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S.; Piltaver, R. Interpretable Machine

Learning: A Case Study on Predicting

Fuel Consumption in VLGC Ship

Propulsion. J. Mar. Sci. Eng. 2024, 12,

1849. https://doi.org/10.3390/

jmse12101849

Academic Editors: Lingxiao Wu and

Shuaian Wang

Received: 12 September 2024

Revised: 13 October 2024

Accepted: 14 October 2024

Published: 16 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Interpretable Machine Learning: A Case Study on Predicting
Fuel Consumption in VLGC Ship Propulsion
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Abstract: The integration of machine learning (ML) in marine engineering has been increasingly
subjected to stringent regulatory scrutiny. While environmental regulations aim to reduce harmful
emissions and energy consumption, there is also a growing demand for the interpretability of ML
models to ensure their reliability and adherence to safety standards. This research highlights the need
to develop models that are both transparent and comprehensible to domain experts and regulatory
bodies. This paper underscores the importance of transparency in machine learning through a use
case involving a VLGC ship two-stroke propulsion engine. By adhering to the CRISP-DM standard,
we fostered close collaboration between marine engineers and machine learning experts to circumvent
the common pitfalls of automated ML. The methodology included comprehensive data exploration,
cleaning, and verification, followed by feature selection and training of linear regression and decision
tree models that are not only transparent but also highly interpretable. The linear model achieved an
RMSE of 23.16 and an MRAE of 14.7%, while the accuracy of decision trees ranged between 96.4%
and 97.69%. This study demonstrates that machine learning models for predicting propulsion engine
fuel consumption can be interpretable, adhering to regulatory requirements, while still achieving
adequate predictive performance.

Keywords: interpretability; machine learning; decision trees; linear regression; feature selection;
two-stroke marine engines; fuel consumption

1. Introduction

Machine learning (ML) is impacting diverse maritime aspects by predicting oper-
ational parameters and addressing sustainability issues. By analyzing extensive data,
including vessel performance metrics, weather, and environmental conditions, ML offers
innovative solutions to enhance efficiency [1–4] and promote cleaner transport by reducing
harmful emissions [5–7]. ML can also improve the resilience and robustness of onboard
systems, contributing to the digital transformation of the maritime industry. This ongoing
integration of ML allows for continuous adaptation to changing conditions, advancing
maritime operations.

The development of ML models for predicting ship propulsion energy consumption
represents an example of advancement in the marine industry [1,2,7]. Additional empirical
and methodological research within the marine engineering sector includes performance
optimization and knocking investigation into dual fuel two-stroke engines [1], regression
models for predicting ship power [2], and monitoring operating behavior in propulsion
diesel engines [7].

Recent advancements have extended the research and development of ML models,
tasked with the enhancement of ship lifecycle management and operational efficiency.
Nielsen et al. [3] enhance ship-maneuvering prediction by integrating a recurrent neural
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network (RNN) with a first-principles model. Using data from full-scale ship recordings,
the authors identify the limitations of conventional models in accurately predicting ship
velocities, especially in confined waters and during maneuvers. They implement a hybrid
approach where an RNN compensates for deviations between the measured velocities and
the first-principles model’s output. This methodology significantly improves prediction
accuracy for surge, sway, and yaw velocities, providing a more reliable tool for applications
like simulator training and propulsion performance monitoring. Coraddu et al. [8] use a
data-driven model to estimate speed loss due to marine fouling, demonstrating superior
accuracy over traditional methods and contributing to reduced fuel consumption and
maintenance needs. These studies underscore the transformative impact of ML in marine
engineering, enhancing operational efficiency across various applications.

This study builds upon previous research demonstrating the predictive capabilities of
ML in maritime engineering, from foundational theoretical approaches to practical applica-
tions in diverse settings [5,6,9]. The deployment of ML systems in complex applications
has heightened interest in optimizing not only for performance but also transparency,
safety, nondiscrimination, and decision interpretability [10]. The absence of these auxiliary
criteria is particularly concerning in high-stakes environments such as navigational sup-
port and autonomous ships, where transparency, accountability, reliability, and safety are
essential [10].

Furthermore, a consensus on the definition of interpretability in machine learning and
how it should be evaluated for benchmarking purposes is still missing. Researchers have
provided different definitions for interpretability in ML models, ranging from deductive–
nomological approaches [11] to sense-making through mechanisms [12,13]. Nevertheless,
all the proposed approaches refer to the extent to which a user can comprehend and
explain the ML model outcomes [10,14]. Interpretability assessments typically fall into
two categories: one evaluates the usefulness of the system in practical applications or
simplified versions thereof to determine interpretability [10]. The other approach uses
quantifiable proxies to argue that certain model classes, such as linear models, rule lists, or
decision trees [15,16], are inherently interpretable and therefore preferable for scenarios
requiring transparent decision-making. Decision trees offer inherent interpretability as
they provide explicit rules for decision-making based on the input features [14–16] and
linear regression is known for being one of the most interpretable ML models [8,14,16,17].
Hence, in this study we opt to investigate the second category of models in the real-life use
case of analyzing operational data from two-stroke marine engines. By closely examining
decision tree structures and evaluating the relationships between operational parameters,
we seek to understand how these parameters contribute to the ML model that predicts
engine performance as measured by fuel consumption.

This study aims to address the technical complexities of ML models while emphasizing
the need for transparency and interpretability, which is essential for model validation. The
conducted ML experiments highlight the importance of collaboration between domain
experts in marine engineering and machine learning to enhance model interpretability.
Additionally, understandable models not only aid in meeting the regulatory requirements
but also facilitate in explaining predictions to the stakeholders [18,19]. Understanding
and interpreting ML model decisions are essential for maintaining these qualities across
different domains.

Our study demonstrates that machine learning models for predicting propulsion
engine fuel consumption can be designed to be interpretable, i.e., complying with regulatory
standards, while effectively addressing challenges in marine engineering by achieving
adequate predictive performance. The key contributions of the paper include advancing
the model interpretability for predicting fuel consumption in very large gas carrier (VLGC)
ship propulsion, deepening the understanding of system behavior, employing diverse
feature selection methods to optimize variable sets, and highlighting the necessity for
multidisciplinary collaboration between domain and ML experts.
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The paper is structured as follows: Section 2 overviews the related work, Section 3
provides materials and methods with used dataset, tools, methods, and modeling process;
Section 4 validates the ML methods and provides interpretability discussion, followed by
Section 5, which concludes the paper.

2. Related Work

Machine learning, a branch of artificial intelligence, develops algorithms that learn
from data to make predictions or decisions. These algorithms train models on specific
datasets to automate and enhance decision-making processes. Data mining (DM) focuses
on extracting useful information and patterns from datasets, employing ML algorithms
to predict trends and inform decisions, using techniques like clustering and classifica-
tion. Throughout the paper, both terms are used interchangeably: ML is referred to when
discussing algorithms; and DM is used when performing data analyses [20–24]. Specifi-
cally, insights gained from DM are used to define the problem and prepare the data for
ML algorithms.

Recently, interpretable machine learning (ML) models have gained significant atten-
tion in the ML literature [10,14,15,20,25–27]. In critical applications such as medicine [13],
self-driving cars [10], and ships [10], understanding model reasoning (i.e., how the model
makes decisions) is as crucial as performance [26]. The transparency of the model [20,26] is
essential for comprehending the model structure (e.g., decision trees [14,15]), understanding
individual components (e.g., parameters in regression [16,25]), and assessing the contri-
bution of each input variable to the prediction outcome (e.g., feature importance [28–30]).
The need for the interpretability of ML models has been emphasized by EU legislation. The
General Data Protection Regulation (GDPR) has, since 2018, granted citizens the right to
an explanation if they are affected by algorithmic decision-making [18]. Starting in 2024,
the AI ACT, an EU regulation for artificial intelligence, establishes stringent requirements
for the transparency of ML models used [19]. It has been shown that interpretability is
inherent to so-called transparent ML models, while state-of-the-art solutions for opaque
“black box” models are still a ML research challenge [10,20,26,27]. Several studies [1,2,10]
on applied ML methods for marine engineering problems emphasize the drawbacks of
utilizing opaque ML methods.

