Geochemical and Physical Methods for Estimating the Saturation of Natural Gas Hydrates in Sediments: A Review
Abstract
:1. Introduction
2. Basic Properties of Natural Gas Hydrate for Estimating Its Saturation in Sediments
2.1. Crystal Structure and Thermodynamic Properties of Natural Gas Hydrate
2.2. Chemical and Physical Changes with Host Sediments by Hydrate Formation and Dissociation
3. Estimation of Hydrate Saturation from Pore Water Chemistry
3.1. Cl− Concentration in Pore Water
3.1.1. Basis of Cl− Concentration for Estimating Hydrate Saturation
3.1.2. Factors Affecting the Estimation of Hydrate Saturation with Cl−
3.2. δ18O and δD in Pore Water
3.2.1. δ18O Values for Estimating Hydrate Saturation
3.2.2. Factors Affecting the Estimation of Hydrate Saturation with δ18O
4. Estimation of Hydrate Saturation Using Gas Released from Hydrate Dissociation
5. Estimation of Hydrate Saturation with Core Temperature Anomaly
6. Discussion
6.1. Comparison of Different Methods
6.2. Limitations and Gaps
7. Conclusions and Prospectives
- The pore water chemistry-based methods estimate hydrate saturation by analyzing the negative anomaly in chlorinity caused by the freshening process and the positive anomaly in δ18O or δD values resulting from the mixture of heavy isotopes in the hydrate phase. These methods should be applied after hydrate dissociation, with careful consideration given to potential seawater contamination and interference from other geological processes.
- The gas volumetric method provides a relatively direct estimation of hydrate saturation, applicable to well-preserved, intact core samples where hydrate has not dissociated prior to degassing experiments.
- The temperature anomaly-based method infers the distribution of hydrate and estimates saturation based on the negative temperature anomaly resulting from endothermic hydrate dissociation. Infrared temperature anomalies are good indicators for locating hydrates buried by sediments and offer a preliminary understanding of the amount of hydrate, though the precision in quantitative saturation estimation is limited.
- As various types of hydrates continue to be discovered, methods for estimating the saturation of hydrates from different gas sources or structure types should be developed and refined.
- To more economically assess the resource potential of large-scale hydrate reservoirs, the results of infrared temperature anomaly, pore water proxies, gas volumetric analysis, and geophysical resistivity and seismic methods should be integrated. Furthermore, a comprehensive application of the results from several methods can be incorporated into numerical simulations or rock geophysical models to evaluate the hydrate resource.
Author Contributions
Funding
Conflicts of Interest
References
- Sloan, E.D. Fundamental Principles and Applications of Natural Gas Hydrates. Nature 2003, 426, 353–359. [Google Scholar] [CrossRef]
- Uchida, T.; Dallimore, S.; Mikami, J. Occurrences of Natural Gas Hydrates beneath the Permafrost Zone in Mackenzie Delta: Visual and X-Ray CT Imagery. Ann. N. Y. Acad. Sci. 2000, 912, 1021–1033. [Google Scholar] [CrossRef]
- Makogon, Y.F. Natural Gas Hydrates—A Promising Source of Energy. J. Nat. Gas Sci. Eng. 2010, 2, 49–59. [Google Scholar] [CrossRef]
- Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X.-S. Review of Natural Gas Hydrates as an Energy Resource: Prospects and Challenges. Appl. Energy 2016, 162, 1633–1652. [Google Scholar] [CrossRef]
- Wei, J.; Liang, J.; Lu, J.; Zhang, W.; He, Y. Characteristics and Dynamics of Gas Hydrate Systems in the Northwestern South China Sea—Results of the Fifth Gas Hydrate Drilling Expedition. Mar. Pet. Geol. 2019, 110, 287–298. [Google Scholar] [CrossRef]
- Ghosh, R.; Ojha, M.; Kumar, P. Review of Rock Physics Theories for Quantifying Gas Hydrate and Associated Uncertainties. J. Asian Earth Sci. 2023, 256, 105828. [Google Scholar] [CrossRef]
