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Abstract: Intelligent logistics and freight transportation is an important part of realizing the intelli-
gence of port terminals. Due to the problems of inaccurate ton bag identification, high costs, large
model sizes, and long computation times in traditional freight transportation—issues that hinder
meeting real-time requirements on resource-constrained operational equipment—this paper proposes
an improved lightweight ton bag detection algorithm, YOLOv8-TB (YOLOv8-Ton Bag), which is
optimized based on YOLOv8. Firstly, the improved LZKAC module is introduced to combine with
SPPF to form a new SPPFLKZ module, which improves the feature expression performance. Then,
with reference to spatial and channel reconstruction convolution and deformable convolution, the
C2f-SCTT block is designed for the backbone network, which reduces the spatial and channel redun-
dancy between features in the network. Finally, the C2f-ORECZ block based on a linear scaling layer
is designed for the neck, which reduces the training overhead and strengthens the feature learning
of the feature extraction network for the targets in the complex background of the harbor and adds
the 160 × 160 scale detection head to strengthen small target detection abilities. On the logistics
ton bag operation dataset provided by shipping port enterprises, the improved algorithm improves
by 3.7% and 5% compared with the original algorithm in mAP50 and mAP50-95, respectively, the
model size is reduced by 4.42 MB and the amount of model computation is only 8 G, which is capable
of accurately detecting logistics ton bags in real time. The superiority of the method is verified by
comparing it with other classical target detection algorithms.

Keywords: port logistics inspection; ton bags; target detection; YOLOv8; attention mechanisms; port
congestion

1. Introduction

Since the rise of intelligent shipping terminals, research on logistics and transporta-
tion automation technology has become more and more in-depth [1]. In port logistics
transportation, ton bags are mainly used to transport goods. The original port logistics
ton bag freight required manual identification of ton bags, their locations, quantities, and
the release of trucks. The traditional manual identification method had problems such as
low accuracy, slow speed, and high cost, requiring a large amount of human resources
and time, making it difficult to meet the demand for fast and accurate ton bag processing,
which significantly lowers the efficiency of port operations. In recent years, the automated
detection of freight logistics requirements has become higher and higher, in addition to
improving the detection accuracy, due to logistics ton bag detection algorithms are usually
deployed to the port monitoring, crane controllers and other equipment, model parameters,
the reduction in calculation volume and real-time detection presents a higher demand.

The Ultralytics team proposed the YOLOv8 (You Only Look Once version 8) in 2023
with higher accuracy, smaller parameter counts, and model sizes. From the perspectives of

J. Mar. Sci. Eng. 2024, 12, 1916. https://doi.org/10.3390/jmse12111916 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12111916
https://doi.org/10.3390/jmse12111916
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-8535-6238
https://orcid.org/0000-0002-6241-2321
https://doi.org/10.3390/jmse12111916
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12111916?type=check_update&version=2


J. Mar. Sci. Eng. 2024, 12, 1916 2 of 24

conjoined ton bag occlusion, small target detection, and lightweight modeling in dense ton
bag detection, targeted improvements are made to target detection in port logistics. Based
on YOLOv8n, this model is optimized, focusing on the improvement and optimization of
the three perspectives of the backbone, neck, and detection layer in the model to improve
the accuracy, and for the first time, a YOLOv8n-based ton bag detection algorithm for port
logistics YOLOv8-TB is proposed, and the main contributions are as follows:

1. Introduce the new attention module SPPFLKZ (Modified SPPF module with Large
Kernel Attention with Convolution) and combine it with the backbone and neck to
greatly enhance the feature extraction of small targets.

2. Add the C2f-SCTT block (Modified C2f block with DSRU and DCRU) composed of
DSRU (Deformable Spatial Reconstruction Unit) and DCRU (Deformable Channel
Reconstruction Unit) reduces the spatial and channel redundancy between features in
the network and increases accuracy while achieving lightweight requirements.

3. Design the C2f-ORECZ (Modified C2f block with ORECZ) block based on ORECZ
(Online Convolutional Reparameterization Extended Block), which reduces a certain
amount of training overhead and strengthens the feature extraction network for
feature learning of targets in complex backgrounds of ports, and better adapts to
complex and changeable situations with small targets in ton bags.

4. Add a 160 × 160 scale detection layer to strengthen small target detection capabilities
and improve the accuracy of small target positioning and identification.