Kim et al. [2] employ a multilayer perceptron (MLP) to estimate ship power by model-
ing the performance characteristics of the hull form, focusing on resistance, propulsion, and
propeller open water (POW) characteristics. Additionally, Convolutional Neural Networks
(CNNs) are used to interpret the hull’s geometry from images to forecast ship hydrodynam-
ics. These prediction models are deemed suitable for the early design phase, particularly
where a CNN model narrows down the selection of hull-form options. However, the
authors caution that “data-driven prediction models, like the ones discussed, should be
approached with caution for entirely new hull shapes not covered in the training data”.
This caution stems from the black-box nature of the utilized MLP and CNN, which do not
provide explanations for their outputs or reasons for preferring one hull shape over another.

In the study by Jin et al. [1], a response surface model (RSM) is integrated with multi-
objective particle swarm optimization (MOPSO) to enhance various parameters of the
engine, with the goals of boosting overall performance and minimizing engine combustion.
The authors note “The 1D simulation carried out provides good numerical simulation
research on engine operating parameters, but it cannot clearly obtain the development
of the combustion flame in the cylinder, at the same time, the parameters that can affect
the knocking characteristics such as vortex and turbulence in the cylinder cannot be stud-
ied”. This limitation also underscores the black-box characteristics inherent to the applied
ML methods.

Campos et al., in [10], train a random forest (RF) classification model on merged
forecast data to determine the wave height. The study examines the variable impact on
the RF model accuracy, and authors retain the wave height, direction (swell), and period.
Hence, this ablation study, inherent to RF classifier, explains the trained model. Still, the
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authors report that the model achieves satisfactory performance for shorter periods but lags
for longer ones, so extension with satellite images and training of additional ML methods
is needed to improve the long-term prediction results.

Our study extends beyond the reported work in marine engineering ML by providing
guidelines for greater transparency within the standard framework for creating ML models.
We underscore not only the interdependencies of variables [5], but also the importance
of feature selection, model complexity, performance, and interpretability in a marine
engineering ML context. The conducted experiments aim to demonstrate that feature
reduction can improve the robustness and interpretability of a model, while utilizing all
available features may enhance predictive accuracy, potentially at the expense of increased
model complexity. This approach provides a deeper insight into the relationships among
variables, transcending traditional interdependence analysis found in previous works [4].
The results demonstrate that the choice between these approaches should be guided by the
specific requirements of the application, balancing the demands for accuracy, complexity,
and interpretability.

3. Materials and Methods

In this study, sensory data from a very large gas carrier (VLGC), similar to the recent
series of ships built by a South Korean shipbuilder, were utilized. The vessel has a capacity
of 54,340 DWT, a length of 225 m, and a width of 37 m. The main engine of the ship is a
two-stroke marine diesel engine with one turbocharger unit, providing a maximum output
power of 12,400 kW. This power calculation considers a 15% sea margin and a 10% engine
margin for factors such as fouled ship hull and heavy weather, ensuring a guaranteed speed
of 16.8 knots at the design draft. The propulsion system consists of a single four-blade
fixed-pitch propeller with a diameter of 7400 mm, directly connected to the main engine
via a shafting system.

3.1. Data Source

For the analysis, sensory data were collected from the main propulsion diesel engine
(MAN B&W 6G60ME-C9.2) automation system capturing parameters such as revolutions
per minute (rpm) and other engine-related variables. Additionally, data from Kongsberg’s
K-Chief 600 alarm, monitoring, and control system provide information on temperature
and other system-related variables. The 7 Hz sampling frequency was chosen as the densest
interval available for capturing performance data.

The cylinder pressure is measured by the Kistler’s 6613EQ13-C online combustion
control piezoelectric sensors, which were directly mounted at each cylinder indicator cock.
These online sensors were calibrated according to the requirements stated in the IMO NOx
regulations and the manufacturer’s recommendation. Fuel oil mass flow (output variable)
was measured using Endress + Hauser’s Proline Promass 80 Coriolis Mass Flow Measuring
System, which meets the ISO 11631:1998 standard [31] with a total error of 0.15%. Two
flow meters of the same type were installed, one at the engine fuel inlet and the other
at the fuel outlet line, and the difference between the readings represents the consumed
fuel oil. The shaft power is measured by MetaPower’s torque meter, while temperature
sensors were integrated into the K-Chief 600 system. During data collection, readings were
taken at different engine speeds: 89 min−1 (representing normal continuous rating, NCR),
85 min−1 (requested speed setting during sailing), and 75 min−1. The loads varied between
5712 kW and 10,164 kW, as measured at the shaft. To ensure measurement repeatability and
comparability, the engine outlet cooling water temperature was automatically controlled at
89 ◦C, while the engine outlet lubricating oil temperature was controlled between 45 ◦C
and 47 ◦C using temperature controllers. The engine is supplied by fuel oil, compliant to
ISO 8217 standards [32], with net specific energy 40.33 MJ/kg. In total, 1018 data sample
instances were collected. The variables with the abbreviation tags and measurement units
are listed in Table 1.
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Table 1. The list of variables with tag abbreviation, description, and measurement unit (obtained
from sensor data).

Tag Description Unit Tag Description Unit

rpm Shaft revolutions min−1 pi1 Indicated Mean Eff. Press. cyl. 1 bar
pwr Shaft power kW pi2 Indicated Mean Eff. Press. cyl. 2 bar

pComp1 Compression Pressure, cyl. 1 bar pi3 Indicated Mean Eff. Press. cyl. 3 bar
pComp2 Compression Pressure, cyl. 2 bar pi4 Indicated Mean Eff. Press. cyl. 4 bar
pComp3 Compression Pressure, cyl. 3 bar pi5 Indicated Mean Eff. Press. cyl. 5 bar
pComp4 Compression Pressure, cyl. 4 bar pi6 Indicated Mean Eff. Press. cyl. 6 bar
pComp5 Compression Pressure, cyl. 5 bar piAvg Indicated Mean Eff. Press. mean bar
pComp6 Compression Pressure, cyl. 6 bar slip Apparent slip ratio %

pAvg Compression Pressure mean bar temp Ambient Air Temperature ◦C
pMax1 Firing pressure, cyl. 1 bar tExhGas1 ME Exhaust gas temperature, cyl. 1 (MA007) ◦C
pMax2 Firing pressure, cyl. 2 bar tExhGas2 ME Exhaust gas temperature, cyl. 2 (MA008) ◦C
pMax3 Firing pressure, cyl. 3 bar tExhGas3 ME Exhaust gas temperature, cyl. 3 (MA009) ◦C
pMax4 Firing pressure, cyl. 4 bar tExhGas4 ME Exhaust gas temperature, cyl. 4 (MA010) ◦C
pMax5 Firing pressure, cyl. 5 bar tExhGas5 ME Exhaust gas temperature, cyl. 5 (MA011) ◦C
pMax6 Firing pressure, cyl. 6 bar tExhGas6 ME Exhaust gas temperature, cyl. 6 (MA012) ◦C

pMaxAvg Firing pressure mean bar fuel ME Fuel consumption kg/h

Note: Firing pressure refers to the peak cylinder pressure during the combustion cycle, commonly known as
maximal indicated pressure.

3.2. Data Preparation

Data are logged across 7 days, 4 of which have 160–400 data points while the other
3 days have limited number of measurements (4 or 10 data points each). The vessel
was subjected to varying daily operational conditions, resulting in notable differences
in observed engine parameters when data for different dates are compared. One of the
dates has lower values for all engine parameters (12–34% relative difference depending
on the parameter), while the values for other dates do not differ significantly (within
±12%). These lower values are attributed to setting the engine revolution speed to an
economic fuel consumption mode (75 rpm), which is empirically above the scavenge air
pressure threshold for engaging auxiliary blowers. This operational mode was confirmed
during the onboard measurement process. Additionally, the parameter values on this day
remained quite consistent due to steady engine operation throughout the measurement
period, resulting in narrow distributions for each parameter compared to the variations
observed on other days (see Appendix C for details).