- Ding, Y.; Qian, A.; Lu, H. Influences of Hydrate Morphology and Hydrate Distribution Heterogeneity on the Mechanical Properties of Hydrate-Bearing Sediments Using the Discrete Element Method. Geomech. Geophys. Geo-Energ. Geo-Resour. 2022, 8, 106. [Google Scholar] [CrossRef]
- Soga, K.; Ng, M.; Lee, S.; Klar, A. Characterisation and Engineering Properties of Methane Hydrate Soils. In Characterisation and Engineering Properties of Natural Soils; Phoon, K., Hight, D., Leroueil, S., Tan, T., Eds.; Taylor & Francis: Abingdon-on-Thames, UK, 2007; Volume 3–4, pp. 2591–2642. ISBN 978-0-415-42691-6. [Google Scholar]
- Boswell, R.; Yamamoto, K.; Lee, S.-R.; Collett, T.; Kumar, P.; Dallimore, S. Chapter 8—Methane Hydrates. In Future Energy, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Boston, MA, USA, 2014; pp. 159–178. ISBN 978-0-08-099424-6. [Google Scholar]
- Xie, Y.; Li, R.; Wang, X.-H.; Zheng, T.; Cui, J.-L.; Yuan, Q.; Qin, H.-B.; Sun, C.-Y.; Chen, G.-J. Review on the Accumulation Behavior of Natural Gas Hydrates in Porous Sediments. J. Nat. Gas Sci. Eng. 2020, 83, 103520. [Google Scholar] [CrossRef]
- Guo, W.; Li, Y.; Jia, R.; Wang, Y.; Tang, G.; Li, X. Experimental Study on Mechanical Properties of Pore-Filling and Fracture-Filling Clayey Silt Hydrate-Bearing Sediments. Energy 2023, 284, 129354. [Google Scholar] [CrossRef]
- Tréhu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; et al. Three-Dimensional Distribution of Gas Hydrate beneath Southern Hydrate Ridge: Constraints from ODP Leg 204. Earth Planet. Sci. Lett. 2004, 222, 845–862. [Google Scholar] [CrossRef]
- Milkov, A.V.; Dickens, G.R.; Claypool, G.E.; Lee, Y.-J.; Borowski, W.S.; Torres, M.E.; Xu, W.; Tomaru, H.; Tréhu, A.M.; Schultheiss, P. Co-Existence of Gas Hydrate, Free Gas, and Brine within the Regional Gas Hydrate Stability Zone at Hydrate Ridge (Oregon Margin): Evidence from Prolonged Degassing of a Pressurized Core. Earth Planet. Sci. Lett. 2004, 222, 829–843. [Google Scholar] [CrossRef]
- Qin, X.; Lu, J.; Lu, H.; Qiu, H.; Liang, J.; Kang, D.; Zhan, L.; Lu, H.; Kuang, Z. Coexistence of Natural Gas Hydrate, Free Gas and Water in the Gas Hydrate System in the Shenhu Area, South China Sea. China Geol. 2020, 3, 210–220. [Google Scholar] [CrossRef]
- Ecker, C.; Dvorkin, J.; Nur, A.M. Estimating the Amount of Gas Hydrate and Free Gas from Marine Seismic Data. In Methods and Applications in Reservoir Geophysics; Johnston, D.H., Abriel, W.L., Ahmad, F.I., Brown, A.R., Jack, I.G., Lewallen, K.T., MacBeth, C.D., Muhuri, S.K., Payne, M.A., Schuelke, J.S., et al., Eds.; Society of Exploration Geophysicists: Houston, TX, USA, 2010; Volume 15, ISBN 978-1-56080-216-7. [Google Scholar]
- Guo, K.; Fan, S.; Wang, Y.; Lang, X.; Zhang, W.; Li, Y. Physical and Chemical Characteristics Analysis of Hydrate Samples from Northern South China Sea. J. Nat. Gas Sci. Eng. 2020, 81, 103476. [Google Scholar] [CrossRef]
- Colwell, F.; Matsumoto, R.; Reed, D. A Review of the Gas Hydrates, Geology, and Biology of the Nankai Trough. Chem. Geol. 2004, 205, 391–404. [Google Scholar] [CrossRef]
- Matsumoto, R. Methane Hydrate Estimates from the Chloride and Oxygen Isotopic Anomalies: Examples from the Blake Ridge and Nankai Trough Sediments. Ann. N. Y. Acad. Sci. 2000, 912, 39–50. [Google Scholar] [CrossRef]
- Lee, J.Y.; Jung, J.W.; Lee, M.H.; Bahk, J.-J.; Choi, J.; Ryu, B.-J.; Schultheiss, P. Pressure Core Based Study of Gas Hydrates in the Ulleung Basin and Implication for Geomechanical Controls on Gas Hydrate Occurrence. Mar. Pet. Geol. 2013, 47, 85–98. [Google Scholar] [CrossRef]
- Lee, M.W.; Collett, T.S. In-Situ Gas Hydrate Hydrate Saturation Estimated from Various Well Logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Mar. Pet. Geol. 2011, 28, 439–449. [Google Scholar] [CrossRef]
- Lu, H.; Dutrisac, D.; Ripmeester, J.; Wright, F.; Uchida, T. Measurements of Gas Hydrate Saturation in Sediment Cores Recovered from the JAPEX/JNOC/GSC et al. Mallik 5L-38 Gas Hydrate Production Research Well; Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada; Geological Survey of Canada: Vancouver, BC, Canada, 2005. [Google Scholar]