The rest of the paper is organized as follows. In the related work section, tradi-
tional portlet detection and deep learning portlet detection-related contents are introduced.
YOLOv8-related content is introduced in the YOLOv8 model section. In the YOLOv8-TB
model section, the innovative model of port logistics tonnage bag based on improved
YOLOv8: YOLOv8-TB proposed in this paper is introduced in detail, and the structure of
the method is analyzed in focus. In the results and discussion section, the performance
indexes of the model are illustrated through the experimental and analytical results of differ-
ent algorithms and different improved parts. Finally, the overall innovation of YOLOv8-TB
is summarized to illustrate the feasibility and effectiveness of the model improvement.

2. Related Work
2.1. Traditional Small Target Detection in Harbors

Regarding port target detection, domestic and foreign scholars have performed a lot
of related work. The traditional research methods for port terminal target recognition
mainly include traditional edge detection methods [2], object-oriented extraction meth-
ods [3], and feature-based port detection methods for remote sensing images [4]. The
research on traditional edge detection methods can be traced back to the phase grouping
method [5], which determines its location and attributes based on the partial grayscale
change characteristics of the target edge. Liu et al. [6] determined the features based on
grayscale features and structural features. Under the object-oriented analysis framework,
Bhagavathy et al. [7] proposed a new model which effectively characterizes the port and
the targets inside it by learning shared texture features. In terms of feature-based detec-
tion methods, Bovolo et al. [8] used radar imagery and combined a hierarchical change
detection method. The traditional port detection relies on features built based on prior
knowledge. When faced with a background containing complex elements such as waters,
buildings, and ships, it is difficult to accurately detect small and medium-sized targets in
ports such as ton bags. Characterization has become more difficult.

2.2. Deep-Learning-Based Detection of Small Targets in Harbors

Therefore, deep-learning-based target detection algorithms can break new ground
in the field of port logistics and transportation, which are divided into two categories
according to the number of detection stages. One class is two-stage detection and the other
class is single-stage detection. Classic two-stage detection algorithms include R-CNN [9],
Fast-RCNN [10], Faster-RCNN [11], Mask-RCNN [12], etc. Commonly used single-stage
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detection algorithms include the YOLO series [13–15] and SSD [16], among others. As
far as the requirements of real time and accuracy are concerned, YOLO has received
extensive attention from the industry in small target detection. In 2021, Yan et al. [17],
based on the Complete Ensemble Empirical Mode Decomposition (CEEMD) algorithm,
proposed an adaptive training time-step strategy to enhance feature information interaction
and improve the detection capability of small floating targets in sea clutter. In 2023,
Zhang et al. [18] improved YOLOv7 and integrated two attention mechanisms to enhance
the feature extraction capabilities of the backbone and neck. In 2024, Li et al. [19] designed
a new receptive field amplification module, based on YOLOv7 to reduce the model’s
parameters and expand its receptive field, thereby improving the detection of small targets.

3. YOLOv8 Model

Based on previous YOLO versions, YOLOv8 [20] is divided into YOLOv8n, s, m, l, and
x with a total of five different size structures, which are designed to meet the user’s needs
under different application devices. The difference between the five models is the model
parameters, computational volume, and the size of the model, among which YOLOv8n
is optimally designed for embedded low-cost devices. Figure 1 shows an architecture
represented by YOLOv8n. Compared to the C3 structure of YOLOv5 [21], YOLOv8n
replaces it with a C2f (Cross Stage Partial Bottleneck with 2 Conv layers and Feature Fusion)
structure with richer gradient flow to enhance the feature fusion capability of convolutional
neural networks and improves the inference speed for further lightweight. For different
scales of models, the C2f structure is adjusted with different numbers of channels to better
adapt to different scales of inputs.

3×3
Conv

3×3
Conv

3×3
Conv

C2f

C2f

3×3
Conv

C2f

3×3
Conv

C2f

SPPF

Upsample

Concate

C2f

Upsample

Concate

C2f

3×3
Conv

Concate

C2f

3×3
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C2f
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input
640×640×3

neck detection

Figure 1. YOLOv8 structure.
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4. YOLOv8-Based Ton Bag Innovation Model for Port Logistics: YOLOv8-TB
4.1. YOLOv8-TB Structure

The task of logistics ton bag detection is usually limited by operational equipment
(port area monitoring system), which requires a lightweight, low-latency, and high-accuracy
model. The structure of the YOLOv8-TB proposed in this paper is detailed in Figure 2. This
network consists of four parts, which are input, backbone, neck, and output.
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Figure 2. YOLOv8-TB structure.