The parameters of compression pressure, peak cylinder pressure, indicated mean
effective pressure, and exhaust gas temperature are represented with seven variables each—
one for measurement at each of the six engine cylinders and the seventh as the average over
all cylinders. The pressure correlations for each pair of cylinders on a given day are higher
than 0.97 in all cases and in most cases even higher than 0.99. Values at some cylinders are
systematically higher or lower than on the other cylinders; however, the order of average
values per cylinder changes with the dates. The observed cylinder pressure variations
remain within the engine manufacturer’s acceptable margins, reflecting the engine control
system auto-balance and maintaining the set engine speed and performance parameters
across a range of operational conditions. The exhaust temperatures at different cylinders
are highly correlated (0.73–0.99) as well but not as much as the pressures. The ambient air
temperature remains constant during each measurement interval because these periods are
short, typically less than an hour. Like other parameters, fuel consumption is also constant
on each day but differs between days, e.g., the day with the lowest average consumption
has 43% lower value than the day with the highest consumption. The discretization of fuel
consumption into nine buckets used as the class is described in Section 3.4. Discretized fuel
consumption falls into a single or two adjacent bucket-classes for all days, but one that has
fuel consumption spread over the top four narrow buckets.
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The dataset, which comprises operational data from two-stroke marine engines, has
been prepared for analysis. The measurement data from various sources were time-
synchronized to ensure accurate alignment. These steps ensure that the data are ap-
propriately processed and ready for further investigation.

3.3. Methods

The first ML method used to model the relationship between fuel consumption and the
engine parameters is linear regression, which is a fundamental statistical method often used
in ML to explain or predict a continuous value based on values of other parameters [16,25].
The concept behind linear regression is relatively straightforward: it assumes a linear
relationship between the independent variables (engine parameters) and the dependent
variable (fuel consumption) and finds the linear function that is the best possible fit, i.e.,
the straight line that minimizes the differences between the observed values and the values
predicted by the model [21,22]. This line then serves as a predictive tool, allowing us to
estimate fuel consumption based on the other engine parameters.

Multiple linear regression (MLR) extends the concept of simple linear regression to
incorporate multiple independent variables (features) in predicting a dependent variable,
providing a more comprehensive understanding of the relationship between the variables
involved. Linear regression and evaluation metrics R-squared (R2), root mean squared
error (RMSE), mean relative absolute error (MRAE), and mean absolute error (MAE) for
regression models are elaborated in Appendix A.1.

The second utilized ML method is the decision tree method [1,15,24]. Decision tree
is a non-parametric classification method widely applicable in various problem domains,
including predictive supervised learning. One of the main advantages of this method is
its interpretability, simplicity, and fast learning process. The algorithm constructs a tree
structure from input variables, enabling straightforward analysis and interpretation of
predictions [33,34]. Each node in the tree divides the input variable into child nodes for
each variable value of the input variable in the parent node. For continuous variables,
divisions are based on comparisons of values within specific intervals, while for discrete
variables, divisions are based on combinations of all possible non-repeating values. Each
leaf node in the tree represents the value of the target variable given the input variable
values represented by the path from the root to the leaf. The tree grows by recursively
partitioning the original dataset into subsets based on testing the variable values. The
partitioning process continues until all data instances in a specific node have the same
value as the target variable or when further branching does not contribute to the accuracy
of predictions. It is possible that, with the available input variables, complete purity is not
achieved in a leaf node. The decision tree algorithm is presented in Appendix A.2.

Overall, decision trees provide a comprehensible and interpretable approach for
predicting fuel consumption in marine two-stroke diesel engines. The J48 algorithm [33,34],
specifically, offers interpretability, simplicity, and fast learning capabilities, making it
a suitable choice for this study. Therefore, we decided to supplement the regression
model with a classification approach (although the underlying problem is regression-
based) to check whether sacrificing some accuracy could yield better comprehensibility
and interpretability. This decision is aligned with the goals of our study, as our focus
lies on the interpretability of ML models, particularly decision trees. The use of J48 in
the analysis seeks to uncover the relationships and decision rules within the model that
contribute to predicting fuel consumption in maritime two-stroke engines. This choice also
facilitates the interpretation of results; the classes a: ≤1042 kg/h, b: >1042 and ≤1130 kg/h,
c: >1130 and ≤1415 kg/h, d: >1415 and ≤1620 kg/h, e: >1620 and ≤1650 kg/h, f: >1650
and ≤1790 kg/h, g: >1790 and ≤1815 kg/h, h: >1815 and ≤1828 kg/h, i: >1828 kg/h are
easily understood, as they are derived by converting expected operational daily values
into hourly values. This approach aids in optimizing maritime operations by providing
valuable insights into the factors influencing engine performance and fuel efficiency.
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3.4. Experimental Design

Data mining experimental design follows the CRISP-DM (Cross Industry Standard
Process for Data Mining) [23]. Our data mining objective is to predict fuel consumption
using comprehensible machine learning models that treat sensor data as either numerical
or categorical variables. Secondary objectives include the general analysis of sensor data,
detection of engine performance anomalies, and careful examination of the interplay be-
tween variables, the complexity of ML models, their performance, and interpretability. DM
activities are conducted following the CRISP-DM standard with an initial set of tools and
DM techniques proposed: multiple linear regression and classification trees are trained on a
potentially reduced set of variables according to the results of the feature selection process.

The second CRISP-DM phase was dedicated to data understanding including extensive
data visualization (time-series, distribution, and summary metrics for each variable/sensor
and day, scatterplots, correlations, and attribute clustering), verifying data quality, and
discussions about the observed patterns and anomalies with the marine engineer. This
phase is elaborated in Sections 3.1 and 3.2. It was noticed that some of the parameters are
highly correlated to fuel consumption, as expected. The highest correlation with average
daily fuel consumption was noticed with the average daily shaft power (0.951) and the
ship’s apparent slip ratio (0.925). Correlations with the pressures and exhaust temperature
are also high (0.86–0.91). In Figure 1, the Spearman correlation between the reduced set of
variables is reported, while all correlations are detailed in Appendix C Figure A1.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 8 of 26 
 

 

The original plan was to use the common method based on correlation with the pre-
dicted variable. However, this method turned out to be unacceptable for the task due to 
high correlations between variable pairs (see Appendix C.1) and because this method can-
not properly detect interactions between individual variables and remove the redundant 
ones. Therefore, alternative methods are used. 

 
Figure 1. Spearman correlations between reduced set of variables. 

The first method is based on a genetic algorithm with a linear regression fitness eval-
uator [28] from the tidyfit R package that uses stochastic optimization to optimize the set 
of variables. This method produces different results compared to the correlation-based 
feature selection as is evident from Figure 2. It properly detected some important variables 
and marked the others as irrelevant (in combination with the top variables). However, it 
did not include shaft power as one of the top variables (although it has the high correlation 
with fuel consumption and is obviously the most important based on physics) and gave 
conflicting results especially when used on all features (for example giving positive 
weight to pressure on one cylinder but negative to the other cylinder). It was suspected 
that genetic algorithm-based feature selection suffered from overfitting due to the limited 
dataset and its optimization power. 

Therefore, it was decided to use feature selection based on the third method ReliefF 
[28], which takes a filter–method approach and is notably sensitive to feature interactions. 
Again, we used the tidyfit R package that uses ReliefF implementation by [29]; that rated 
rpm and shaft power as the most important variables. 

Note that manually removing redundant measurements at each individual cylinder 
helped all three feature selection algorithms obtain better results (Figure A3 in Appendix 
C). Comparing the almost contradictory results of genetic and ReliefF-based algorithms 
shows that there are multiple small subsets of variables that can be used to train an accu-
rate predictor, because all variables are highly correlated to fuel consumption due to their 
physical relation to fuel consumption. Finally, it was decided to proceed with feature se-
lection based on both methods and rejecting feature selection based on correlation. 

