 8. The
experiment in this chapter was conducted similarly to Section 4, where 16 containers were
randomly assigned POD NO.1, POD NO.2, POD NO.3, and POD NO.4, and the container
weights were randomly set to 13 tons, 14 tons, 15 tons, and 16 tons to train the PPO model.

The training results of the PPO model with added weight constraints are shown in
Figure 14. The PPO model for Phase 2, with added weight constraints, was also evaluated
using the same nine test container lists as Phase 2, which only considered rehandling.
Table 9 shows the test container lists used for performance validation and the results. The
validation results indicate that all nine test container lists resulted in stowage plans without
any rehandling. Figure 15a,b shows the stowage results for Test Container Lists 6 and 9,
respectively.

Table 8. Parameter setting of PPO model with weight constraints.

Parameter Value

Learning rate 0.0001
Gamma 0.9
Lambda 3
Clipping 0.1

Number of Nodes 128, 64, 32
Optimizer Adam



J. Mar. Sci. Eng. 2024, 12, 1832 15 of 25J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 14. Average reward value according to 200k learning counts of PPO Algorithm with weight 
constraints. 

Table 9. Test results of the Phase 2 PPO model trained with weight. 

Rehandling Occurs: O, Rehandling Does Not Occur: X 

Case Container List (POD NO) 
Rehandling 

Status 

1 
POD 3 2 2 1 3 2 2 1 3 2 2 1 3 3 2 1 

X Weight 15 14 14 13 15 14 14 13 15 14 14 13 15 15 14 13 

2 POD 3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 X 
Weight 15 15 15 15 15 15 14 14 14 14 14 13 13 13 13 13 

3 POD 4 3 2 2 4 4 3 3 4 3 2 1 4 3 2 1 X Weight 16 15 14 14 16 16 15 15 16 15 14 13 16 15 14 13 

4 
POD 4 3 3 1 4 3 2 1 3 2 2 1 3 3 3 2 

X Weight 16 15 15 13 16 15 14 13 15 14 14 13 15 15 15 14 

5 POD 4 4 4 4 4 4 3 3 2 2 1 1 1 1 1 1 X 
Weight 16 16 16 16 16 16 15 15 14 14 13 13 13 13 13 13 

6 POD 4 4 2 1 4 4 2 1 4 3 2 1 4 3 2 1 X 
Weight 16 16 14 13 16 16 14 13 16 15 14 13 16 15 14 13 

7 
POD 4 3 3 3 3 2 2 2 4 4 3 3 2 2 1 1 

X Weight 16 15 15 15 15 14 14 14 16 16 15 15 14 14 13 13 

8 
POD 3 2 2 3 4 4 3 3 2 2 3 3 1 1 1 1 

X Weight 15 14 14 15 16 16 15 15 14 14 15 15 13 13 13 13 

9 POD 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 X 
Weight 16 15 14 13 16 15 14 13 16 15 14 13 16 15 14 13 

 

  

Figure 14. Average reward value according to 200 k learning counts of PPO Algorithm with weight
constraints.

Table 9. Test results of the Phase 2 PPO model trained with weight.

Rehandling Occurs: O, Rehandling Does Not Occur: X

Case Container List (POD NO) Rehandling
Status

1
POD 3 2 2 1 3 2 2 1 3 2 2 1 3 3 2 1

XWeight 15 14 14 13 15 14 14 13 15 14 14 13 15 15 14 13

2
POD 3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1

XWeight 15 15 15 15 15 15 14 14 14 14 14 13 13 13 13 13

3
POD 4 3 2 2 4 4 3 3 4 3 2 1 4 3 2 1

XWeight 16 15 14 14 16 16 15 15 16 15 14 13 16 15 14 13

4
POD 4 3 3 1 4 3 2 1 3 2 2 1 3 3 3 2

XWeight 16 15 15 13 16 15 14 13 15 14 14 13 15 15 15 14

5
POD 4 4 4 4 4 4 3 3 2 2 1 1 1 1 1 1

XWeight 16 16 16 16 16 16 15 15 14 14 13 13 13 13 13 13

6
POD 4 4 2 1 4 4 2 1 4 3 2 1 4 3 2 1

XWeight 16 16 14 13 16 16 14 13 16 15 14 13 16 15 14 13

7
POD 4 3 3 3 3 2 2 2 4 4 3 3 2 2 1 1

XWeight 16 15 15 15 15 14 14 14 16 16 15 15 14 14 13 13

8
POD 3 2 2 3 4 4 3 3 2 2 3 3 1 1 1 1

XWeight 15 14 14 15 16 16 15 15 14 14 15 15 13 13 13 13

9
POD 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1

XWeight 16 15 14 13 16 15 14 13 16 15 14 13 16 15 14 13



J. Mar. Sci. Eng. 2024, 12, 1832 16 of 25J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 16 of 25 
 

 

  
(a) (b) 

Figure 15. (a) The loading results of Phase 2 PPO model for Test Container Case No.6 with weight 
constraints; (b) the loading results of Phase 2 PPO Model for Test Container Case No.9 with weight 
constraints. 

6. Application of Phase 1 and Phase 2 in a 3D Stowage Space 
6.1. Problem Definition 

To establish the stowage plan in a 3D loading space, which is the final objective of 
this study, both Phase 1 and Phase 2 were applied simultaneously. The 3D loading space 
was defined as a space capable of holding a total of 1000 containers, with 10 bays, 10 rows, 
and 10 tiers. To establish the stowage plan for the 3D loading space, the Phase 1 model 
was used to select the bay, and the Phase 2 model was used to select the row. 