- Holland, M.E.; Schultheiss, P.J.; Roberts, J.A. Gas Hydrate Saturation and Morphology from Analysis of Pressure Cores Acquired in the Bay of Bengal during Expedition NGHP-02, Offshore India. Mar. Pet. Geol. 2019, 108, 407–423. [Google Scholar] [CrossRef]
- Heeschen, K.U.; Haeckel, M.; Klaucke, I.; Ivanov, M.K.; Bohrmann, G. Quantifying In-Situ Gas Hydrates at Active Seep Sites in the Eastern Black Sea Using Pressure Coring Technique. Biogeosciences 2011, 8, 3555–3565. [Google Scholar] [CrossRef]
- Zhang, G.; Liang, J.; Lu, J.; Yang, S.; Zhang, M.; Holland, M.; Schultheiss, P.; Su, X.; Sha, Z.; Xu, H.; et al. Geological Features, Controlling Factors and Potential Prospects of the Gas Hydrate Occurrence in the East Part of the Pearl River Mouth Basin, South China Sea. Mar. Pet. Geol. 2015, 67, 356–367. [Google Scholar] [CrossRef]
- Dickens, G.R.; Wallace, P.J.; Paull, C.K.; Borowski, W.S. Detection of Methane Gas Hydrate in the Pressure Core Sampler (PCS): Volume-Pressure-Time Relations during Controlled Degassing Experiments. Proc. Ocean. Drill. Program Sci. Results 2000, 164, 113–126. [Google Scholar]
- Haines, S.S.; Collett, T.S.; Yoneda, J.; Shimoda, N.; Boswell, R.; Okinaka, N. Gas Hydrate Saturation Estimates, Gas Hydrate Occurrence, and Reservoir Characteristics Based on Well Log Data from the Hydrate-01 Stratigraphic Test Well, Alaska North Slope. Energy Fuels 2022, 36, 3040–3050. [Google Scholar] [CrossRef]
- Wang, X.; Wu, S.; Lee, M.; Guo, Y.; Yang, S.; Liang, J. Gas Hydrate Saturation from Acoustic Impedance and Resistivity Logs in the Shenhu Area, South China Sea. Mar. Pet. Geol. 2011, 28, 1625–1633. [Google Scholar] [CrossRef]
- Dickens, G.R.; Paull, C.K.; Wallace, P. Direct Measurement of in Situ Methane Quantities in a Large Gas-Hydrate Reservoir. Nature 1997, 385, 426–428. [Google Scholar] [CrossRef]
- Zhan, L.; Kang, D.; Lu, H.; Lu, J. Characterization of Coexistence of Gas Hydrate and Free Gas Using Sonic Logging Data in the Shenhu Area, South China Sea. J. Nat. Gas Sci. Eng. 2022, 101, 104540. [Google Scholar] [CrossRef]
- Zhan, L.; Liu, B.; Zhang, Y.; Lu, H. Rock Physics Modeling of Acoustic Properties in Gas Hydrate-Bearing Sediment. J. Mar. Sci. Eng. 2022, 10, 1076. [Google Scholar] [CrossRef]
- Kang, D.; Xie, Y.; Lu, J.; Wang, T.; Liang, J.; Lai, H.; Fang, Y. Assessment of Natural Gas Hydrate Reservoirs at Site GMGS3-W19 in the Shenhu Area, South China Sea Based on Various Well Logs. China Geol. 2022, 5, 383–392. [Google Scholar] [CrossRef]
- Davidson, D.W.; Leaist, D.G.; Hesse, R. Oxygen-18 Enrichment in the Water of a Clathrate Hydrate. Geochim. Cosmochim. Acta 1983, 47, 2293–2295. [Google Scholar] [CrossRef]
- Cai, Z.; Lu, H.; Zou, R.; Han, S.; Wang, Z. Structural and Thermodynamic Characteristics of sH 2,2-Dimethylbutane-Methane Deuterohydrate. J. Chem. Thermodyn. 2014, 77, 82–86. [Google Scholar] [CrossRef]
- Nagano, Y.; Miyazaki, Y.; Matsuo, T.; Suga, H. Heat Capacities and Enthalpy of Fusion of Heavy Oxygen Water. J. Phys. Chem. 1993, 97, 6897–6901. [Google Scholar] [CrossRef]
- Seo, Y.; Lee, H.; Ryu, B.-J. Hydration Number and Two-Phase Equilibria of CH4 Hydrate in the Deep Ocean Sediments. Geophys. Res. Lett. 2002, 29, 85-1–85-4. [Google Scholar] [CrossRef]
- Sloan, E.D.; Koh, C.A. Clathrate Hydrates of Natural Gases, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-0-429-12914-8. [Google Scholar]
- Sloan, E.D. Physical/Chemical Properties of Gas Hydrates and Application to World Margin Stability and Climatic Change. Geol. Soc. Lond. Spec. Publ. 1998, 137, 31–50. [Google Scholar] [CrossRef]
- Guan, W.; Cai, W.; Li, Z.; Lu, H. Microscopic Characterization and Fractal Analysis of Pore Systems for Unconventional Reservoirs. J. Mar. Sci. Eng. 2024, 12, 908. [Google Scholar] [CrossRef]
- Bohrmann, G.; Torres, M. Gas Hydrates in Marine Sediments. In Marine Geochemistry; Springer: Berlin/Heidelberg, Germany, 2006; pp. 481–512. ISBN 978-3-540-32143-9. [Google Scholar]