Figure 1. Spearman correlations between reduced set of variables.

The third CRISP-DM phase includes data preparation steps. Data from multiple
sources were consolidated into a single dataset, duplicated data were removed, timestamps
were interpolated based on sampling frequency (original data had 1 s accuracy, while
sampling frequency was 420 min−1), discretized fuel consumption was added as the class,
and additional variables such as the date and the number of available data samples for the
day were included to facilitate easier visualizations and validation. Variables were removed
based on visualizations, the computed correlations between them, and discussion with
the marine engineering expert. Our study prioritizes feature selection, model complexity,
performance, and interpretability in the ML domain over the detection of operational
anomalies or faults. Therefore, the dataset has been tailored to include only the aggregated
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average values across all six cylinders, omitting the individual cylinder measurements such
as compressor, firing, and indicated mean eff. pressures, as well as exhaust temperature.
These detailed measurements are essential for engine health assessment but are not relevant
to the aims of this study, which seeks to advance the strategic understanding of ML
applications in marine engine performance. Date and time were also removed because all
parameters including fuel consumption are very static; therefore, models tend to overfit by
using the date to predict the fuel consumption. Ambient air temperature was removed due
to the same reason—this decision was not initially obvious, but rather discovered during
the data understanding phase.

Next, feature selection was performed. Three feature selection methods were applied
to the complete and the reduced set of features were compared to demonstrate the impor-
tance of data understanding. It can only be achieved through careful data analysis and tight
collaboration between domain and ML expert. However, once data are well understood, it
becomes much easier to perform manual feature selection because it is well understood
which features should be removed and why. Furthermore, it enables better feature engi-
neering (adding new features), which can replace redundant features or transform existing
features into features that help specific ML algorithms train better models.

The original plan was to use the common method based on correlation with the
predicted variable. However, this method turned out to be unacceptable for the task due to
high correlations between variable pairs (see Appendix C) and because this method cannot
properly detect interactions between individual variables and remove the redundant ones.
Therefore, alternative methods are used.

The first method is based on a genetic algorithm with a linear regression fitness
evaluator [28] from the tidyfit R package that uses stochastic optimization to optimize the
set of variables. This method produces different results compared to the correlation-based
feature selection as is evident from Figure 2. It properly detected some important variables
and marked the others as irrelevant (in combination with the top variables). However, it
did not include shaft power as one of the top variables (although it has the high correlation
with fuel consumption and is obviously the most important based on physics) and gave
conflicting results especially when used on all features (for example giving positive weight
to pressure on one cylinder but negative to the other cylinder). It was suspected that genetic
algorithm-based feature selection suffered from overfitting due to the limited dataset and
its optimization power.
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Therefore, it was decided to use feature selection based on the third method Reli-
efF [28], which takes a filter–method approach and is notably sensitive to feature interac-
tions. Again, we used the tidyfit R package that uses ReliefF implementation by [29]; that
rated rpm and shaft power as the most important variables.

Note that manually removing redundant measurements at each individual cylinder
helped all three feature selection algorithms obtain better results (Figure A3 in Appendix C).
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Comparing the almost contradictory results of genetic and ReliefF-based algorithms shows
that there are multiple small subsets of variables that can be used to train an accurate
predictor, because all variables are highly correlated to fuel consumption due to their
physical relation to fuel consumption. Finally, it was decided to proceed with feature
selection based on both methods and rejecting feature selection based on correlation.

In the fourth CRISP-DM phase, regression models were trained using multiple linear
regression (MLR) and classifiers were based on decision trees. Both methods were selected
because they are renowned for their interpretability [14,15,26]. Linear regression models
were trained using the lm function from the stats package that is based on [35] and decision
trees using rpart function from rpart package which is based on [36].

Data instances were weighted so that instances for each of the 7 days contributed
one-seventh of the total weight and all instances for the same date had the same weights.
This prevents overfitting to days with many instances and ignoring days with few instances,
which is important for our skewed dataset (see Section 3.1). Data were randomly split into
training and testing sets with 80% of samples being used for training and 20% for testing.
The split into training and testing set was stratified by date to ensure data for each date
were present in both sets.

4. Results and Discussion

Next, the results obtained by linear regression and classification tree methods are
reported and discussed, respectively.

Using all features (after manual feature selection) in a multiple linear regression model
results in almost perfect model with R2 0.995, RMSE 19.79, MRAE 13.0%, and MAE 15.3.
This is clearly an easy regression problem, as the variables are well correlated with the
predicted variable and there are sufficient data. The p-values for all coefficients included
in the regression model are almost zero except for shaft revolutions per minute and mean
firing pressure, which are not significant (indicating that these parameters can be excluded
from the model because they do not influence fuel consumption or because they are highly
correlated with another parameter included in the model), and slip, which has a p-value of
0.012 (indicating that it is probably in a linear relationship with fuel consumption but not
as strong as the other features).

Based on collaboration between the domain experts, the following model is obtained
that is as accurate but simplified, making it easier to understand, validate, and apply:

Fuel consumption = −1756 + avg. exhaust gas temperature × 8.639 + shaft power × 0.2379 − slip × 461.3 (1)

This model achieved an RMSE of 23.16. Its average absolute error, 18.2 kg/h, means
that the predictions are within 1–2% of the actual fuel consumption, which is between 1000
and 1700 kg/h. An MRAE of 14.7% means that the model is much more accurate than a
simple model that would always predict an average fuel consumption. This is a satisfactory
result, considering the limited dataset and the model’s simplicity in terms of understanding
and application.

The constant term (−1756) acts as a calibration offset, adjusting the baseline of the fuel
consumption calculated from other parameters. Its negative value helps align the model
outputs with observed data, where base fuel consumption levels are adjusted downwards.
The positive coefficient associated with average exhaust temperature implies that an in-
crease in exhaust temperature, indicative of higher power and potential heat losses, leads to
increased fuel consumption. Shaft power relates to the engine’s output or work performed.
Its positive coefficient (0.2379) suggests that a higher power output requires more fuel.
The negative coefficient for slip (−461.3) may seem counterintuitive because higher slip
typically indicates less efficient propulsion. This anomaly could be due to insufficient data
variability, confounding variables, or errors in model specification. The limited range of
measured slip values (min. 2.86%, max. 4.18%, avg. 3.71%) restricts the ability to draw
definitive conclusions about its effect on fuel consumption. With the presented simple
multiple linear regression model, the prediction of fuel consumption is limited and may not
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accurately reflect the true relationship between slip and fuel consumption. This limitation
underscores the need for a broader dataset and a more sophisticated modeling approach
to better understand and predict the effects of slip on fuel efficiency. The p-values for all
coefficients included in this simplified regression model are almost zero, which means that
according to this model all three parameters influence fuel consumption.

In addition to the empirical basis provided for the coefficients in our regression models,
it is also possible to contextualize these coefficients within a theoretical framework based
on the principles of thermodynamics, particularly relating to the efficiency and operation
of marine engines. The basic theoretical model for engine performance can be derived from
the first law of thermodynamics, which, in the context of an engine, is about the conversion
of fuel energy into mechanical work and heat loss. The formula for the fuel consumption of
an engine, which influences thermal efficiency, can be expressed as follows:

mf =
P

η ∗ Q
(2)

Here, P represents the power output (kW), mf is the mass flow rate of fuel (kg/h), and
Q is the heating value of the fuel (kJ/kg).

Thermal efficiency (η) of an engine can be further expressed as follows:

η = η0 − C1 × avg.exhaust gas temperature − C2 × slip, (3)

where η0 represents baseline efficiency under standard operating conditions and C1 and
C2 should be empirically dimensioned based on experimental data or detailed engine
performance analyses.

The coefficients in our regression model, such as 8.639 and −461.3, can be linked to
parameters in the thermodynamic efficiency equation. For instance, a coefficient related to
power (P) in the model could be understood as reflecting changes in engine efficiency as
power output varies. Similarly, negative coefficients might be associated with inefficiencies
or increased fuel consumption due to factors like increased friction or thermal losses, as
indicated by higher operational loads.