6.2. Stowage Planning 
As the loading space was changed from 4 rows and 4 tiers to 10 rows and 10 tiers, 

Phase 1 and Phase 2 were retrained. For Phase 1, the number of bays and training itera-
tions remained the same, but the number of containers used for training was increased to 
1000 containers, which were randomly assigned for training. For Phase 2, due to the ex-
pansion of the loading space, the number of training iterations was set to 300,000. Figure 
16a shows the training results for Phase 1, and Figure 16b shows the training results for 
Phase 2. 

  
(a) (b) 

Figure 16. (a) Average reward value according to 200 k learning counts of Phase 1 PPO model; (b) 
average reward value according to 300 k learning counts of Phase 2 PPO model. 

In Figure 16a, the score converged near the maximum possible score of 4300, which 
can be obtained when 500 containers are loaded in Phase 1. In Figure 16b, the score con-
verged near the maximum possible score of 200, which can be obtained when 100 contain-
ers are loaded in the stowage space defined in Phase 2 without rehandling. 

The containers used for the stowage plan were randomly assigned POD numbers from 
POD NO.1 to POD NO.4, and their weights were randomly assigned as 13 tons, 14 tons, 15 
tons, or 16 tons. A stowage plan was established using 800 containers for a total of 1000 

Figure 15. (a) The loading results of Phase 2 PPO model for Test Container Case No.6 with weight
constraints; (b) the loading results of Phase 2 PPO Model for Test Container Case No.9 with weight
constraints.

6. Application of Phase 1 and Phase 2 in a 3D Stowage Space
6.1. Problem Definition

To establish the stowage plan in a 3D loading space, which is the final objective of this
study, both Phase 1 and Phase 2 were applied simultaneously. The 3D loading space was
defined as a space capable of holding a total of 1000 containers, with 10 bays, 10 rows, and
10 tiers. To establish the stowage plan for the 3D loading space, the Phase 1 model was
used to select the bay, and the Phase 2 model was used to select the row.

6.2. Stowage Planning

As the loading space was changed from 4 rows and 4 tiers to 10 rows and 10 tiers,
Phase 1 and Phase 2 were retrained. For Phase 1, the number of bays and training iterations
remained the same, but the number of containers used for training was increased to 1000
containers, which were randomly assigned for training. For Phase 2, due to the expansion
of the loading space, the number of training iterations was set to 300,000. Figure 16a shows
the training results for Phase 1, and Figure 16b shows the training results for Phase 2.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 16 of 24 
 

 

(a) (b) 

Figure 15. (a) The loading results of Phase 2 PPO model for Test Container Case No.6 with weight 
constraints; (b) the loading results of Phase 2 PPO Model for Test Container Case No.9 with weight 
constraints. 

6. Application of Phase 1 and Phase 2 in a 3D Stowage Space 
6.1. Problem Definition 

To establish the stowage plan in a 3D loading space, which is the final objective of 
this study, both Phase 1 and Phase 2 were applied simultaneously. The 3D loading space 
was defined as a space capable of holding a total of 1000 containers, with 10 bays, 10 rows, 
and 10 tiers. To establish the stowage plan for the 3D loading space, the Phase 1 model 
was used to select the bay, and the Phase 2 model was used to select the row. 

6.2. Stowage Planning 
As the loading space was changed from 4 rows and 4 tiers to 10 rows and 10 tiers, 

Phase 1 and Phase 2 were retrained. For Phase 1, the number of bays and training itera-
tions remained the same, but the number of containers used for training was increased to 
1000 containers, which were randomly assigned for training. For Phase 2, due to the ex-
pansion of the loading space, the number of training iterations was set to 300,000. Figure 
16a shows the training results for Phase 1, and Figure 16b shows the training results for 
Phase 2. 

  
(a) (b) 

Figure 16. (a) Average reward value according to 200 k learning counts of Phase 1 PPO model; (b) 
average reward value according to 300 k learning counts of Phase 2 PPO model. 

In Figure 16a, the score converged near the maximum possible score of 4300, which 
can be obtained when 500 containers are loaded in Phase 1. In Figure 16b, the score con-
verged near the maximum possible score of 200, which can be obtained when 100 contain-
ers are loaded in the stowage space defined in Phase 2 without rehandling. 

The containers used for the stowage plan were randomly assigned POD numbers from 
POD NO.1 to POD NO.4, and their weights were randomly assigned as 13 tons, 14 tons, 15 
tons, or 16 tons. A stowage plan was established using 800 containers for a total of 1000 stow-
age spaces. Figure 17 shows the stowage plan results for Phase 1. Figure 18b shows the stow-
age results for Bay 5, which had the most containers loaded, while Figure 18a shows the stow-
age results for Bay 1, which had the fewest containers loaded. 

Figure 16. (a) Average reward value according to 200 k learning counts of Phase 1 PPO model;
(b) average reward value according to 300 k learning counts of Phase 2 PPO model.

In Figure 16a, the score converged near the maximum possible score of 4300, which can
be obtained when 500 containers are loaded in Phase 1. In Figure 16b, the score converged
near the maximum possible score of 200, which can be obtained when 100 containers are
loaded in the stowage space defined in Phase 2 without rehandling.