YOLOv8-TB optimizes the original YOLOv8 structure, improves the small target
detection effect by improvement, and achieves the light weight of the model under the
premise of improving the detection performance. This paper mainly carries out the follow-
ing improvements.

First, in the backbone part, the improved LZKAC (Large Kernel Attention with Convo-
lution) self-attention mechanism module is combined with SPPF (Spatial Pyramid Pooling
Fast) to form a new SPPFLKZ module to replace the original SPPF, which improves the fea-
ture expression performance and strengthens the feature learning of the feature extraction
network for the target ton bag in the complex port background.

Second, also in the backbone part, C2f is replaced by C2f-SCTT, which enables the
model to better extract capabilities, reduces the computational cost and model storage, and
ensures that the performance and the model magnitude are balanced with each other.

Third, in the neck part, the upsampled C2f is replaced with the ORECZ-based C2f-
ORECZ module, which further reduces the model parametric quantities while maintaining
the feature extraction performance.

Fourth, in the neck part, as shown in the dotted box in Figure 2, a 160 × 160 scale
detection neck is added, in which the C2f-ORECZ block is used and the SPPFLKZ attention
module is added in the downsampling process to improve the accuracy of the detection of
small targets.

The technical details related to the SPPFLKZ attention mechanism, the C2f-SCTT block,
the C2f-ORECZ block, and the small target detection layer are described below.
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4.2. SPPFLKZ Attention Mechanism
4.2.1. LZKAC

Large Kernel Attention (LKA) [22] is a novel attention mechanism for visual tasks pro-
posed by Tsinghua and Nankai in 2022, on which the City University of Hong Kong & TCL
AI Lab proposed the attention mechanism of Large Separable Kernel Attention(LSKA) [23]
in 2023. LKA and LSKA generally contain the advantages of self-attention [24], such as
adaptivity and distance dependence.

Based on the original LKA and LSKA, an innovative decomposition of the large
kernel convolution operation is carried out to address the respective deficiencies of self-
attention and large kernel convolution, as a way to capture long-term spatial relations more
effectively. Based on this improvement idea, the LZKAC module is proposed. This module
aims to take advantage of the global sensing ability of self-attention and the extensive
sensing field of the big kernel convolution; by optimizing the computational steps and
reducing parameters, it effectively enhances the model’s ability to capture long-distance
dependencies, while minimizing the resource consumption as much as possible.

The LZKAC module captures long-term relationships by performing decomposition
operations on the large kernel convolution using a few computations and parameters. The
large kernel convolution is divided into 3 parts: spatial local convolution (deep convo-
lution), i.e., DW-Conv, spatial remote convolution (deep dilation convolution), i.e., DW-
D-Conv, and channel 1 × 1 convolution, i.e., Conv. As shown in Figure 3, demonstrating
the network structure of LZKAC, in order to capture the local spatial information first
undergoes a kernel size of 1 × (2d − 1) deep convolutions for extracting features in one
direction (usually horizontal or vertical) while reducing the number of parameters. Then,
in order to extract features in another direction, complementary to the previous step, a
(2d − 1)× 1 depth convolution is performed, followed by a [k/d][k/d] depth expansion
convolution to further extract and integrate the features extracted in the previous two steps,
and finally, a 1 × 1 convolution is performed and multiplied element-by-element with the
original input feature maps to obtain the output results.

Given an input feature map F ∈ RC×H×W , where C is the number of input channels
and H and W denote the height and width of the feature map, respectively, a new and
improved large kernel convolutional decomposition configuration, namely the LZKAC
module, is obtained by decomposing the conventional two-dimensional depth convolution
kernel into two cascaded one-dimensional separable convolution kernels. The outputs of
the LZKAC can be obtained by the following Equations (1)–(4), where d is the expansion
rate. The input feature mapping FC is convolved with two cascaded one-dimensional
separable depth convolutions W with kernel sizes of 1 × (2d − 1) and (2d − 1)× 1, and
each channel C in F is rolled up with the corresponding channel in W. Finally, Z̄C is
computed by the following equation and this output captures the local spatial information:

Z̄C = ∑
H,W

WC
(2d−1)×1 ∗

(
∑

H,W
WC

1×(2d−1) ∗ FC

)
(1)

The output Z̄C of Equation (1) is convolved with the large kernel convolutional decom-
position of the kernel size [k/d][k/d] for the depth dilation convolution W. Convolutional
operation is performed and compensates for the lattice effect of the depth dilation convolu-
tion, and ZC is computed by the following equation:

ZC = ∑
H,W

WC
⌊ k

d ⌋×⌊ k
d ⌋

∗ Z̄C (2)

The output ZC of Equation (2) is convolved with a kernel size of 1 × 1 convolution W.
The attention map AC is obtained by the following equation:

AC = W1×1 ∗ ZC (3)
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·

1×(2d −1)
DW-Conv

(2d −1) ×1
DW-Conv

[k/d]×[k/d]
DW-D-Conv

1×1
Conv

Figure 3. LZKAC structure.