Bootstrapping was used to check the stability of linear regression model and calculate
confidence intervals of predicted fuel consumption. Each linear regression model was fitted
to 500 random samples from the training set and the process was repeated 1000 times. The
models were then applied to the samples from the test set. The mean prediction value and
the range that contains the predicted value for 95% of the 1000 models was computed for
each sample in the test set. The results are shown in Figure 3, where the error bars can be
interpreted as confidence in prediction or model stability depending on the subset of data
used for training the model. The average width of the 95% confidence interval is 16.9, which
amounts to less than 2% of the actual fuel consumption. Confidence intervals are narrower
for test samples that have very low or very high actual fuel consumption, which means
that the set of training data has lower impact on model predictions for such cases. Narrow
confidence intervals confirm that predictions do not change much if a different subset of
training examples is used to fit the model. The average RMSE over the 1000 models is 18.5
and the average MAE is 17.9, which is in line with errors computed for the single model
that was trained on the entire training set (see Equation (1)).

The results of prediction models based on feature selection are listed in Table 2. All
models (even with more than three variables) perform worse than the model based on the
manual selection. When comparing models based on the feature selection, the differences
when reducing from five to three variables are minor. However, models based on features
selected with genetic algorithm highly outperform feature selection based on ReliefF.
Models based on the genetic feature selection may be slightly overfitted (RMSE on test data
is higher than on training data), while this is not the case for the models based on ReliefF
feature selection. Reducing the number of features selected by the genetic algorithm to two
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decreases R2 to 0.856, which is lower than in the case of the top two features selected using
ReliefF (0.944).
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Table 2. Evaluation of regression models based on feature selection methods and number of variables
used. Values in brackets are measured on training data.

Evaluation
Metric

Genetic,
Top 5 Attrib.

Genetic,
Top 3 Attrib.

ReliefF,
Top 5 Attrib.

ReliefF,
Top 3 Attrib.

Manual,
3 Attrib.

R2 (0.987) (0.967) (0.955) (0.954) (0.992)
RMSE 29.04 (28.95) 27.42 (26.35) 57.04 (60.02) 59.52 (61.71) 23.16 (23.43)

MRAE [%] 19.2 (20.7) 13.8 (14.1%) 35.8 (37.3) 38.1 (39.9%) 14.7 (14.5%)
MAE [kg/h] 23.33 (24.98) 20.54 (21.81) 47.55 (48.74) 48.32 (49.83) 18.2 (18.45)

The best model based on feature selection uses three variables selected with the genetic
algorithm:

Fuel consumption = −3005 + slip × 49.87 + avg. indicated mean eff. pressure
× 65.05 +

avg. exhaust gas temperature × 10.02
(4)

As discussed above, the constant term (−3005) is a calibration offset that adjusts the
baseline of fuel consumption calculations based on the behavior observed in processed
data. The positive coefficient for slip (49.87) is consistent with the physical principles and
has a p-value of 0.0015. The coefficient for average indicated mean eff. pressure (65.05)
suggests that higher pressures within the cylinders, indicative of more intense combustion
processes, are associated with higher fuel consumption. Its p-value is almost 0 (<2−16).

Next, a regression tree model is trained on dataset with all features after manual
feature selection. This resulted in a binary tree with nine leaves (as many as classes) that
uses shaft power as a splitting variable in most of the nodes and rpm and average pressure
in only one node each. The tree is shown in Figure 4. The classification accuracy of the tree
for 80:20 split training and testing sets is 96.4% (95.76% learned and tested on the complete
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dataset) and the RMSE is 37.22. The RMSE of discretized fuel consumption (i.e., the actual
values, not predictions) is 30.41, which means that most of the classification tree prediction
error is due to the discretization of fuel consumption and not due to the prediction error.
RMSE was computed by mapping each class’s label to the mean fuel consumption over the
examples belonging to the class.
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Most leaves are nearly pure, meaning they contain very few training examples from
classes other than the predicted class. The purity of the leaves can be interpreted as an
indication of confidence in the predictions—specifically, how confident the model is that
the predicted class is correct. Class h has the lowest purity at 82.1%, while all other leaves
exhibit over 90% purity; notably, the top six out of nine leaves have a purity exceeding 98%.

The tree can be simplified as follows: “the higher the shaft power the higher the fuel
consumption, increasing rpm also increases consumption, at least when power is low”. This
result is in line with the obtained regression models and the theoretical model represented
by Equation (2).

Detailed analysis of the decision tree’s rules and node splitting reveals that shaft
power is the primary variable for decision-making, showing a direct correlation between
increased power output and higher fuel consumption. This relationship underscores a
basic principle where greater energy output requires more fuel. Shaft revolutions per
minute (rpm), although less frequently a criterion for splitting, significantly influences fuel
consumption under specific conditions, particularly at lower power outputs where higher
rpm leads to increased fuel usage. The indicated mean effective pressure (pAvg), while not
a common splitting criterion, is critical under varying conditions and provides insights
into the engine’s combustion efficiency. The decision tree effectively uses pAvg to identify
subtle variations in fuel consumption that are not readily evident through shaft power and
rpm alone.

Classification trees were also trained on a dataset with feature selection applied using
genetic and ReliefF methods described above. The trees based on the top five features
according to ReliefF feature selection are exactly the same as the trees in Figure 4 (trained
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using all features). The tree using only the top three features according to ReliefF feature
selection is very similar, with the single difference of replacing the node split by pAvg with
a subtree that substitutes a simple split by pAvg with two splits by pMax and two by pwr.
Nevertheless, its performance is almost the same. On the other hand, trees based on top
features according to the genetic feature selection method have more nodes (14 internal
plus 15 leaves), which makes them more complex but not significantly more accurate.

Finally, simplified classification trees were trained using Weka software toolkit (ver.
3.8.6) to predict fuel consumption based on expert-based feature selection aimed for model
simplicity. Specifically, rpm and shaft power were used, as suggested by the marine engi-
neering expert. The decision trees were constructed with a standard implementation of the
algorithms [22]. The J48 algorithm, which is Weka’s implementation of C4.5 algorithm [33],
was used. The goal of training simple classification trees is to validate the performance of
these simple yet highly interpretable models.

The feature selection is based on the following reasoning and data interpretation.
Firing pressure (pMax), compression pressure (pComp) and indicated mean eff. pressure
(pi) from various cylinders are highly correlated with fuel consumption: the respective
correlations for each group of parameters are ~0.85, ~0.9, and ~0.95 (see Appendix C).
These parameters significantly impact the combustion process and thereby influence fuel
consumption. Their relationship with exhaust gas temperature underscores the complex
interaction between various engine parameters, dictated by thermodynamic principles.
Moreover, slip also has a high correlation with fuel consumption at coefficients of 0.935.
Slip can provide valuable insights into the performance of the hull and propeller, and the
influence of environmental conditions such as waves, wind, and currents. These factors
play a significant role in fuel efficiency.

Shaft revolutions (rpm), representing the number of engine cycles per minute, offer
another essential piece of the puzzle. While a higher engine speed can suggest more fuel
consumption due to the increased number of strokes, the relationship is not so direct. The
actual load on the engine can vary under different operating and environmental conditions,
potentially leading to higher fuel consumption at lower revolution speed under challenging
conditions, and vice versa. This is reflected in the lower correlation with fuel consumption
at coefficient of 0.743.

These findings highlight the interconnected nature of various operational parameters
influencing fuel consumption. The observed correlations suggest that a more accurate
prediction of fuel consumption may rely on a combination of these parameters rather than a
single isolated factor. The analysis also points towards the need for a detailed investigation
into parameters with lower correlation values to uncover potential performance issues and
identify opportunities for optimization.