- Rogner, H.-H.; Aguilera, R.; Archer, C.; Bertani, R.; Bhattacharya, S.; Dusseault, M.; Gagnon, L.; Haberl, H.; Hoogwijk, M.; Johnson, A.; et al. Chapter 7—Energy Resources and Potentials. In Global Energy Assessment—Toward a Sustainable Future; Cambridge University Press: Cambridge, UK, 2012; pp. 423–512. [Google Scholar]
- You, K.; Flemings, P.B.; Malinverno, A.; Collett, T.S.; Darnell, K. Mechanisms of Methane Hydrate Formation in Geological Systems. Rev. Geophys. 2019, 57, 1146–1196. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, J.; Yu, D. Dissociation Enthalpy of Methane Hydrate in Salt Solution. Fluid Phase Equilibria 2018, 456, 92–97. [Google Scholar] [CrossRef]
- Hesse, R.; Harrison, W.E. Gas Hydrates (Clathrates) Causing Pore-Water Freshening and Oxygen Isotope Fractionation in Deep-Water Sedimentary Sections of Terrigenous Continental Margins. Earth Planet. Sci. Lett. 1981, 55, 453–462. [Google Scholar] [CrossRef]
- Ussler, W.; Paull, C.K. Effects of Ion Exclusion and Isotopic Fractionation on Pore Water Geochemistry during Gas Hydrate Formation and Decomposition. Geo-Mar. Lett. 1995, 15, 37–44. [Google Scholar] [CrossRef]
- Ussler III, W.; Paull, C.K. Ion Exclusion Associated with Marine Gas Hydrate Deposits. In Natural Gas Hydrates: Occurrence, Distribution, and Detection; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2001; pp. 41–51. ISBN 978-1-118-66841-2. [Google Scholar]
- Haeckel, M.; Suess, E.; Wallmann, K.; Rickert, D. Rising Methane Gas Bubbles Form Massive Hydrate Layers at the Seafloor. Geochim. Cosmochim. Acta 2004, 68, 4335–4345. [Google Scholar] [CrossRef]
- Malinverno, A.; Kastner, M.; Torres, M.E.; Wortmann, U.G. Gas Hydrate Occurrence from Pore Water Chlorinity and Downhole Logs in a Transect across the Northern Cascadia Margin (Integrated Ocean Drilling Program Expedition 311). J. Geophys. Res. Solid Earth 2008, 113, B08103. [Google Scholar] [CrossRef]
- Maekawa, T.; Imai, N. Hydrogen and Oxygen Isotope Fractionation in Water during Gas Hydrate Formation. Ann. N. Y. Acad. Sci. 2000, 912, 452–459. [Google Scholar] [CrossRef]
- Kastner, M.; Kvenvolden, K.A.; Lorenson, T.D. Chemistry, Isotopic Composition, and Origin of a Methane-Hydrogen Sulfide Hydrate at the Cascadia Subduction Zone. Earth Planet. Sci. Lett. 1998, 156, 173–183. [Google Scholar] [CrossRef]
- Tomaru, H.; Torres, M.E.; Matsumoto, R.; Borowski, W.S. Effect of Massive Gas Hydrate Formation on the Water Isotopic Fractionation of the Gas Hydrate System at Hydrate Ridge, Cascadia Margin, Offshore Oregon. Geochem. Geophys. Geosyst. 2006, 7, Q10001. [Google Scholar] [CrossRef]
- Maekawa, T. Experimental Study on Isotopic Fractionation in Water during Gas Hydrate Formation. Geochem. J. 2004, 38, 129–138. [Google Scholar] [CrossRef]
- Matsumoto, R.; Borowski, W.S. Gas Hydrate Estimates from Newly Determined Oxygen Isotopic Fractionation (α(GH-IW)) and δ18O Anomalies of the Interstitial Waters: Leg 164, Blake Ridge. Proc. Ocean. Drill. Program Sci. Results 2000, 164, 59–66. [Google Scholar]
- Kvenvolden, K.A.; Kastner, M. Gas Hydrates of the Peruvian Outer Continental Margin. Proc. Ocean. Drill. Program Sci. Results 1990, 112, 517–526. [Google Scholar]
- Handa, Y.P. Enthalpies of fusion and heat capacities for H 2 18 O ice and H 2 18 O tetrahydrofuran clathrate hydrate in the range 100–270 K. Can. J. Chem. 1984, 62, 1659–1661. [Google Scholar] [CrossRef]
- Jakli, G.; Staschewski, D. Vapour Pressure of H218O Ice (–50 to 0 °C) and H218O Water (0 to 170 °C). J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1977, 73, 1505–1509. [Google Scholar] [CrossRef]
- Suzuoki, T.; Kimura, T. D/H and 18O/16O Fractionation in Ice-Water System. J. Mass Spectrom. Soc. Jpn. 1973, 21, 229–233. [Google Scholar] [CrossRef]
- O’Neil, J.R. Hydrogen and Oxygen Isotope Fractionation between Ice and Water. J. Phys. Chem. 1968, 72, 3683–3684. [Google Scholar] [CrossRef]
- Craig, H.; Hom, B. Relationships of D, 18O and Chlorinity in the Formation of Sea Ice. Trans. Am. Geophys. Union 1968, 49, 216–217. [Google Scholar]
- Tomaru, H.; Matsumoto, R.; Lu, H.; Uchida, T. Geochemical Process of Gas Hydrate Formation in the Nankai Trough Based on Chloride and Isotopic Anomalies in Interstitial Water. Resour. Geol. 2004, 54, 45–51. [Google Scholar] [CrossRef]