Finally, the obtained attention map AC from Equation (3) is subjected to element-wise
multiplication with the input feature map FC, resulting in the output F̄C calculated by
Equation (4):

F̄C = AC ⊙ FC (4)

where ∗ and ⊙ denote the convolution operation and Hadamard product, respectively.
This decomposition of large kernel convolution helps to alleviate the problem of quadratic
increase in computation, reducing the computational cost of feature extraction by only
incurring the cost associated with depth-wise convolution and larger kernel sizes.

It is assumed that the input size and output size of the feature mapping to LKA and
LZKAC are the same. Equations (5)–(8) below provide the computational equations to
derive the floating point operands and parameters for LZKAC and LKA, where k is the size
of the core and d is the expansion rate. From the comparison of Equations (5) with (7) and
(6) with (8), the LZKAC proposed in this paper preserves 2d−1

2 more effective parameters
than the original LKA, and thus, the LZKAC is more accurate in target feature extraction:

Param = (2d − 1)× C × 2 +
⌊

k
d

⌋2
× C + C × C (5)

FLOPs =

(
(2d − 1)× C × 2 +

⌊
k
d

⌋2
× C + C × C

)
× H × W (6)

Param = (2d − 1)2 × C +

⌊
k
d

⌋2
× C + C × C (7)



J. Mar. Sci. Eng. 2024, 12, 1916 7 of 24

FLOPs =

(
(2d − 1)2 × C +

⌊
k
d

⌋2
× C + C × C

)
× H × W (8)

Overall, LZKAC combines the advantages of large kernel convolution and self-attention,
effectively improving the model’s adaptability in both spatial and channel dimensions.

4.2.2. SPPFLKZ

Figure 4 below shows the SPPFLKZ attention mechanism module reconstructed us-
ing LZKAC, consisting of LZKAC, MaxPool2d (Spatial Pyramid Pooling Fast), and Con-
cat layers.

LZKAC 2×2
Maxpool2d Concat LZKAC2×2

Maxpool2d
2×2

Maxpool2d

Figure 4. SPPFLKZ structure.

The SPPFLKZ attention mechanism is an automated feature selection method that
replaces the convolutional layer in the traditional SPPF by integrating the LZKAC module.
This mechanism integrates local contextual information, a large perceptual range, and
dynamically changing features. This mechanism can dynamically select important features
that contribute to the task based on the features of the incoming data, while automatically
filtering out irrelevant noise. In this way, the SPPFLKZ attention mechanism significantly
improves the feature representation. Therefore, this paper concludes that there exists
feasibility to optimize the SPPFLKZ attention mechanism in combination with YOLOv8n
for small target detection.

4.3. C2f-SCTT

SCConv (Split Convolution) [25] was proposed by research from a team consisting of
researchers from the East China Normal University and Tongji University in 2023. The goal
of this module is to reduce the computational cost due to redundant feature extraction in
vision tasks. In response to the problems of accuracy degradation and insufficient reduction
of redundant information in SCConv, the idea of Deformable Conv [26] is incorporated into
the original SCConv for the construction of DSRU and DCRU in the C2f-SCTT module.

Figure 5 illustrates the concept of Deformable Conv. Deformable Conv has a main
and subbranch structure, where an offset is added to each convolutional sampling point,
and the subbranch is responsible for learning the offset through a 3 × 3 convolutional layer,
interpolating operations based on the offset generated by the subbranch to the main branch,
and then performs normal convolution. As a result, deformable convolution can better
extract the complete features of the target object.

In summary, the offset introduced in deformable convolution is to find valid informa-
tion in the right place, and a coefficient is introduced as a positional weight. This makes the
accurate extraction of valid information better. As shown in Figure 6, the C2f-SCTT module
replaces the original two bottlenecks with DSRU and DCRU sequentially. C2f-SCTT is
designed to effectively limit feature redundancy, not only by reducing model parameters
and FLOPs but also by enriching representation features.
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Input feature map

Conv
Offset field

Offset

Output feature map

Deformable conv

Figure 5. Deformable conv.