Hence, several classification trees are subsequently trained using J48/C4.5 decision
tree algorithm, based on the expert insights. The first J48/C4.5 tree is trained on a single
variable selected by the domain expert—the engine speed (rpm). Fuel consumption in
marine engines is intricately linked to rpm, given its direct influence on power output.
Therefore, the decision to focus on rpm in this first tree is aligned with the established
understanding of engine operation. The resulting tree, as visualized in Figure 5, uses the
rpm variable to split the data and predict the fuel consumption. Threshold values of rpm
are used to create branches and leaves. The depth and complexity of the tree captures the
nonlinear relationship between engine speed and fuel consumption.
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It is well understood that an increase in rpm does not correspond to a linear increase
in fuel consumption. Rather, the relationship may be exponential, with small increases in
rpm leading to larger increases in fuel consumption, especially at higher rpm levels. This
first model captures this intricate relationship with substantial fidelity, as evidenced by
a high Kappa statistic of 0.6439 (Kappa statistics are defined in Appendix B). However,
while the rpm is a major factor influencing fuel consumption, it is not the only one. The
subsequent decision tree models incorporate expert-selected variables, such as shaft power,
along with a comprehensive model that includes all available variables. The objective is
to capture the most accurate and comprehensive understanding of the factors affecting
fuel consumption in marine engines. While the above tree-based model provides valuable
insights into the primary role of rpm in fuel consumption, the consequent models give a
more holistic view of the system under study.

The second J48/C4.5 decision tree model shown in Figure 6, was constructed using
only one parameter: shaft power (pwr). Just like the first model with rpm, this model
illustrates that fuel consumption is influenced by the power output from the shaft. However,
focusing more on the mechanical power fuel offers a different operational perspective. The
model shows a high degree of accuracy, with a correct classification rate of 96.86%. The
Kappa statistic of 0.9646 suggests good agreement between predictions and actual classes.
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The detailed accuracy by class (reported in Table A4 in Appendix B) provides more
insights into the model’s performance. Each class, ranging from ‘a’ to ‘i’, corresponds
to different intervals of shaft power. The model shows high true positive rates for all
classes, signifying that most instances are classified correctly. The confusion matrix (see
Table A5 in Appendix B) further confirms the model’s superior performance. Most pre-
dictions align diagonally, which is the desired pattern, meaning that most instances were
correctly classified.

The presented decision tree (Figure 6) explains how different shaft power ranges
correspond to distinct fuel consumption classes. This model is slightly more complex,
illustrating the nuanced relationship between shaft power and fuel consumption. For
instance, the model suggests different fuel consumption classes within a narrow range of
shaft power (e.g., between 8804.0 and 8810.0), indicating that changes in shaft power are
not linearly following the fuel consumption.

The decision rules derived from this tree are straightforward and easy to interpret.
For instance, if the shaft power is less than or equal to 8945 and further less than or equal
to 7005, and within this subset it is less than or equal to 5809, the model predicts the fuel
consumption class ‘a’. The other rules can be interpreted similarly.

In conclusion, the second decision tree model using shaft power as the main predictor
demonstrates high accuracy and provides a rich set of rules for predicting fuel consumption.
However, like the first model, it is still a simplification. A more comprehensive model
using all the available variables was constructed next.

The third J48/C4.5 decision tree model, when evaluated using all the variables of
a dataset divided into 66% for training and 34% for testing, displayed particularly good
performance with a high level of accuracy. The model correctly classified 97.69% of the
instances. The high level of accuracy yielded a Kappa statistic of 0.9739, signifying that
there is excellent agreement between the actual and predicted classes.

The detailed accuracy for each class was assessed and is reported in Table A6. This
revealed that the model performed robustly across all classes. The true positive (TP) rates
range from 0.897 for class ‘g’ to a perfect score of 1.000 for classes ‘i’, ‘f’, ‘e’, ‘c’, and ‘a’. This
indicates that the model correctly classified a high proportion of instances for each of these
classes. The precision of the model, which gauges the proportion of positive identifications
that were correct, ranged from 0.892 for class ‘h’ to a perfect score of 1.000 for classes ‘g’, ‘f’,
‘d’, ‘c’, and ‘b’. This suggests that most instances predicted by the model to belong to each
of these classes were indeed correctly classified.

The model’s decision-making process can be comprehended by examining the decision
tree. The tree generates a hierarchical structure of if-then-else decision rules leading to the
classification of an instance. For instance, the initial variable to cause a split is ‘Shaft power’,
segregating instances into those with ‘Shaft power’ less or equal to 8945.0 and those with
‘Shaft power’ greater than this value. The decision-making process continues with further
splits based on various variables, providing valuable insights into which variables are
pivotal in determining the class of an instance.

Finally, the performance of the model on each class is further visualized in the con-
fusion matrix in Table A7. The confusion matrix provides the number of correctly and
incorrectly classified instances for each class. For example, out of 39 total instances of class
‘g’, 35 were correctly classified as ‘g’, and 4 were misclassified as ‘h’. Classes ‘i’, ‘f’, ‘e’,
‘d’, and ‘c’ demonstrated perfect classification with all instances correctly classified. Class
‘h’ had two instances misclassified as ‘i’, and class ‘d’ had one instance misclassified as
‘e’. Overall, the confusion matrix reaffirms the high accuracy of the model and provides
detailed insights into its performance on a class level.

The employed ML models may appear simplistic due to the availability of relevant
data, their accuracy, and the straightforward physical laws underlying the modeled data.
However, the data modeling process revealed that achieving interpretability often necessi-
tates simplification. One effective approach to simplification is to focus on a single output
variable or on those variables that have a dominant influence on it, allowing for a more man-
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ageable analysis that can be further decomposed as needed. Complex models, involving
highly branched decision trees with numerous variables, can be challenging to comprehend,
explain, and validate. This study demonstrates that simplification, achieved through selec-
tive focus and stepwise decomposition, is essential for making models comprehensible. It
underscores the critical role of collaboration between domain experts to navigate potential
pitfalls and ensure that the models remain interpretable, thereby enabling in-depth analyses
and validation.

Collaboration between domain experts was critical in selecting the initial set of vari-
ables from all the available. The domain expertise clarified the mechanics, confirming that
averaging the data from individual cylinders is justifiable when the engine is operating
within its optimal performance parameters. This is also affirmed that within the operational
temperature range specified by the manufacturer, and provided that scavenge pressure
remains within normal bounds, air temperature does not significantly impact fuel con-
sumption. This expert advice informed our methodology for segmenting fuel consumption
into discrete categories that adhere to the specific consumption margins outlined in case
ship charter party.

Advanced ML tools with user-friendly interfaces now enable any technically proficient
person to apply them; however, collaboration with ML practitioners is important to avoid
common data analysis pitfalls. In this work, this included data cleaning, which resulted
in identification and removal of duplicate data points which would otherwise probably
pollute the training and testing data. Visualizing data and making sure the level of data
understanding was high enough led to removing inappropriate variables (air temperature
and date), which would act as IDs and lead to excellent models’ performance on available
data but would fail to generalize to new data. Manual feature selection resulted in replacing
parameters measured on each of the six cylinders with an average over the cylinders,
which simplified further DM steps. Adding weights to training instances and stratified
sampling to split the data into the training and test sets was important to balance the
importance of days with hundreds vs. days with just a couple of measurements for
training and testing. Performing feature selection with multiple methods revealed that
the simple correlation-based method (often used as the default) is not appropriate for
this dataset because most parameters are highly correlated. The systematic and detail-
oriented approach led to models that are simple to understand and are more accurate than
models obtained with (semi) automatic methods. Finally, thorough and methodologically
sound evaluation resulted in interpretation of the results that puts prediction errors into
perspective compared to the actual consumption as well as the baseline prediction model.

In conclusion, all three J48/C4.5 models demonstrate that model complexity, perfor-
mance, and interpretability are intertwined aspects in ML. Feature selection can enhance
interpretability and robustness, but at the potential cost of some accuracy. Conversely,
using all variables can boost accuracy but may result in a more complex model that could
be challenging to interpret. As such, the choice between these approaches should be
guided by the specific needs of the application at hand, balancing the demands for accuracy,
complexity, and interpretability.