- Torres, M.E.; Collett, T.S.; Rose, K.K.; Sample, J.C.; Agena, W.F.; Rosenbaum, E.J. Pore Fluid Geochemistry from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Mar. Pet. Geol. 2011, 28, 332–342. [Google Scholar] [CrossRef]
- Torres, M.E.; Tréhu, A.M.; Cespedes, N.; Kastner, M.; Wortmann, U.G.; Kim, J.-H.; Long, P.; Malinverno, A.; Pohlman, J.W.; Riedel, M.; et al. Methane Hydrate Formation in Turbidite Sediments of Northern Cascadia, IODP Expedition 311. Earth Planet. Sci. Lett. 2008, 271, 170–180. [Google Scholar] [CrossRef]
- Reitz, A.; Pape, T.; Haeckel, M.; Schmidt, M.; Berner, U.; Scholz, F.; Liebetrau, V.; Aloisi, G.; Weise, S.M.; Wallmann, K. Sources of Fluids and Gases Expelled at Cold Seeps Offshore Georgia, Eastern Black Sea. Geochim. Cosmochim. Acta 2011, 75, 3250–3268. [Google Scholar] [CrossRef]
- Makogon, Y.F. Hydrates of Hydrocarbons; PennWell Books: Tulsa, OK, USA, 1997. [Google Scholar]
- Ye, J.; Wei, J.; Liang, J.; Lu, J.; Lu, H.; Zhang, W. Complex Gas Hydrate System in a Gas Chimney, South China Sea. Mar. Pet. Geol. 2019, 104, 29–39. [Google Scholar] [CrossRef]
- Ross, D.A.; Degens, E.T. Recent Sediments of Black Sea1. In The Black Sea—Geology, Chemistry, and Biology; American Association of Petroleum Geologists: Tulsa, OK, USA, 1974; ISBN 978-1-62981-215-1. [Google Scholar]
- Gieskes, J.; Blanc, G.; Vrolijk, P.; Elderfield, H.; Barnes, R. Interstitial Water Chemistry—Major Constituents. Proc. Ocean. Drill. Program Sci. Results 1990, 110, 155–178. [Google Scholar]
- Kastner, M.; Elderfield, H.; Martin, J.B.; Tarney, J.; Pickering, K.T.; Knipe, R.J.; Dewey, J.F. Fluids in Convergent Margins: What Do We Know about Their Composition, Origin, Role in Diagenesis and Importance for Oceanic Chemical Fluxes? Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 1997, 335, 243–259. [Google Scholar] [CrossRef]
- Dählmann, A.; de Lange, G.J. Fluid–Sediment Interactions at Eastern Mediterranean Mud Volcanoes: A Stable Isotope Study from ODP Leg 160. Earth Planet. Sci. Lett. 2003, 212, 377–391. [Google Scholar] [CrossRef]
- Torres, M.E.; Teichert, B.M.A.; Tréhu, A.M.; Borowski, W.; Tomaru, H. Relationship of Pore Water Freshening to Accretionary Processes in the Cascadia Margin: Fluid Sources and Gas Hydrate Abundance. Geophys. Res. Lett. 2004, 31, L22305. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, M.-H.; Chun, J.-H.; Lee, J.Y. Molecular and Isotopic Signatures in Sediments and Gas Hydrate of the Central/Southwestern Ulleung Basin: High Alkalinity Escape Fuelled by Biogenically Sourced Methane. Geo-Mar. Lett. 2011, 31, 37–49. [Google Scholar] [CrossRef]
- Hesse, R.; Frape, S.K.; Egeberg, P.K.; Matsumoto, R. Stable Isotope Studies (Cl, O, and H) of Interstitial Waters from Site 997, Blake Ridge Gas Hydrate Field, West Atlantic. Proc. Ocean. Drill. Program Sci. Results 2000, 164, 129–137. [Google Scholar] [CrossRef]
- Hesse, R. Pore Water Anomalies of Submarine Gas-Hydrate Zones as Tool to Assess Hydrate Abundance and Distribution in the Subsurface What Have We Learned in the Past Decade? Earth-Sci. Rev. 2003, 61, 149–179. [Google Scholar] [CrossRef]
- Báez, L.A.; Clancy, P. Computer Simulation of the Crystal Growth and Dissolution of Natural Gas Hydrates. Ann. N. Y. Acad. Sci. 1994, 715, 177–186. [Google Scholar] [CrossRef]
- Parent, J.S.; Bishnoi, P. Investigations into the Nucleation Behaviour of Methane Gas Hydrates. Chem. Eng. Commun. 1996, 144, 51–64. [Google Scholar] [CrossRef]
- Takeya, S.; Hori, A.; Hondoh, T.; Uchida, T. Freezing-Memory Effect of Water on Nucleation of CO2 Hydrate Crystals. J. Phys. Chem. B 2000, 104, 4164–4168. [Google Scholar] [CrossRef]
- Vysniauskas, A.; Bishnoi, P.R. A Kinetic Study of Methane Hydrate Formation. Chem. Eng. Sci. 1983, 38, 1061–1072. [Google Scholar] [CrossRef]
- Sheppard, S.M.F.; Gilg, H.A. Stable Isotope Geochemistry of Clay Minerals. Clay Miner. 1996, 31, 1–24. [Google Scholar] [CrossRef]