The containers used for the stowage plan were randomly assigned POD numbers from
POD NO.1 to POD NO.4, and their weights were randomly assigned as 13 tons, 14 tons,
15 tons, or 16 tons. A stowage plan was established using 800 containers for a total of
1000 stowage spaces. Figure 17 shows the stowage plan results for Phase 1. Figure 18b



J. Mar. Sci. Eng. 2024, 12, 1832 17 of 25

shows the stowage results for Bay 5, which had the most containers loaded, while Figure 18a
shows the stowage results for Bay 1, which had the fewest containers loaded.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 17. Phase 1 container-stowage results using the PPO model with 800 containers. 

  
(a) (b) 

Figure 18. (a) Phase 2 container-stowage results for Bay 1; (b) Phase 2 container-stowage results for 
Bay 5. 

In the bay plan using Phase 1, the longitudinal length of the loaded space was 61 
meters, and the Longitudinal Center of Gravity (LCG) of the container ship was +3.111 
meters from the midship, meaning that the center of gravity did not significantly deviate 
from the center. The stowage plan was established without concentrating the load in a 
single bay. In the row and tier plan using Phase 2, all 800 containers were loaded across 
10 bays, and an average of six to eight rehandlings occurred per bay. Compared to the 
previous study by Dongmin Jeon, where two to three rehandlings occurred in a 5 × 5 
stowage space, the current study shows favorable results, as the stowage space increased 
fourfold, yet only six to eight rehandlings occurred. The vertical length of the loaded space 
was 24 meters, and the Vertical Center of Gravity (VCG) of the container ship was well 
balanced, with the center of gravity at +1.656 meters in Bay 1 and +1.08 meters in Bay 2 
from the centerline. The overall stowage results are included in the Appendix A. 

7. Program Development 
7.1. Program Overview 

In this study, a program was developed to be user-friendly. First, the program re-
ceives the POD number and weight of the container to be loaded. Then, the container’s 
weight information and the loading status of each bay are input into the pre-trained Phase 
1 model in the form of the defined state to predict the probability of loading into each bay. 
Based on the predicted probabilities, a bay is selected. The loading status of the selected 
bay, along with the POD number and weight of the container to be loaded, are input into 
the Phase 2 model in the form of the Phase 2 state to predict the probability of loading into 
each row. Based on these predicted probabilities, a row is selected. The stowage plan al-
lows containers to be entered one by one in sequence. Once the stowage plan is completed, 
the final output includes the loading status, the center of gravity of the container ship with 
the loaded cargo, the total weight, the number of loaded containers, and the remaining 
available space. 

  

Figure 17. Phase 1 container-stowage results using the PPO model with 800 containers.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 17. Phase 1 container-stowage results using the PPO model with 800 containers. 

  
(a) (b) 

Figure 18. (a) Phase 2 container-stowage results for Bay 1; (b) Phase 2 container-stowage results for 
Bay 5. 

In the bay plan using Phase 1, the longitudinal length of the loaded space was 61 
meters, and the Longitudinal Center of Gravity (LCG) of the container ship was +3.111 
meters from the midship, meaning that the center of gravity did not significantly deviate 
from the center. The stowage plan was established without concentrating the load in a 
single bay. In the row and tier plan using Phase 2, all 800 containers were loaded across 
10 bays, and an average of six to eight rehandlings occurred per bay. Compared to the 
previous study by Dongmin Jeon, where two to three rehandlings occurred in a 5 × 5 
stowage space, the current study shows favorable results, as the stowage space increased 
fourfold, yet only six to eight rehandlings occurred. The vertical length of the loaded space 
was 24 meters, and the Vertical Center of Gravity (VCG) of the container ship was well 
balanced, with the center of gravity at +1.656 meters in Bay 1 and +1.08 meters in Bay 2 
from the centerline. The overall stowage results are included in the Appendix A. 

7. Program Development 
7.1. Program Overview 

In this study, a program was developed to be user-friendly. First, the program re-
ceives the POD number and weight of the container to be loaded. Then, the container’s 
weight information and the loading status of each bay are input into the pre-trained Phase 
1 model in the form of the defined state to predict the probability of loading into each bay. 
Based on the predicted probabilities, a bay is selected. The loading status of the selected 
bay, along with the POD number and weight of the container to be loaded, are input into 
the Phase 2 model in the form of the Phase 2 state to predict the probability of loading into 
each row. Based on these predicted probabilities, a row is selected. The stowage plan al-
lows containers to be entered one by one in sequence. Once the stowage plan is completed, 
the final output includes the loading status, the center of gravity of the container ship with 
the loaded cargo, the total weight, the number of loaded containers, and the remaining 
available space. 

  

Figure 18. (a) Phase 2 container-stowage results for Bay 1; (b) Phase 2 container-stowage results for
Bay 5.

In the bay plan using Phase 1, the longitudinal length of the loaded space was 61 m,
and the Longitudinal Center of Gravity (LCG) of the container ship was +3.111 m from the
midship, meaning that the center of gravity did not significantly deviate from the center.
The stowage plan was established without concentrating the load in a single bay. In the
row and tier plan using Phase 2, all 800 containers were loaded across 10 bays, and an
average of six to eight rehandlings occurred per bay. Compared to the previous study by
Dongmin Jeon, where two to three rehandlings occurred in a 5 × 5 stowage space, the
current study shows favorable results, as the stowage space increased fourfold, yet only six
to eight rehandlings occurred. The vertical length of the loaded space was 24 m, and the
Vertical Center of Gravity (VCG) of the container ship was well balanced, with the center of
gravity at +1.656 m in Bay 1 and +1.08 m in Bay 2 from the centerline. The overall stowage
results are included in the Appendix A.

