Composition and Biogeochemical Effects of Carbohydrates in Aerosols in Coastal Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aerosol Sampling
2.2. Species Analysis
2.3. PCA and PMF Models
2.4. Air Mass Backward Trajectories
3. Results
3.1. Background Information
3.2. Concentration and Distribution Characteristics
3.3. Particle Size Distribution and Seasonal Variations
3.4. Source Analysis by PCA and PMF
3.5. Flux and Implications for Carbon Export Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Kawamura, K.; Liu, C.Q.; Fu, P.Q. Long-term observations of saccharides in remote marine aerosols from the western North Pacific: A comparison between 1990–1993 and 2006–2009 periods. Atmos. Environ. 2013, 67, 448–458. [Google Scholar] [CrossRef]
- Wang, F.S.; Lang, Y.C.; Liu, C.Q.; Qin, Y.; Yu, N.X.; Wang, B.L. Flux of organic carbon burial and carbon emission from a large reservoir: Implications for the cleanliness assessment of hydropower. Sci. Bull. 2019, 64, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, A.P.; Peltier, R.E.; Brock, C.A.; de Gouw, J.A.; Holloway, J.S.; Warneke, C.; Wollny, A.G.; Weber, R.J. Airborne measurements of carbonaceous aerosol soluble in water over northeastern United States: Method development and an investigation into water-soluble organic carbon sources. J. Geophys. Res.-Atmos. 2006, 111, D23S46. [Google Scholar] [CrossRef]
- Hegde, P.; Kawamura, K. Seasonal variations of water-soluble organic carbon, dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in Central Himalayan aerosols. Atmos. Chem. Phys. 2012, 12, 6645–6665. [Google Scholar] [CrossRef]
- Du, Z.Y.; He, K.B.; Cheng, Y.; Duan, F.K.; Ma, Y.L.; Liu, J.M.; Zhang, X.L.; Zheng, M.; Weber, R. A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties. Atmos. Environ. 2014, 89, 235–241. [Google Scholar] [CrossRef]
- Alves, C.A.; Lopes, D.J.; Calvo, A.I.; Evtyugina, M.; Rocha, S.; Nunes, T. Emissions from Light-Duty Diesel and Gasoline In-Use Vehicles Measured on Chassis Dynamometer Test Cycles. Aerosol Air Qual. Res. 2015, 15, 99–116. [Google Scholar] [CrossRef]
- Qiao, L.; Mayer, C.; Liu, S.Y. Distribution and interannual variability of supraglacial lakes on debris-covered glaciers in the Khan Tengri-Tumor Mountains, Central Asia. Environ. Res. Lett. 2015, 10, 14014. [Google Scholar] [CrossRef]
- Yttri, K.E.; Dye, C.; Kiss, G. Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway. Atmos. Chem. Phys. 2007, 7, 4267–4279. [Google Scholar] [CrossRef]
- Fu, P.Q.; Kawamura, K.; Kobayashi, M.; Simoneit, B.R.T. Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: Significant contributions of airborne pollen and Asian dust in spring. Atmos. Environ. 2012, 55, 234–239. [Google Scholar] [CrossRef]
- Iavorivska, L.; Boyer, E.W.; DeWalle, D.R. Atmospheric deposition of organic carbon via precipitation. Atmos. Environ. 2016, 146, 153–163. [Google Scholar] [CrossRef]
- Kang, M.J.; Fu, P.Q.; Kawamura, K.; Yang, F.; Zhang, H.L.; Zang, Z.C.; Ren, H.; Ren, L.J.; Zhao, Y.; Sun, Y.L.; et al. Characterization of biogenic primary and secondary organic aerosols in the marine atmosphere over the East China Sea. Atmos. Chem. Phys. 2018, 18, 13947–13967. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Kobayashi, M.; Mochida, M.; Kawamura, K.; Lee, M.; Lim, H.J.; Turpin, B.J.; Komazaki, Y. Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign. J. Geophys. Res.-Atmos. 2004, 109, D19s10. [Google Scholar] [CrossRef]