- McDuff, R.E. The Chemistry of Interstitial Waters, Deep Sea Drilling Project Leg 86. Initial. Rep. Deep. Sea Drill. Proj. 1985, 86, 675–687. [Google Scholar]
- Lee, M.W.; Collett, T.S. Gas Hydrate Saturations Estimated from Fractured Reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India. J. Geophys. Res. 2009, 114, 2008JB006237. [Google Scholar] [CrossRef]
- Wei, D.; Jinqiang, L.; Zenggui, K.; Yingfeng, X.; Pin, Y. Estimation of Gas Hydrate Saturation Regarding the Hydrate Morphology in Hydrate-Bearing Sands in the Qiongdongnan Basin, South China Sea. Pure Appl. Geophys. 2023, 180, 2757–2773. [Google Scholar] [CrossRef]
- Abid, K.; Spagnoli, G.; Teodoriu, C.; Falcone, G. Review of Pressure Coring Systems for Offshore Gas Hydrates Research. Underw. Technol. 2015, 33, 19–30. [Google Scholar] [CrossRef]
- Yamamoto, K. Overview and Introduction: Pressure Core-Sampling and Analyses in the 2012–2013 MH21 Offshore Test of Gas Production from Methane Hydrates in the Eastern Nankai Trough. Mar. Pet. Geol. 2015, 66, 296–309. [Google Scholar] [CrossRef]
- Lu, H.; Lorenson, T.D.; Moudrakovski, I.L.; Ripmeester, J.A.; Collett, T.S.; Hunter, R.B.; Ratcliffe, C.I. The Characteristics of Gas Hydrates Recovered from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Mar. Pet. Geol. 2011, 28, 411–418. [Google Scholar] [CrossRef]
- Uchida, T.; Hirano, T.; Ebinuma, T.; Narita, H.; Gohara, K.; Mae, S.; Matsumoto, R. Raman Spectroscopic Determination of Hydration Number of Methane Hydrates. AIChE J. 1999, 45, 2641–2645. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Uhm, T.-W.; Lee, H.; Lee, Y.-J.; Ryu, B.-J.; Kim, J.-H. Compositional and Structural Identification of Natural Gas Hydrates Collected at Site 1249 on Ocean Drilling Program Leg 204. Korean J. Chem. Eng. 2005, 22, 569–572. [Google Scholar] [CrossRef]
- Kida, M.; Suzuki, K.; Kawamura, T.; Oyama, H.; Nagao, J.; Ebinuma, T.; Narita, H.; Suzuki, H.; Sakagami, H.; Takahashi, N. Characteristics of Natural Gas Hydrates Occurring in Pore-Spaces of Marine Sediments Collected from the Eastern Nankai Trough, off Japan. Energy Fuels 2009, 23, 5580–5586. [Google Scholar] [CrossRef]
- Ripmeester, J.; Lu, H.; Moudrakovski, I.; Dutrisac, R.; Wilson, L.; Wright, F.; Dallimore, S. Structure and Composition of Hydrate in Sediment Recovered from Mallik 5L-38, Mackenzie Delta, NWT, Canada: X-ray Diffraction, Raman and Solid-State NMR Spectroscopy; Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada; Geological Survey of Canada: Vancouver, BC, Canada, 2005. [Google Scholar]
- Lu, H.; Moudrakovski, I.; Riedel, M.; Spence, G.; Dutrisac, R.; Ripmeester, J.; Wright, F.; Dallimore, S. Occurrence and Structural Characterization of Gas Hydrates Associated with a Cold Vent Field, Offshore Vancouver Island. J. Geophys. Res. Solid Earth 2005, 110, B10204. [Google Scholar] [CrossRef]
- Lu, H.; Moudrakovski, I.I.; Schicks, J.; Ripmeester, J.A.; Zhang, M. The Characteristics of Gas Hydrates Recovered from Northern Cascadia Margin by IODP Expedition 311; American Geophysical Union: Washington, DC, USA, 2006; Volume 2006, p. OS11E-08. [Google Scholar]
- Kida, M.; Hachikubo, A.; Sakagami, H.; Minami, H.; Krylov, A.; Yamashita, S.; Takahashi, N.; Shoji, H.; Khlystov, O.; Poort, J.; et al. Natural Gas Hydrates with Locally Different Cage Occupancies and Hydration Numbers in Lake Baikal. Geochem. Geophys. Geosyst. 2009, 10, 5. [Google Scholar] [CrossRef]
- Liu, C.; Ye, Y.; Meng, Q.; He, X.; Lu, H.; Zhang, J.; Liu, J.; Yang, S. The Characteristics of Gas Hydrates Recovered from Shenhu Area in the South China Sea. Mar. Geol. 2012, 307–310, 22–27. [Google Scholar] [CrossRef]
- Fang, Y.; Wei, J.; Lu, H.; Liang, J.; Lu, J.; Fu, J.; Cao, J. Chemical and Structural Characteristics of Gas Hydrates from the Haima Cold Seeps in the Qiongdongnan Basin of the South China Sea. J. Asian Earth Sci. 2019, 182, 103924. [Google Scholar] [CrossRef]