7. Program Development
7.1. Program Overview

In this study, a program was developed to be user-friendly. First, the program receives
the POD number and weight of the container to be loaded. Then, the container’s weight
information and the loading status of each bay are input into the pre-trained Phase 1 model
in the form of the defined state to predict the probability of loading into each bay. Based on
the predicted probabilities, a bay is selected. The loading status of the selected bay, along
with the POD number and weight of the container to be loaded, are input into the Phase
2 model in the form of the Phase 2 state to predict the probability of loading into each
row. Based on these predicted probabilities, a row is selected. The stowage plan allows
containers to be entered one by one in sequence. Once the stowage plan is completed, the
final output includes the loading status, the center of gravity of the container ship with



J. Mar. Sci. Eng. 2024, 12, 1832 18 of 25

the loaded cargo, the total weight, the number of loaded containers, and the remaining
available space.

7.2. Program Graphical User Interface

The Graphical User Interface (GUI) of the program developed in this study is designed
as shown in Figure 19. The “input data” button at the top right of the GUI is used to input
the information of the containers to be loaded before establishing the stowage plan. To the
right of the “input data” button, a “run” button is created to execute the program. Further
to the right, the “ship info” window allows input of the ship’s number of bays, rows, and
tiers. At the center of the GUI, a schematic of the container ship is displayed with each
bay represented as a button, enabling visualization of the loading status within each bay
after the stowage plan has been established. The center-right section of the GUI shows the
center of gravity (X, Y, Z) of the container ship after the stowage plan is created. Finally,
the “current status” window at the top right of the GUI displays the number of loaded
containers, remaining space, and the total weight of the ship.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 18 of 24 
 

 

7.2. Program Graphical User Interface 
The Graphical User Interface (GUI) of the program developed in this study is de-

signed as shown in Figure 19. The “input data” button at the top right of the GUI is used 
to input the information of the containers to be loaded before establishing the stowage 
plan. To the right of the “input data” button, a “run” button is created to execute the pro-
gram. Further to the right, the “ship info” window allows input of the ship’s number of 
bays, rows, and tiers. At the center of the GUI, a schematic of the container ship is dis-
played with each bay represented as a button, enabling visualization of the loading status 
within each bay after the stowage plan has been established. The center-right section of 
the GUI shows the center of gravity (X, Y, Z) of the container ship after the stowage plan 
is created. Finally, the “current status” window at the top right of the GUI displays the 
number of loaded containers, remaining space, and the total weight of the ship. 

 
Figure 19. Container Ship Loading Planning Program Main window UI. 

Figure 20 shows the window that appears when the previously mentioned “input 
data” button is clicked. It allows users to manually input the POD number and weight 
information for up to eight containers. When a large amount of container information 
needs to be entered, users can click the button on the right to input the data in Excel file 
format. 

 
Figure 20. Container ship loading-planning program data input window UI. 

7.3. Execution Result 
Figure 21 shows the result window after running the program. For the experiment in 

this study, 144 containers were input into the program to check the results. The POD num-
bers assigned to the containers were POD NO.1, POD NO.2, POD NO.3, and POD NO.4, 
while the weights were assigned as 13 tons, 14 tons, 15 tons, and 16 tons. The target ship 
was assumed to have 9 bays, 10 rows, and 10 tiers, with a total of 900 loading spaces. The 

Figure 19. Container Ship Loading Planning Program Main window UI.

Figure 20 shows the window that appears when the previously mentioned “input
data” button is clicked. It allows users to manually input the POD number and weight
information for up to eight containers. When a large amount of container information needs
to be entered, users can click the button on the right to input the data in Excel file format.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 18 of 24 
 

 

7.2. Program Graphical User Interface 
The Graphical User Interface (GUI) of the program developed in this study is de-

signed as shown in Figure 19. The “input data” button at the top right of the GUI is used 
to input the information of the containers to be loaded before establishing the stowage 
plan. To the right of the “input data” button, a “run” button is created to execute the pro-
gram. Further to the right, the “ship info” window allows input of the ship’s number of 
bays, rows, and tiers. At the center of the GUI, a schematic of the container ship is dis-
played with each bay represented as a button, enabling visualization of the loading status 
within each bay after the stowage plan has been established. The center-right section of 
the GUI shows the center of gravity (X, Y, Z) of the container ship after the stowage plan 
is created. Finally, the “current status” window at the top right of the GUI displays the 
number of loaded containers, remaining space, and the total weight of the ship. 

 
Figure 19. Container Ship Loading Planning Program Main window UI. 

Figure 20 shows the window that appears when the previously mentioned “input 
data” button is clicked. It allows users to manually input the POD number and weight 
information for up to eight containers. When a large amount of container information 
needs to be entered, users can click the button on the right to input the data in Excel file 
format. 

 
Figure 20. Container ship loading-planning program data input window UI. 

7.3. Execution Result 
Figure 21 shows the result window after running the program. For the experiment in 

this study, 144 containers were input into the program to check the results. The POD num-
bers assigned to the containers were POD NO.1, POD NO.2, POD NO.3, and POD NO.4, 
while the weights were assigned as 13 tons, 14 tons, 15 tons, and 16 tons. The target ship 
was assumed to have 9 bays, 10 rows, and 10 tiers, with a total of 900 loading spaces. The 

Figure 20. Container ship loading-planning program data input window UI.