- Medeiros, P.M.; Conte, M.H.; Weber, J.C.; Simoneit, B.R.T. Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland Experimental Forest, Maine. Atmos. Environ. 2006, 40, 1694–1705. [Google Scholar] [CrossRef]
- Liang, J.J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, aaf8957. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.K.; Kawamura, K.; Chen, J.; Fu, P.Q. Thirteen years of observations on primary sugars and sugar alcohols over remote Chichijima Island in the western North Pacific. Atmos. Chem. Phys. 2018, 18, 81–101. [Google Scholar] [CrossRef]
- Chen, H.Y.; Huang, S.Z. A study of the nitrogen and phosphorus imbalance in East Asia based on the distribution patterns of and stoichiometric variation in global atmospheric nitrogen and phosphorus. Atmos. Environ. 2021, 266, 118691. [Google Scholar] [CrossRef]
- Rudel, T.K.; Coomes, O.T.; Moran, E.; Achard, F.; Angelsen, A.; Xu, J.C.; Lambin, E. Forest transitions: Towards a global understanding of land use change. Glob. Environ. Change-Hum. Policy Dimens. 2005, 15, 23–31. [Google Scholar] [CrossRef]
- Park, M.; Randel, W.J.; Emmons, L.K.; Livesey, N.J. Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART). J. Geophys. Res.-Atmos. 2009, 114, D08303. [Google Scholar] [CrossRef]
- Zhu, J.L.; Liao, H.; Li, J. Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon. Geophys. Res. Lett. 2012, 39, L09809. [Google Scholar] [CrossRef]
- Li, X.; Jiang, L.; Hoa, L.P.; Lyu, Y.; Xu, T.T.; Yang, X.; Iinuma, Y.; Chen, J.M.; Herrmann, H. Size distribution of particle-phase sugar and nitrophenol tracers during severe urban haze episodes in Shanghai. Atmos. Environ. 2016, 145, 115–127. [Google Scholar] [CrossRef]
- Padoan, S.; Zappi, A.; Adam, T.; Melucci, D.; Gambaro, A.; Formenton, G.; Popovicheva, O.; Nguyen, D.L.; Schnelle-Kreis, J.; Zimmermann, R. Organic molecular markers and source contributions in a polluted municipality of north-east Italy: Extended PCA-PMF statistical approach. Environ. Res. 2020, 186, 109587. [Google Scholar] [CrossRef] [PubMed]
- Hauke, J.; Kossowski, T. Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaest. Geogr. 2011, 30, 87–93. [Google Scholar] [CrossRef]
- Chen, H.Y.; Chen, L.D. Occurrence of water soluble organic nitrogen in aerosols at a coastal area. J. Atmos. Chem. 2010, 65, 49–71. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Myklestad, S.M.; Skånøy, E.; Hestmann, S. A sensitive and rapid method for analysis of dissolved mono- and polysaccharides in seawater. Mar. Chem. 1997, 56, 279–286. [Google Scholar] [CrossRef]
- Pai, S.-C.; Yang, C.-C.; Riley, J.P. Formation kinetics of the pink azo dye in the determination of nitrite in natural waters. Anal. Chim. Acta 1990, 232, 345–349. [Google Scholar] [CrossRef]
- Pai, S.-C.; Riley, J. Determination of nitrate in the presence of nitrite in natural waters by flow injection analysis with a non-quantitative on-line cadmium reductor. Int. J. Environ. Anal. Chem. 1994, 57, 263–277. [Google Scholar] [CrossRef]