- Kida, M.; Jin, Y.; Yoneda, J.; Oshima, M.; Kato, A.; Konno, Y.; Nagao, J.; Tenma, N. Crystallographic and Geochemical Properties of Natural Gas Hydrates Accumulated in the National Gas Hydrate Program Expedition 02 Drilling Sites in the Krishna-Godavari Basin off India. Mar. Pet. Geol. 2019, 108, 471–481. [Google Scholar] [CrossRef]
- Kang, D.; Lu, J.; Zhang, Z.; Liang, J.; Kuang, Z.; Lu, C.; Kou, B.; Lu, Q.; Wang, J. Fine-Grained Gas Hydrate Reservoir Properties Estimated from Well Logs and Lab Measurements at the Shenhu Gas Hydrate Production Test Site, the Northern Slope of the South China Sea. Mar. Pet. Geol. 2020, 122, 104676. [Google Scholar] [CrossRef]
- Handa, Y.P. Effect of Hydrostatic Pressure and Salinity on the Stability of Gas Hydrates. J. Phys. Chem. 1990, 94, 2652–2657. [Google Scholar] [CrossRef]
- Kneafsey, T.J.; Lu, H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S. Examination of Core Samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of Retrieval and Preservation. Mar. Pet. Geol. 2011, 28, 381–393. [Google Scholar] [CrossRef]
- Ford, K.H.; Naehr, T.H.; Skilbeck, G.C.; The Leg 201 Scientific Party. The Use of Infrared Thermal Imaging to Identify Gas Hydrate in Sediment Cores. Proc. Ocean. Drill. Program Initial. Rep. 2003, 201, 1–20. [Google Scholar]
- Weinberger, J.L.; Brown, K.M.; Long, P.E. Painting a Picture of Gas Hydrate Distribution with Thermal Images. Geophys. Res. Lett. 2005, 32, L04609. [Google Scholar] [CrossRef]
- Zhang, N.; Li, S.; Chen, L.; Guo, Y.; Liu, L. Study of Gas-Liquid Two-Phase Flow Characteristics in Hydrate-Bearing Sediments. Energy 2024, 290, 130215. [Google Scholar] [CrossRef]
- Li, S.; Zheng, R.; Xu, X.; Hou, J. Natural Gas Hydrate Dissociation by Hot Brine Injection. Pet. Sci. Technol. 2016, 34, 422–428. [Google Scholar] [CrossRef]
- Li, S.; Xu, X.; Zheng, R.; Chen, Y.; Hou, J. Experimental Investigation on Dissociation Driving Force of Methane Hydrate in Porous Media. Fuel 2015, 160, 117–122. [Google Scholar] [CrossRef]
- Li, X.-S.; Yang, B.; Zhang, Y.; Li, G.; Duan, L.-P.; Wang, Y.; Chen, Z.-Y.; Huang, N.-S.; Wu, H.-J. Experimental Investigation into Gas Production from Methane Hydrate in Sediment by Depressurization in a Novel Pilot-Scale Hydrate Simulator. Appl. Energy 2012, 93, 722–732. [Google Scholar] [CrossRef]
- Lee, J. Experimental Study on the Dissociation Behavior and Productivity of Gas Hydrate by Brine Injection Scheme in Porous Rock. Energy Fuels 2010, 24, 456–463. [Google Scholar] [CrossRef]
- Oyama, H.; Konno, Y.; Masuda, Y.; Narita, H. Dependence of Depressurization-Induced Dissociation of Methane Hydrate Bearing Laboratory Cores on Heat Transfer. Energy Fuels 2009, 23, 4995–5002. [Google Scholar] [CrossRef]
- Shankar, U.; Ojha, M.; Ghosh, R. Assessment of Gas Hydrate Reservoir from Inverted Seismic Impedance and Porosity in the Northern Hikurangi Margin, New Zealand. Mar. Pet. Geol. 2021, 123, 104751. [Google Scholar] [CrossRef]
- Haeckel, M.; Bialas, J.; Klaucke, I.; Wallmann, K.; Bohrmann, G.; Schwalenberg, K. Gas Hydrate Occurrences in the Black Sea—New Observations from the German SUGAR Project. Fire Ice Methane Hydrate Newsl. 2015, 15, 6–9. [Google Scholar]
- Collett, T.S.; Lee, M.W.; Zyrianova, M.V.; Mrozewski, S.A.; Guerin, G.; Cook, A.E.; Goldberg, D.S. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Logging-While-Drilling Data Acquisition and Analysis. Mar. Pet. Geol. 2012, 34, 41–61. [Google Scholar] [CrossRef]
- Komatsu, Y.; Suzuki, K.; Fujii, T. Sedimentary Facies and Paleoenvironments of a Gas-Hydrate-Bearing Sediment Core in the Eastern Nankai Trough, Japan. Mar. Pet. Geol. 2015, 66, 358–367. [Google Scholar] [CrossRef]
- Paull, C.K.; Matsumoto, R.; Wallace, P.J.; Dillon, W.P. Proceedings of the Ocean Drilling Program 164, Scientific Results; Texas A & M University, Ocean Drilling Program: College Station, TX, USA, 2000. [Google Scholar]
- Wang, X.; Collett, T.S.; Lee, M.W.; Yang, S.; Guo, Y.; Wu, S. Geological Controls on the Occurrence of Gas Hydrate from Core, Downhole Log, and Seismic Data in the Shenhu Area, South China Sea. Mar. Geol. 2014, 357, 272–292. [Google Scholar] [CrossRef]