7.3. Execution Result

Figure 21 shows the result window after running the program. For the experiment
in this study, 144 containers were input into the program to check the results. The POD
numbers assigned to the containers were POD NO.1, POD NO.2, POD NO.3, and POD



J. Mar. Sci. Eng. 2024, 12, 1832 19 of 25

NO.4, while the weights were assigned as 13 tons, 14 tons, 15 tons, and 16 tons. The target
ship was assumed to have 9 bays, 10 rows, and 10 tiers, with a total of 900 loading spaces.
The ship’s weight was assumed to be 100 tons. The loading results related to Phase 1 can
be seen in Figure 21, which shows the number of containers loaded at the top of each bay
and the total weight of the loaded containers.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 19 of 24 
 

 

ship’s weight was assumed to be 100 tons. The loading results related to Phase 1 can be 
seen in Figure 21, which shows the number of containers loaded at the top of each bay 
and the total weight of the loaded containers. 

 
Figure 21. Container ship loading-planning program result. 

Figure 22 shows the loading results within each bay. By clicking on the bay button, 
the loading status of each bay can be viewed. The POD numbers of the containers are 
displayed, and at the top of each row, the number of loaded containers and the weight 
per row are shown. 

 
Figure 22. Container ship loading-planning program in bay result. 

8. Conclusions 
Establishing a container-stowage plan using reinforcement learning must take into 

account various factors, such as container weight, unloading order, size, and type. This 
process requires significant time and effort when done manually. To address this issue, 
this study applied reinforcement learning to develop an optimal container-stowage plan. 
Traditional optimization algorithms like GA have the drawback of needing to re-optimize 
each time there is a change in the containers to be loaded. To overcome this, the study 
developed a stowage plan that accounts for real-time changes by setting reward functions 
based on rehandling and the ship’s center of gravity. 

To establish the stowage plan using reinforcement learning, the environment was 
mathematically modeled, and the state, action, and reward of the Markov Decision Pro-
cess (MDP) were defined. In Phase 1, the state was defined using the weight information 
of the container to be loaded, the loading status of each bay, and the total weight of con-
tainers loaded in each bay. In Phase 2, the state was defined using characteristic values for 

Figure 21. Container ship loading-planning program result.

Figure 22 shows the loading results within each bay. By clicking on the bay button,
the loading status of each bay can be viewed. The POD numbers of the containers are
displayed, and at the top of each row, the number of loaded containers and the weight per
row are shown.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 19 of 24 
 

 

ship’s weight was assumed to be 100 tons. The loading results related to Phase 1 can be 
seen in Figure 21, which shows the number of containers loaded at the top of each bay 
and the total weight of the loaded containers. 

 
Figure 21. Container ship loading-planning program result. 

Figure 22 shows the loading results within each bay. By clicking on the bay button, 
the loading status of each bay can be viewed. The POD numbers of the containers are 
displayed, and at the top of each row, the number of loaded containers and the weight 
per row are shown. 

 
Figure 22. Container ship loading-planning program in bay result. 

8. Conclusions 
Establishing a container-stowage plan using reinforcement learning must take into 

account various factors, such as container weight, unloading order, size, and type. This 
process requires significant time and effort when done manually. To address this issue, 
this study applied reinforcement learning to develop an optimal container-stowage plan. 
Traditional optimization algorithms like GA have the drawback of needing to re-optimize 
each time there is a change in the containers to be loaded. To overcome this, the study 
developed a stowage plan that accounts for real-time changes by setting reward functions 
based on rehandling and the ship’s center of gravity. 

To establish the stowage plan using reinforcement learning, the environment was 
mathematically modeled, and the state, action, and reward of the Markov Decision Pro-
cess (MDP) were defined. In Phase 1, the state was defined using the weight information 
of the container to be loaded, the loading status of each bay, and the total weight of con-
tainers loaded in each bay. In Phase 2, the state was defined using characteristic values for 

Figure 22. Container ship loading-planning program in bay result.

8. Conclusions

Establishing a container-stowage plan using reinforcement learning must take into
account various factors, such as container weight, unloading order, size, and type. This
process requires significant time and effort when done manually. To address this issue,
this study applied reinforcement learning to develop an optimal container-stowage plan.
Traditional optimization algorithms like GA have the drawback of needing to re-optimize
each time there is a change in the containers to be loaded. To overcome this, the study
developed a stowage plan that accounts for real-time changes by setting reward functions
based on rehandling and the ship’s center of gravity.

To establish the stowage plan using reinforcement learning, the environment was
mathematically modeled, and the state, action, and reward of the Markov Decision Process
(MDP) were defined. In Phase 1, the state was defined using the weight information of the



J. Mar. Sci. Eng. 2024, 12, 1832 20 of 25

container to be loaded, the loading status of each bay, and the total weight of containers
loaded in each bay. In Phase 2, the state was defined using characteristic values for a 4 × 4
loading space. The agent’s actions were defined as determining where the container should
be loaded. The rewards based on actions were calculated according to conditions such as
successful loading, inability to load, rehandling, the center of gravity, weight constraints by
bay and row, and prioritizing the loading of heavy cargo.

The Proximal Policy Optimization (PPO) algorithm was used for reinforcement learn-
ing. To compare the performance of PPO, the study also employed the Deep Q-learning
Network (DQN) algorithm under the same conditions. When only the unloading order
was considered, the comparison showed that the PPO algorithm outperformed the DQN
algorithm in terms of both learning speed and performance. Both Phase 1 and Phase 2 were
trained using the PPO algorithm, and container-stowage plans were established using the
trained model, with the results being reviewed. The results confirmed that the approach to
solving the container-stowage problem using reinforcement learning is an effective method.