- Pai, S.-C.; Tsau, Y.-J.; Yang, T.-I. pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Anal. Chim. Acta 2001, 434, 209–216. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Huang, X.L.; Zhang, J.Z. Neutral persulfate digestion at sub-boiling temperature in an oven for total dissolved phosphorus determination in natural waters. Talanta 2009, 78, 1129–1135. [Google Scholar] [CrossRef]
- Qadir, R.M.; Abbaszade, G.; Schnelle-Kreis, J.; Chow, J.C.; Zimmermann, R. Concentrations and source contributions of particulate organic matter before and after implementation of a low emission zone in Munich, Germany. Environ. Pollut. 2013, 175, 158–167. [Google Scholar] [CrossRef] [PubMed]
- George, L.L. Multivariate Statistical Methods; Taylor & Francis: Abingdon, UK, 1991. [Google Scholar]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Wang, Y.Q. MeteoInfo: GIS software for meteorological data visualization and analysis. Meteorol. Appl. 2014, 21, 360–368. [Google Scholar] [CrossRef]
- Zhu, C.; Kawamura, K.; Kunwar, B. Organic tracers of primary biological aerosol particles at subtropical Okinawa Island in the western North Pacific Rim. J. Geophys. Res.-Atmos. 2015, 120, 5504–5523. [Google Scholar] [CrossRef]
- Nault, B.A.; Jo, D.S.; McDonald, B.C.; Campuzano-Jost, P.; Day, D.A.; Hu, W.W.; Schroder, J.C.; Allan, J.; Blake, D.R.; Canagaratna, M.R.; et al. Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. Atmos. Chem. Phys. 2021, 21, 11201–11224. [Google Scholar] [CrossRef]
- Chen, H.Y.; Chen, L.D. Importance of anthropogenic inputs and continental-derived dust for the distribution and flux of water-soluble nitrogen and phosphorus species in aerosol within the atmosphere over the East China Sea. J. Geophys. Res.-Atmos. 2008, 113, D11303. [Google Scholar] [CrossRef]
- Mullaugh, K.M.; Byrd, J.N.; Avery, G.B.; Mead, R.N.; Willey, J.D.; Kieber, R.J. Characterization of carbohydrates in rainwater from the Southeastern North Carolina. Chemosphere 2014, 107, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-C.; Tang, D.; Warnken, K.W.; Santschi, P.H. Distributions of carbohydrates, including uronic acids, in estuarine waters of Galveston Bay. Mar. Chem. 2001, 73, 305–318. [Google Scholar] [CrossRef]
- Wang, H.; Xie, S.P.; Kosaka, Y.; Liu, Q.Y.; Du, Y. Dynamics of Asian Summer Monsoon Response to Anthropogenic Aerosol Forcing. J. Clim. 2019, 32, 843–858. [Google Scholar] [CrossRef]
- Chen, Y.X.; Chen, H.Y.; Wang, W.; Yeh, J.X.; Chou, W.C.; Gong, G.C.; Tsai, F.J.; Huang, S.J.; Lin, C.T. Dissolved organic nitrogen in wet deposition in a coastal city (Keelung) of the southern East China Sea: Origin, molecular composition and flux. Atmos. Environ. 2015, 112, 20–31. [Google Scholar] [CrossRef]
- Theodosi, C.; Panagiotopoulos, C.; Nouara, A.; Zarmpas, P.; Nicolaou, P.; Violaki, K.; Kanakidou, M.; Sempéré, R.; Mihalopoulos, N. Sugars in atmospheric aerosols over the Eastern Mediterranean. Prog. Oceanogr. 2018, 163, 70–81. [Google Scholar] [CrossRef]
- Choi, N.R.; Lee, S.P.; Lee, J.Y.; Jung, C.H.; Kim, Y.P. Speciation and source identification of organic compounds in PM10 over Seoul, South Korea. Chemosphere 2016, 144, 1589–1596. [Google Scholar] [CrossRef]
- Kang, M.J.; Ren, L.J.; Ren, H.; Zhao, Y.; Kawamura, K.; Zhang, H.L.; Wei, L.F.; Sun, Y.L.; Wang, Z.F.; Fu, P.Q. Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: Insights from saccharides and n-alkanes. Environ. Pollut. 2018, 243, 1579–1587. [Google Scholar] [CrossRef]