5. Conclusions

Our study on a VLGC two-stroke engine highlights the importance of interpretability
and transparency in machine learning applications within the maritime sector, driven by
heightened regulatory demands. We validate the model by incorporating auxiliary criteria,
balancing comprehensibility with performance metrics such as accuracy, and providing
clear insights into how different input variables affect fuel consumption. This analysis
employs two interpretable ML models: linear regression and decision trees, to ensure the
interpretability of the models, thereby prioritizing transparency over complexity.

The optimal linear model utilizes shaft power, slip, and exhaust temperature param-
eters, achieving an RMSE of 23.16 and an MRAE of 14.7%. Decision trees, on the other
hand, elucidate the impact of factors such as shaft power, shaft revolutions per minute,
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compressor pressure, and indicated mean effective pressure on fuel consumption, achieving
accuracy between 96.4% and 97.69%. By visualizing and dissecting the structures of the
decision trees, the decision-making process became easily decipherable, allowing the key
drivers of fuel consumption to be identified.

Furthermore, this study highlights the importance of close collaboration between
domain experts to avoid common ML pitfalls and ensure the interpretability of model
behavior. The study is a step toward developing interpretable models for predicting
fuel consumption, ensuring that model transparency, accountability, reliability, and safety
are maintained.

However, the chosen approach has limitations: the model’s simplicity restricts its
predictive capabilities and scope. It considers the effects of included variables and assumes
their linear impact, offering meaningful insights into relationships but not necessarily
implying causality. The second limitation arises from the dataset, which only captures the
operations of a VLGC under favorable weather and oceanographic conditions.

Future research will focus on developing interpretable machine learning models to
address a broader range of maritime engineering challenges, encompassing various types
of marine equipment and operational conditions. Specifically, a collaborative, multidisci-
plinary approach can be employed to create robust models that enhance decision-making,
improve fuel efficiency, extend engine lifespans, and enhance anomaly detection. These
advancements are anticipated to make a significant contribution to more sustainable mar-
itime operations.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/jmse12101849/s1. Supplementary material Interpretable machine learning
VLGC ship fuel consumption.pdf.
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Appendix A

Appendix A.1. Linear Regression

The formula for multiple linear regression is [21]:

y = b0 + b1x1 + b2x2 + . . . + bpxp + ε (A1)

where: y is the dependent variable (fuel consumption), b0 is the intercept term, bi are the
coefficients (slopes) associated with each independent variable xi, and ε represents the error
term, accounting for the difference between the observed and predicted values.

The goal of multiple linear regression is to estimate the coefficients bi that minimize
the sum of squared differences between the observed and predicted values. Once the
coefficients are estimated, the model can predict the dependent variable y for new sets of
independent variables xi by plugging them into the formula.

The quality of regression models (i.e., how well a regression model explains the
variability in the dependent variable) can be evaluated using multiple metrics [21]. R-
squared, often denoted as R2 is a value between 0 and 1 that quantifies the proportion of

https:// www.mdpi.com/article/10.3390/jmse12101849/s1
https:// www.mdpi.com/article/10.3390/jmse12101849/s1


J. Mar. Sci. Eng. 2024, 12, 1849 18 of 26

the variance in the dependent variable that can be explained by the independent variables
in the model. Value of 1 means a perfect model while value of 0 means a completely useless
model. The Root Mean Squared Error (RMSE) is another important performance indicators
for regression models. It measures the average of the squared differences between the
actual and predicted values, providing a measure of the average deviation between the
predicted and actual values of the dependent variable. The RMSE formula is expressed
as follows:

RMSE =
√

1/n∑n
i=1(Actuali − Predictedi)

2 (A2)

where n is the number of data points, Actuali is the actual value of the dependent variable
for the i-th data point and Predictedi is the predicted value of the dependent variable for the
i-th data point. RMSE 0 means a perfect model, while a positive value means that model
makes errors. RMSE is expressed in the same units as the predicted value and should be
interpreted relative to the range of the dependent variable. For example, an RMSE of 10 for
a dependent variable with a range of 100 may be more acceptable than an RMSE of 10 for a
dependent variable with a range of 20.

Next evaluation metric is mean absolute error (MAE), which measures the average
magnitude of the errors and is calculated as the sum of absolute errors divided by the
sample size [21].

MAE = 1/n∑n
i=1|Actuali − Predictedi| (A3)

Like RMSE, MAE is in the same units as the dependent variable and lower MAE
values indicate better model performance, as they suggest smaller errors between predicted
and actual values. On the contrary, MAE is less sensitive to outliers compared to RMSE
because it does not square the prediction errors. Therefore, it provides a more balanced
view of the overall model’s performance.

Finally, mean relative absolute error (MRAE) is the ratio between the error of the
model and the reference, which is the error of a baseline model that always predicts the
average value [21]

MRAE = 1/n∑n
i=1

∣∣∣∣ Actuali − Predictedi
Actuali − mean(Actuali)

∣∣∣∣. (A4)

MRAE 0 means a perfect model, 1 means a model that is as good/bad as the model
that always predicts the mean value while values above 1 mean that the model is useless
because it makes larger errors than the baseline model.

Appendix A.2. Decision Tree

Various criteria exist for selecting the best splitting function [24], such as entropy
(H), information gain (IG), Gini index, gain ratio, orthogonality measure (ORT), and chi2
(CHAID) method. The complexity of the resulting tree can be reduced through tree pruning.

In this study, the C4.5 [33,34] algorithm with the J48 implementation [37] of tree
building was used. The C4.5 algorithm is an improved version of the ID3 algorithm [34]
that begins with the original set S as the root node. In each iteration of the algorithm,
all unused variables in set S are considered, and the entropy (H) is calculated. Then, the
variable with the lowest entropy (H) or the highest information gain (IG) is selected:

IG(S, A) = H(S)− ∑t∈T p(t)H(t) = H(S)− H(S|A) (A5)

where H(S) represents the entropy of set S, T are the subsets resulting from dividing set
S based on variable A, p(t) is the ratio of the number of elements in t to the number of
elements in set S, and H(t) is the entropy of subset t. Information gain (IG) measures the
difference in entropy before and after the division of set S by variable A.
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Set S is then split into subsets based on the selected variable values A to produce data
subsets in the assumed binary space. Some subsets contain positive and negative examples,
and the entropy is calculated as follows:

H(S) = −p+log2p+ − p−log2p− (A6)

where p+ is the ratio of positive examples in the set S, and p− is the ratio of negative
examples in set S. Entropy represents the minimum number of bits required to encode
arbitrary members of set S and, in the case of transitioning from binary to c classes, is
given by:

H(S) = ∑c
i=1 −pilog2pi. (A7)

The algorithm is repeated on each subset/tree node, considering only the remaining
variables that have not been selected for splitting in the nodes above the node to be split.
The process is performed recursively until the set in a given subtree is homogeneous,
meaning it contains objects that belong to the same category or class. The C4.5 method,
unlike ID3, can handle both continuous and discrete variables, handle incomplete data,
and solve the problem of overfitting through tree pruning.

Appendix B

The results are reported using standard machine learning evaluation metrics, as
defined in numerous textbooks [21,22]: Accuracy, True positive rate (TP Rate), False positive
rate (FP Rate), precision, recall, F1-measure, Area under receiver operating characteristic
curve (AUROC), Area under precision-recall curves (AUPRC).

Accuracy is the proportion of correctly classified instances in the total set of instances.
True Positive Rate (TP Rate): Also known as recall, is the ratio of the number of cor-

rectly classified positive cases (true positives, TP) to the total number of positive values (P):

TPR =
TP
P

. (A8)

Total number of positive values (P): This is equal to the sum of correctly classified
positives (true positives, TP) and false negatives (FN):

P = TP + FN. (A9)

False Positive Rate (FP Rate) is equal to the ratio of the number of incorrectly classified
positive cases (false positives, FP) to the total number of negative values (N):

FPR =
FP
N

. (A10)

Total number of negative values (N): This is equal to the sum of incorrectly classified
positives (false positives, FP) and correctly classified negatives (true negatives, TN):

N = FP + TN. (A11)

Basic evaluation measures are commonly presented in a confusion matrix. The con-
fusion matrix is used to describe the performance of a classifier when the actual value
of the data being evaluated is known. The results are often displayed in the form of a
two-dimensional confusion matrix (Table A1). The positive/negative labels refer to the
predicted outcome of the experiment, while true/false refer to the actual outcome. Positive
results correspond to the numbers on the main diagonal, and negative results are in the
off-diagonal cells, which ideally have low, ideally zero, values.
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Table A1. Confusion matrix.