In this study, Phase 1 and Phase 2 were combined to establish a container-stowage
plan for a 3D loading space. A program was developed, and a user-friendly GUI was
designed to allow easy use of this system.

It was confirmed that by considering not only the unloading order and weight but
also the size and type of containers, a container stowage-planning system that can be used
in real-world operations can be developed in the future.

Author Contributions: Conceptualization, J.C. and N.K.; supervision, N.K.; methodology, N.K.;
experiment, J.C.; writing, J.C. and N.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by Innovative Human Resource Development for Local Intellec-
tualization program through the Institute of Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (IITP-2024-RS-2020-II201791, 90%)
and “Regional Innovation Strategy (RIS)” through the National Research Foundation of Republic of
Korea (NRF) funded by the Ministry of Education (MOE) (2023RIS-007, 10%).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix contains the stowage results for the bays other than Bay 1 and Bay 5,
which are shown in the main text, regarding the experimental results from Section 6.

As a result of the stowage process, all containers were loaded within the predefined
stowage space of 10 × 10 × 10, ensuring compliance with the ship’s visibility requirements
that were considered during the design phase.



J. Mar. Sci. Eng. 2024, 12, 1832 21 of 25

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 20 of 24 
 

 

a 4 × 4 loading space. The agent’s actions were defined as determining where the container 
should be loaded. The rewards based on actions were calculated according to conditions 
such as successful loading, inability to load, rehandling, the center of gravity, weight con-
straints by bay and row, and prioritizing the loading of heavy cargo. 

The Proximal Policy Optimization (PPO) algorithm was used for reinforcement 
learning. To compare the performance of PPO, the study also employed the Deep Q-learn-
ing Network (DQN) algorithm under the same conditions. When only the unloading or-
der was considered, the comparison showed that the PPO algorithm outperformed the 
DQN algorithm in terms of both learning speed and performance. Both Phase 1 and Phase 
2 were trained using the PPO algorithm, and container-stowage plans were established 
using the trained model, with the results being reviewed. The results confirmed that the 
approach to solving the container-stowage problem using reinforcement learning is an 
effective method. 

In this study, Phase 1 and Phase 2 were combined to establish a container-stowage 
plan for a 3D loading space. A program was developed, and a user-friendly GUI was de-
signed to allow easy use of this system. 

It was confirmed that by considering not only the unloading order and weight but 
also the size and type of containers, a container stowage-planning system that can be used 
in real-world operations can be developed in the future. 

Author Contributions: Conceptualization, J.C. and N.K.; supervision, N.K.; methodology, N.K.; ex-
periment, J.C.; writing, J.C. and N.K. All authors have read and agreed to the published version of 
the manuscript. 

Funding: This work was supported by Innovative Human Resource Development for Local Intel-
lectualization program through the Institute of Information & Communications Technology Plan-
ning & Evaluation(IITP) grant funded by the Korea government(MSIT)(IITP-2024-RS-2020-II201791, 
90%) and “Regional Innovation Strategy (RIS)” through the National Research Foundation of Re-
public of Korea (NRF) funded by the Ministry of Education (MOE) (2023RIS-007, 10%). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data are contained within the article. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 
This appendix contains the stowage results for the bays other than Bay 1 and Bay 5, 

which are shown in the main text, regarding the experimental results from Section 6. 
As a result of the stowage process, all containers were loaded within the predefined 

stowage space of 10 × 10 × 10, ensuring compliance with the ship’s visibility requirements 
that were considered during the design phase. 

 

Figure A1. Phase 2 container-stowage results for Bay 2.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 21 of 24 
 

 

Figure A1. Phase 2 container-stowage results for Bay 2. 

 
Figure A2. Phase 2 container-stowage results for Bay 3. 

 
Figure A3. Phase 2 container-stowage results for Bay 4. 

 
Figure A4. Phase 2 container-stowage results for Bay 6. 

Figure A2. Phase 2 container-stowage results for Bay 3.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 21 of 24 
 

 

Figure A1. Phase 2 container-stowage results for Bay 2. 

 
Figure A2. Phase 2 container-stowage results for Bay 3. 

 
Figure A3. Phase 2 container-stowage results for Bay 4. 

 
Figure A4. Phase 2 container-stowage results for Bay 6. 

Figure A3. Phase 2 container-stowage results for Bay 4.



J. Mar. Sci. Eng. 2024, 12, 1832 22 of 25

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 21 of 24 
 

 

Figure A1. Phase 2 container-stowage results for Bay 2. 

 
Figure A2. Phase 2 container-stowage results for Bay 3. 

 
Figure A3. Phase 2 container-stowage results for Bay 4. 

 
Figure A4. Phase 2 container-stowage results for Bay 6. Figure A4. Phase 2 container-stowage results for Bay 6.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 22 of 24 
 

 

 
Figure A5. Phase 2 container-stowage results for Bay 7. 

 
Figure A6. Phase 2 container-stowage results for Bay 8. 

 
Figure A7. Phase 2 container-stowage results for Bay 9. 

Figure A5. Phase 2 container-stowage results for Bay 7.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 22 of 24 
 

 

 
Figure A5. Phase 2 container-stowage results for Bay 7. 

 
Figure A6. Phase 2 container-stowage results for Bay 8. 

 
Figure A7. Phase 2 container-stowage results for Bay 9. 

Figure A6. Phase 2 container-stowage results for Bay 8.