- Wang, G.H.; Kawamura, K.; Xie, M.J.; Hu, S.Y.; Li, J.J.; Zhou, B.H.; Cao, J.J.; An, Z.S. Selected water-soluble organic compounds found in size-resolved aerosols collected from urban, mountain and marine atmospheres over East Asia. Tellus Ser. B-Chem. Phys. Meteorol. 2011, 63, 371–381. [Google Scholar] [CrossRef]
- Yu, C.C.; Yan, J.P.; Zhang, H.H.; Lin, Q.; Zheng, H.G.; Zhao, S.H.; Zhong, X.L.; Zhao, S.L.; Zhang, M.M.; Chen, L.Q. Chemical characteristics of sulfur-containing aerosol particles across the western North Pacific and the Arctic Ocean. Atmos. Res. 2021, 253, 105480. [Google Scholar] [CrossRef]
- Leung, D.M.; Tai, A.P.K.; Mickley, L.J.; Moch, J.M.; van Donkelaar, A.; Shen, L.; Martin, R.V. Synoptic meteorological modes of variability for fine particulate matter (PM2.5) air quality in major metropolitan regions of China. Atmos. Chem. Phys. 2018, 18, 6733–6748. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, C.; Wang, Z.; Pang, X.; Zhong, Y.; Han, X.; Ning, P. Chemical composition and source apportionment of PM2.5 in a border city in southwest China. Atmosphere 2021, 13, 7. [Google Scholar] [CrossRef]
- Chen, H.Y.; Huang, S.Z. Effects of Atmospheric Dry Deposition on External Nitrogen Supply and New Production in the Northern South China Sea. Atmosphere 2018, 9, 386. [Google Scholar] [CrossRef]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef]
- Jiang, N.; Li, Q.; Su, F.C.; Wang, Q.; Yu, X.; Kang, P.R.; Zhang, R.Q.; Tang, X.Y. Chemical characteristics and source apportionment of PM2.5 between heavily polluted days and other days in Zhengzhou, China. J. Environ. Sci. 2018, 66, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Cesari, D.; Amato, F.; Pandolfi, M.; Alastuey, A.; Querol, X.; Contini, D. An inter-comparison of PM 10 source apportionment using PCA and PMF receptor models in three European sites. Environ. Sci. Pollut. Res. 2016, 23, 15133–15148. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Gadi, R.; Sharma, S.; Mandal, T. Characterization and source apportionment of organic compounds in PM10 using PCA and PMF at a traffic hotspot of Delhi. Sustain. Cities Soc. 2018, 39, 52–67. [Google Scholar] [CrossRef]
- Narayanaswamy, C.; Raghavarao, D. Principal component analysis of large dispersion matrices. J. R. Stat. Soc. Ser. C Appl. Stat. 1991, 40, 309–316. [Google Scholar] [CrossRef]
- Koçak, M.; Kubilay, N.; Mihalopoulos, N. Ionic composition of lower tropospheric aerosols at a Northeastern Mediterranean site:: Implications regarding sources and long-range transport. Atmos. Environ. 2004, 38, 2067–2077. [Google Scholar] [CrossRef]
- Haque, M.M.; Kawamura, K.; Deshmukh, D.K.; Kunwar, B.; Kim, Y. Biomass Burning is an Important Source of Organic Aerosols in Interior Alaska. J. Geophys. Res.-Atmos. 2021, 126, e2021JD034586. [Google Scholar] [CrossRef]
- Tomsche, L.; Piel, F.; Mikoviny, T.; Nielsen, C.J.; Guo, H.Y.; Campuzano-Jost, P.; Nault, B.A.; Schueneman, M.K.; Jimenez, J.L.; Halliday, H.; et al. Measurement report: Emission factors of NH3 and NHx for wildfires and agricultural fires in the United States. Atmos. Chem. Phys. 2023, 23, 2331–2343. [Google Scholar] [CrossRef]