- Portnov, A.; Santra, M.; Cook, A.E.; Sawyer, D.E. The Jackalope Gas Hydrate System in the Northeastern Gulf of Mexico. Mar. Pet. Geol. 2020, 111, 261–278. [Google Scholar] [CrossRef]
- Ghosh, R.; Sain, K.; Ojha, M. Effective Medium Modeling of Gas Hydrate-Filled Fractures Using the Sonic Log in the Krishna-Godavari Basin, Offshore Eastern India. J. Geophys. Res. Solid Earth 2010, 115, B06101. [Google Scholar] [CrossRef]
System | (18O) | (D) | Type | Solution | References |
---|---|---|---|---|---|
hydrate-water | 1.0023–1.0032 | 1.014–1.019 | sI | liquid water | [51] |
1.0024–1.0034 | 1.017–1.024 | sI | saline NaCl sol. | [51] | |
1.0034; 1.0037–1.0040 | sI | natural pore water | [52] | ||
1.0028–1.0032 | sI | 3% NaCl sol. | [48] | ||
1.0024–1.0036 | sI | natural pore water | [53] | ||
1.0025–1.0032 | 1.017–1.022 | sII | liquid water | [51] | |
1.0037 | sII | THF sol. | [54] | ||
1.00268 | sII | THF sol. | [32] | ||
ice-water | 1.0032 | [54] | |||
1.0035 ± 0.0003 | [55] | ||||
1.0028 | 1.0206 | [56] | |||
1.0029; 1.0031 | 1.0178; 1.0195 | [57] | |||
1.00265 | 1.0195 | dilute NaCl sol. | [58] | ||
1.00270 | 1.0203 | sea water | [58] |
Sample Location | Hydration Number n (sI-Type) | Reference |
---|---|---|
Blake Ridge (off South Carolina) | 6.2 | [84] |
Hydrate Ridge (off Oregon) | 6.11 | [85] |
Eastern Nankai Trough, Japan | 6.1–6.2 | [86] |
Mallik, Canada | 6.1–6.3 | [87] |
offshore Vancouver Island, Canada | 6.1 | [88] |
Northern Cascadia margin, Canada | 6.1–6.5 | [89] |
Elbert, Canada | 6.1 | [83] |
Lake Baikal, Russia | 6.1–6.2 | [90] |
Shenhu area, South China Sea | 5.9 | [91] |
Qiongdongnan Basin, South China Sea | 6.12–6.19 | [92] |
K-G Basin, India | 6.1–6.2 | [93] |
Gas Volumetric Method | Chloride Concentration Method | Isotopic Method (δ18O/δD) | Infrared Temperature Anomaly Method | |
---|---|---|---|---|
Application condition | No dissociation of hydrates after core recovery; gas released is collected under control | Determines Cl− concentration following hydrate dissociation | Determines the isotopic values of pore water following hydrate dissociation | Infrared scanning after core recovery |
Core Quality Requirements | High quality cores; preserves in situ conditions | Less stringent; tolerates minor dissociation | \ | \ |
Non-Destructive Measurements | Allows Xray, P-wave, and gamma density measurements | \ | \ | Non-destructive measurements |
Accuracy | Considers the ground-truth value | Reliable with minor dissociation when recovered | Similar to Cl− but challenging to measure | Provides qualitative estimates |
Cost | High cost | \ | \ | \ |
Challenges | Requires pressure/temperature maintenance | Requires careful determination of the calculation parameters | Logistical difficulty especially for onboard isotopic measurement | Subject to numerous interfering factors |
Applicability | Used in both laboratory and field settings | Widely used onboard | Less frequent due to measurement challenges | Widely used for qualitative field assessments |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Lu, H.; Yang, H.; Cai, W.; Zhan, L. Geochemical and Physical Methods for Estimating the Saturation of Natural Gas Hydrates in Sediments: A Review. J. Mar. Sci. Eng. 2024, 12, 1851. https://doi.org/10.3390/jmse12101851
Xue Y, Lu H, Yang H, Cai W, Zhan L. Geochemical and Physical Methods for Estimating the Saturation of Natural Gas Hydrates in Sediments: A Review. Journal of Marine Science and Engineering. 2024; 12(10):1851. https://doi.org/10.3390/jmse12101851
Chicago/Turabian StyleXue, Yuan, Hailong Lu, Hailin Yang, Wenjiu Cai, and Linsen Zhan. 2024. "Geochemical and Physical Methods for Estimating the Saturation of Natural Gas Hydrates in Sediments: A Review" Journal of Marine Science and Engineering 12, no. 10: 1851. https://doi.org/10.3390/jmse12101851
APA StyleXue, Y., Lu, H., Yang, H., Cai, W., & Zhan, L. (2024). Geochemical and Physical Methods for Estimating the Saturation of Natural Gas Hydrates in Sediments: A Review. Journal of Marine Science and Engineering, 12(10), 1851. https://doi.org/10.3390/jmse12101851