J. Mar. Sci. Eng. 2024, 12, 1832 23 of 25

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 22 of 24 
 

 

 
Figure A5. Phase 2 container-stowage results for Bay 7. 

 
Figure A6. Phase 2 container-stowage results for Bay 8. 

 
Figure A7. Phase 2 container-stowage results for Bay 9. Figure A7. Phase 2 container-stowage results for Bay 9.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 23 of 24 
 

 

 
Figure A8. Phase 2 container-stowage results for Bay 10. 

Appendix B 
Algorithm A1 represents the pseudocode based on the methodology. 

Algorithm A1: Container Stowage Planning using Proximal Policy Optimization (PPO) 
Input:  

− N: Number of containers 
− State: Current state of the ship’s stowage (container weights, bays, rows, and tiers)
− γ: Discount factor 
− ε: Clipping range for PPO 
− α: Learning rate 
− πθ: Policy network with parameters θ 

Vφ: Value network with parameters φ 
Output:  

− Optimized stowage plan (container positions in bays, rows, and tiers) 
### Phase 1: Bay Selection ### 
1: Initialize policy network πθ and value network Vφ with random weights 
2: For each iteration do 
3:     For each container i = 1 to N do 
4:         Observe current state s_i (bay capacities, container weights, ship’s LCG) 
5:         Select action a_i (choose bay) based on πθ(s_i) 
6:         Execute action a_i (stow container in the selected bay) 
7:         Compute reward r_i based on the stowage (e.g., LCG balance, bay capacity) 
8:         Store transition (s_i, a_i, r_i, s_i+1) in memory 
9:     End for 
### Phase 2: Row and Tier Selection ### 
10:    for each container i = 1 to N do 
11:        Observe current state s_i (row and tier capacities, POD numbers) 
12:        Select action a_i (choose row and tier) based on πθ(s_i) 
13:        Execute action a_i (stow container in the selected row and tier) 
14:        Compute reward r_i based on rehandling avoidance and weight distribution 
15:        Store transition (s_i, a_i, r_i, s_i+1) in memory 
16:    End for 
### Training and Optimization ### 
17:    Compute advantages A_i using rewards and value network Vφ 
18:    For each mini-batch of data do 
19:        Compute the ratio r = πθ(new action)/πθ(old action) 
20:        Clip the ratio r to [1 − ε, 1 + ε] to avoid large policy updates 

Figure A8. Phase 2 container-stowage results for Bay 10.

Appendix B

Algorithm A1 represents the pseudocode based on the methodology.

Algorithm A1: Container Stowage Planning using Proximal Policy Optimization (PPO)

Input:

- N: Number of containers
- State: Current state of the ship’s stowage (container weights, bays, rows, and tiers)
- γ: Discount factor
- ε: Clipping range for PPO
- α: Learning rate
- πθ: Policy network with parameters θ

Vφ: Value network with parameters φ
Output:

- Optimized stowage plan (container positions in bays, rows, and tiers)

### Phase 1: Bay Selection ###
1: Initialize policy network πθ and value network Vφ with random weights
2: For each iteration do
3: For each container i = 1 to N do
4: Observe current state s_i (bay capacities, container weights, ship’s LCG)
5: Select action a_i (choose bay) based on πθ(s_i)
6: Execute action a_i (stow container in the selected bay)



J. Mar. Sci. Eng. 2024, 12, 1832 24 of 25

Algorithm A1: Cont.

7: Compute reward r_i based on the stowage (e.g., LCG balance, bay capacity)
8: Store transition (s_i, a_i, r_i, s_i+1) in memory
9: End for
### Phase 2: Row and Tier Selection ###
10: for each container i = 1 to N do
11: Observe current state s_i (row and tier capacities, POD numbers)
12: Select action a_i (choose row and tier) based on πθ(s_i)
13: Execute action a_i (stow container in the selected row and tier)
14: Compute reward r_i based on rehandling avoidance and weight distribution
15: Store transition (s_i, a_i, r_i, s_i+1) in memory
16: End for
### Training and Optimization ###
17: Compute advantages A_i using rewards and value network Vφ

18: For each mini-batch of data do
19: Compute the ratio r = πθ(new action)/πθ(old action)
20: Clip the ratio r to [1 − ε, 1 + ε] to avoid large policy updates
21: Update policy network πθ using a clipped loss function
22: Update value network Vφ using mean squared error between predicted and actual
returns
23: End for
24: Apply updates to policy network πθ and value network Vφ

25: End for
26: Output the optimized stowage plan

References
1. Hong, D.H. The Method of Container Loading Scheduling through Hierarchical Clustering. J. Korea Soc. Comput. Inf. 2005, 10,

201–208.
2. Park, Y.K.; Kwak, K.S. Export container preprocessing method to decrease the number of rehandling in container terminal. J.

Navig. Port Res. 2011, 35, 77–82. [CrossRef]
3. Akyüz, M.H.; Lee, C.Y. A Mathematical Formulation and Efficient Heuristics for the Dynamic Container Relocation Problem. Nav.