- Berthold, M.; Wulff, R.; Reiff, V.; Karsten, U.; Nausch, G.; Schumann, R. Magnitude and influence of atmospheric phosphorus deposition on the southern Baltic Sea coast over 23 years: Implications for coastal waters. Environ. Sci. Eur. 2019, 31, 27. [Google Scholar] [CrossRef]
- Chen, H.Y.; Huang, S.Z. Composition and supply of inorganic and organic nitrogen species in dry and wet atmospheric deposition: Use of organic nitrogen composition to calculate the Ocean’s external nitrogen flux from the atmosphere. Cont. Shelf Res. 2021, 213, 104316. [Google Scholar] [CrossRef]
- Russell, L.M.; Hawkins, L.N.; Frossard, A.A.; Quinn, P.K.; Bates, T.S. Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. Proc. Natl. Acad. Sci. USA 2010, 107, 6652–6657. [Google Scholar] [CrossRef]
- Matsumoto, K.; Kodama, S.; Sakata, K.; Watanabe, Y. Atmospheric deposition fluxes and processes of the water-soluble and water-insoluble organic carbon in central Japan. Atmos. Environ. 2022, 271, 118913. [Google Scholar] [CrossRef]
- Zhao, S.; Qi, J.H.; Ding, X. Characteristics, seasonal variations, and dry deposition fluxes of carbonaceous and water-soluble organic components in atmospheric aerosols over China’s marginal seas. Mar. Pollut. Bull. 2023, 191, 114940. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Chen, Y.; Yang, L.; Peng, Y.; Zhang, L.; Li, T.; Jiang, M. Carbon fractions and fluxes in the lower reach of Minjiang River. Res. Environ. Sci. 2019, 32, 647–653. [Google Scholar]
Factor 1 | Factor 2 | Factor 3 | Factor 4 | |
---|---|---|---|---|
NO3− | −0.04 | 0.65 | 0.59 | 0.18 |
NH4+ | 0.90 | −0.11 | 0.27 | −0.04 |
WSIN | 0.73 | 0.25 | 0.43 | 0.06 |
WSON | 0.31 | 0.28 | 0.61 | 0.20 |
WSIP | 0.22 | 0.13 | −0.27 | 0.63 |
WSOP | 0.30 | 0.50 | −0.41 | 0.51 |
TCHO | 0.78 | 0.30 | −0.10 | −0.11 |
MCHO | 0.91 | −0.17 | −0.03 | −0.17 |
PCHO | −0.27 | 0.69 | −0.10 | 0.10 |
WSOC | 0.90 | −0.12 | −0.14 | −0.24 |
WSIC | 0.80 | −0.09 | −0.23 | −0.10 |
Na+ | −0.16 | 0.76 | −0.24 | −0.41 |
K+ | 0.84 | 0.28 | −0.27 | 0.08 |
Ca2+ | −0.07 | −0.09 | −0.05 | 0.94 |
Mg2+ | 0.07 | 0.82 | −0.20 | 0.05 |
Cl− | −0.17 | 0.73 | −0.08 | −0.52 |
SO42− | 0.95 | −0.03 | 0.03 | −0.12 |
nss-K+ | 0.76 | 0.40 | −0.14 | 0.21 |
nss-Ca2+ | −0.34 | 0.74 | 0.29 | 0.00 |
nss-SO42− | 0.88 | −0.06 | 0.15 | −0.09 |
Eigenvalue | 7.69 | 4.91 | 1.72 | 1.38 |
Variability | 38% | 25% | 9% | 7% |
Sources | Biomass Burning | Marine Source | Anthropogenic emissions | Crustal Source |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-Y.; Liu, T.-W. Composition and Biogeochemical Effects of Carbohydrates in Aerosols in Coastal Environment. J. Mar. Sci. Eng. 2024, 12, 1834. https://doi.org/10.3390/jmse12101834
Chen H-Y, Liu T-W. Composition and Biogeochemical Effects of Carbohydrates in Aerosols in Coastal Environment. Journal of Marine Science and Engineering. 2024; 12(10):1834. https://doi.org/10.3390/jmse12101834
Chicago/Turabian StyleChen, Hung-Yu, and Ting-Wen Liu. 2024. "Composition and Biogeochemical Effects of Carbohydrates in Aerosols in Coastal Environment" Journal of Marine Science and Engineering 12, no. 10: 1834. https://doi.org/10.3390/jmse12101834
APA StyleChen, H. -Y., & Liu, T. -W. (2024). Composition and Biogeochemical Effects of Carbohydrates in Aerosols in Coastal Environment. Journal of Marine Science and Engineering, 12(10), 1834. https://doi.org/10.3390/jmse12101834