Predicted
Actual

Positive Negative

Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)

Precision is the proportion of correctly classified cases among the retrieved cases.
Recall interface is equivalent to the true positive rate (TPR). Both precision and recall are
calculated from the confusion matrix of outcomes as follows:

PPV =
TP

TP + FP
. (A12)

PTPR =
TP

TP + FN
. (A13)

F1 score is calculated as the harmonic mean of precision (positive predictive value,
PPV) and the true positive rate (TPR), also known as recall. The formula for the F1 score is:

TF =
2 × PPV × TPR

PPV + TPR
. (A14)

F1-measure combines precision and recall into a single metric by calculating their
harmonic mean, providing a balance between the two, which is particularly useful when
dealing with imbalanced datasets.

The Receiver Operating Characteristics (ROC) curve is constructed by plotting the
true positive rate (TPR) against the false positive rate (FPR) at various threshold settings.
The area under the ROC curve is commonly used to compare the outcomes of classification
models and is denoted as AUROC (Area Under the Receiver Operating Curve). Similarly,
the area under the precision-recall curve is referred to as AUPRC (Area Under Precision-
Recall Curve) [21].

Kappa (K) statistics, also known as Cohen’s Kappa, is a measure used to evaluate the
performance of J48/C4.5 decision tree models. Kappa measures the agreement between
the classifications made by a model and the actual outcomes, adjusted for agreement that
could occur by chance. It is calculated as [21]:

K =
Po − Pe

1 − Pe
(A15)

where Po is the observed agreement (i.e., accuracy), and Pe is the expected agreement by
chance. A Kappa value of 1 indicates perfect agreement, 0 indicates no better than chance,
and negative values suggest worse than random chance.

Appendix B.1. Decision Tree J48/C4.5 Model Performance (RPM/FO)

Evaluation results:
Correctly Classified Instances 695; 68.2711%
Incorrectly Classified Instances 323; 31.7289%
Kappa statistic 0.6439



J. Mar. Sci. Eng. 2024, 12, 1849 21 of 26

Table A2. True positive rate (TP Rate), False positive rate (FP Rate), precision, recall, F1-measure,
Matthew’s correlation coefficient (MCC), Area under receiver operating characteristic curve (AUROC),
Area under precision-recall curves (AUPRC) per Class for RPM/FO model.

TP Rate FP Rate Precision Recall F1-Measure MCC AUROC AUPRC Class

0.762 0.010 0.914 0.762 0.831 0.814 0.986 0.895 g
0.825 0.053 0.673 0.825 0.742 0.708 0.972 0.763 h
0.369 0.019 0.633 0.369 0.466 0.450 0.939 0.492 i
0.682 0.055 0.593 0.682 0.635 0.590 0.937 0.589 f
0.979 0.192 0.342 0.979 0.507 0.517 0.901 0.341 e
0.177 0.000 1.000 0.177 0.301 0.401 0.900 0.462 d
0.447 0.010 0.875 0.447 0.592 0.588 0.931 0.618 c
0.941 0.006 0.957 0.941 0.949 0.942 0.996 0.946 a
0.957 0.008 0.940 0.957 0.948 0.942 0.996 0.952 b

Table A3. Confusion Matrix.

a b c d e f g h i <-- Classified as

96 29 0 1 0 0 0 0 0 a = g
0 99 1 20 0 0 0 0 0 b = h
9 17 31 27 0 0 0 0 0 c = i
0 0 16 73 18 0 0 0 0 d = f
0 1 0 1 92 0 0 0 0 e = e
0 1 1 0 82 20 9 0 0 f = d
0 0 0 1 77 0 63 0 0 g = c
0 0 0 0 0 0 0 111 7 h = a
0 0 0 0 0 0 0 5 110 i = b

Appendix B.2. Decision Tree J48/C4.5 Model Performance (Power/FO)

Evaluation results:
Correctly Classified Instances 986; 96.8566%
Incorrectly Classified Instances 32; 3.1434%
Kappa statistic 0.9646

Table A4. True positive rate (TP Rate), False positive rate (FP Rate), precision, recall, F1-measure,
Matthew’s correlation coefficient (MCC), Area under receiver operating characteristic curve (AUROC),
Area under precision-recall curves (AUPRC) per Class for Power/FO model.

TP Rate FP Rate Precision Recall F-Measure MCC AUROC AUPRC Class

0.889 0.001 0.991 0.889 0.937 0.931 0.998 0.976 g
0.950 0.016 0.891 0.950 0.919 0.909 0.997 0.969 h
1.000 0.011 0.894 1.000 0.944 0.940 0.997 0.930 i
0.953 0.001 0.990 0.953 0.971 0.968 0.997 0.970 f
0.989 0.000 1.000 0.989 0.995 0.994 0.999 0.995 e
0.973 0.003 0.973 0.973 0.973 0.970 0.998 0.984 d
0.979 0.003 0.979 0.979 0.979 0.975 0.999 0.984 c
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 a
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 b
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Table A5. Confusion Matrix.

a b c d e f g h i <-- Classified as

112 14 0 0 0 0 0 0 0 a = g
0 114 6 0 0 0 0 0 0 b = h
0 0 84 0 0 0 0 0 0 c = i
1 0 4 102 0 0 0 0 0 d = f
0 0 0 1 93 0 0 0 0 e = e
0 0 0 0 0 110 3 0 0 f = d
0 0 0 0 0 3 138 0 0 g = c
0 0 0 0 0 0 0 118 0 h = a
0 0 0 0 0 0 0 0 115 i = b

Appendix B.3. Decision Tree J48/C4.5 Model Performance (ALL Variables)

Evaluation results:
Correctly Classified Instances 338; 97.6879%
Incorrectly Classified Instances 8; 2.3121%
Kappa statistic 0.9739

Table A6. True positive rate (TP Rate), False positive rate (FP Rate), precision, recall, F1-measure,
Matthew’s correlation coefficient (MCC), Area under receiver operating characteristic curve (AUROC),
Area under precision-recall curves (AUPRC) per Class for all variables model.

TP Rate FP Rate Precision Recall F-Measure MCC AUROC AUPRC Class

0.897 0.000 1.000 0.897 0.946 0.941 0.994 0.953 g
0.943 0.013 0.892 0.943 0.917 0.907 0.993 0.953 h
1.000 0.006 0.938 1.000 0.968 0.965 1.000 0.994 i
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 f
1.000 0.003 0.963 1.000 0.981 0.980 1.000 0.999 e
0.978 0.000 1.000 0.978 0.989 0.987 1.000 1.000 d
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 c
1.000 0.003 0.975 1.000 0.987 0.986 0.998 0.975 a
0.977 0.000 1.000 0.977 0.989 0.987 0.989 0.980 b

Table A7. Confusion Matrix.

a b c d e f g h i <-- Classified as

35 4 0 0 0 0 0 0 0 a = g
0 33 2 0 0 0 0 0 0 b = h
0 0 30 0 0 0 0 0 0 c = i
0 0 0 37 0 0 0 0 0 d = f
0 0 0 0 26 0 0 0 0 e = e
0 0 0 0 1 45 0 0 0 f = d
0 0 0 0 0 0 50 0 0 g = c
0 0 0 0 0 0 0 39 0 h = a
0 0 0 0 0 0 0 1 43 i = b
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Appendix C

Scatterplots and Correlations
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removed and why). Furthermore, it demonstrates that advanced feature selection methods such as
ReliefF can narrow down the set of useful features much better even when many redundant features
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