Res. Logist. 2014, 61, 101–118. [CrossRef]
4. Dubrovsky, O.; Levitin, G.; Penn, M. A Genetic Algorithm with a Compact Solution Encoding for the Container Ship Stowage

Problem. J. Heuristics 2002, 8, 585–599. [CrossRef]
5. Zhu, H. Integrated Containership Stowage Planning: A Methodology for Coordinating Containership Stowage Plan and Terminal

Yard Operations. Sustainability 2022, 14, 13376. [CrossRef]
6. Chen-Fu, C.; Yu-Bin, L.; Kanchana, S.; Chia-Ching, P. Digital system for dynamic container loading with neural network-based

memory exploiting hybrid genetic algorithm for carbon reduction. Comput. Ind. Eng. 2024, 191, 110149. [CrossRef]
7. Chang, Y.; Hamedi, M.; Haghani, A. Solving integrated problem of stowage planning with crane split by an improved genetic

algorithm based on novel encoding mode. Meas. Control 2023, 56, 172–191. [CrossRef]
8. Junqueira, C.; Azevedo, A.T.; Ohishi, T. Solving the integrated multi-port stowage planning and container relocation problems

with a genetic algorithm and simulation. Appl. Sci. 2022, 12, 8191. [CrossRef]
9. Wang, Y.; Shi, G.; Hirayama, K. Many-Objective Container Stowage Optimization Based on Improved NSGA-III. J. Mar. Sci. Eng.

2022, 10, 517. [CrossRef]
10. Parreño, F.; Pacino, D.; Alvarez-Valdes, R. A GRASP Algorithm for the Container Stowage Slot Planning Problem. Transp. Res.

Part E 2016, 94, 141–157. [CrossRef]
11. Wei, L.; Wie, F.; Schmitz, S.; Kunal, K.; Noche, B. Optimization of Container Relocation Problem via Reinforcement Learning.

Logist. J. Proc. 2021, 2021. [CrossRef]
12. Ling, Y.; Wang, Q.; Pan, L. Advancing multi-port container stowage efficiency: A novel DQN-LNS algorithmic solution. Knowl.-

Based Syst. 2024, 299, 112074. [CrossRef]
13. Chen, P.; Wang, Q. Learning for multiple purposes: A Q-learning enhanced hybrid metaheuristic for parallel drone scheduling

traveling salesman problem. Comput. Ind. Eng. 2024, 187, 109851. [CrossRef]
14. Karimi-Mamaghan, M.; Mohammadi, M.; Pasdeloup, B.; Meyer, P. Learning to select operators in meta-heuristics: An integration

of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J. Oper. Res. 2023, 304,
1296–1330. [CrossRef]

15. Jiang, T.; Zeng, B.; Wang, Y.; Yan, W. A new heuristic reinforcement learning for container relocation problem. J. Phys. Conf. Ser.
2021, 1873, 012050. [CrossRef]

https://doi.org/10.5394/KINPR.2011.35.1.77
https://doi.org/10.1002/nav.21569
https://doi.org/10.1023/A:1020373709350
https://doi.org/10.3390/su142013376
https://doi.org/10.1016/j.cie.2024.110149
https://doi.org/10.1177/00202940221097981
https://doi.org/10.3390/app12168191
https://doi.org/10.3390/jmse10040517
https://doi.org/10.1016/j.tre.2016.07.011
https://doi.org/10.2195/lj_Proc_wei_en_202112_02
https://doi.org/10.1016/j.knosys.2024.112074
https://doi.org/10.1016/j.cie.2023.109851
https://doi.org/10.1016/j.ejor.2022.03.054
https://doi.org/10.1088/1742-6596/1873/1/012050


J. Mar. Sci. Eng. 2024, 12, 1832 25 of 25

16. Shen, Y.; Zhao, N.; Xia, M.; Du, X. A Deep Q-Learning Network for Ship Stowage Planning Problem. Pol. Marit. Res. 2017, 24,
102–109. [CrossRef]

17. Shin, J.Y.; Ryu, H.S. Deep Q-Learning Network Model for Container Ship Master Stowage Plan. J. Korean Soc. Ind. Converg. 2021,
24, 19–29. [CrossRef]

18. Jeon, D.; Kim, G.; Lim, C.; Shin, S. Container Stowage Plan to Reduce Shifts Based on Reinforcement Learning. In Proceedings of
the Korean Society of Ocean Science and Technology Conference, Jeju, Republic of Korea, 2 June 2022; pp. 515–521.

19. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

20. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-Level Control Through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1515/pomr-2017-0111
https://doi.org/10.21289/KSIC.2021.24.1.19
https://doi.org/10.1038/nature14236
https://www.ncbi.nlm.nih.gov/pubmed/25719670

	Introduction 
	Research Background 
	Previous Research 

	Reinforcement Learning 
	Overview of Reinforcement Learning 
	Proximal Policy Optimization Algorithm 

	Applying Reinforcement Learning for Phase 1—Bay Plan 
	Problem Definition 
	Definition of Input Variables and Parameters 
	Application of Reinforcement Learning 
	Development of a Stowage Model Using the PPO Algorithm 
	Phase 1 Training Results 

	Application of Reinforcement Learning for Minimizing Relocations in Phase 2—Row, Tier Plan 
	Problem Definition 
	Definition of Input Variables and Parameters 
	Application of Reinforcement Learning 
	Development of a Stowage Model Using the PPO Algorithm 
	Training Results of the PPO Algorithm in Phase 2 
	Performance Comparison with the DQN Algorithm 

	Container Stowage Planning with Weight Constraints Added in Phase 2 
	Problem Definition 
	Definition of Input Variables and Parameters 
	Application of Weight Constraints in Phase 2 
	Model Training Results 

	Application of Phase 1 and Phase 2 in a 3D Stowage Space 
	Problem Definition 
	Stowage Planning 

	Program Development 
	Program Overview 
	Program Graphical User Interface 
	Execution Result 

	Conclusions 
	Appendix A
	Appendix B
	References