1×1
Conv Spilt DSRU DCRU Concat 1×1

Conv

Figure 6. C2f-SCTT structure.

4.3.1. DSRU

In Figure 7, the DSRU (Deformable Spatial Reconstruction Unit) adopts a main and
secondary branch structure to optimize feature extraction by integrating deformable con-
volution and dynamic gating mechanisms. The whole process includes two main parts:
feature separation and feature reconstruction.

Input
Feature

𝑋
G
N N S T

1×1
Conv

Separate Reconstruct

W1

𝑋1𝑤

𝑋2𝑤

𝑋11𝑤

𝑋21𝑤

𝑋12𝑤

𝑋22𝑤

𝑋𝑤1

𝑋𝑤2

Concat

Spatial - Refined
Feature 𝑋𝑤

W2

Figure 7. DSRU structure.

A deformable offset offset is introduced in the separation part. Input feature map
X∈RC×H×W , where N is the batch axis, C is the channel axis, and H and W are the spatial
height and width axes. Learning offset by a convolutional layer on the subbranch is used
to adjust the sampling points of the convolutional layer on the main branch. The trainable
parameter γ ∈ RC in the GN (Group Normalization) layer is utilized on the main branch
as a measure of pixel variance per batch and channel space. After N layers, normalized
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weights Wγ ∈ RC related to each batch of data and channel are obtained, and the result
is multiplied with the feature map processed through the GN layer. Then, the weights of
the feature map reweighted by Wγ in the range (0, 1) are generated by a Sigmoid function
and controlled by a threshold T-layer to generate two sets of weights: information weights
W1 (above the threshold) and non-information weights W2 (below the threshold), thereby
separating and forming the dual branches.

In the reconstruction part, two weighted feature maps XW
1 with enriched information

and XW
2 with less informative features, are obtained by multiplying the feature map

obtained after deformable interpolation by W1 and the original input feature map X by
W2. XW

1 contains spatial content that is informative and expressive, while XW
2 contains

redundant and less useful information.Subsequently, the cross-reconstruction operation
is used to mix them in order to enhance the exchange of information between different
features. Finally, the cross-reconstructed features XW

1 and XW
2 are spliced together to obtain

the spatially refined feature resultant map XW , and the whole reconstruction process yields
through the following Equations (9)–(13):

XW
1 = W1 ⊗ X (9)

XW
2 = W2 ⊗ X (10)

XW
11 ⊕ XW

22 = XW1 (11)

XW
21 ⊕ XW

12 = XW2 (12)

XW1 ∪ XW2 = XW (13)

After passing the input feature map through DSRU, not only is the distinction between
feature-rich and less informative features effectively made, but a series of reconstruction
steps are also employed to enhance the expressive power of these features and suppress
unnecessary redundancy in spatial dimensions. However, the spatially refined feature
maps still maintain redundancy in the channel dimension.

4.3.2. DCRU

Figure 8 illustrates the two-branch structure of the DCRU (Deformable Channel
Reconstruction Unit), where the features are processed through the three stages shown in
Figure 8.

In the split stage, The result obtained after applying the DSRU operation, denoted
as X ∈ RC×H×W , is used as the input to the DCRU to further extract rich representative
features. Firstly, the channels of XW are divided into two parts, a parameter α (0 ≤ α ≤ 1)
is set to control the allocation ratio of the channels to ensure the efficiency while balancing
the computational cost, and the number of channels of the feature mapping is compressed
using the 1 × 1 convolution operation to improve the processing speed. After segmentation
and compression, the spatially refined feature XW is divided into upper part Xup and lower
part Xlow.

In the transformation part, the upper branch Xup acts as a “rich feature extractor” to
extract feature information and reduce computational cost by parallel GWConv (group
convolution) and PWConv (point-by-point convolution), where group convolution reduces
the computational burden and restricts the flow of information between different channel
groups, point-by-point convolution compensates for possible information loss, and finally,
the output feature results are summed to form a combined representative feature map
Y1. The lower branch Xlow is input to the lower transformation stage, and the feature
mappings with shallow hidden details are extracted as a complement to the upper branch
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through deformable interpolation and splicing of the original Xlow. Finally, the output of
Y2 is formed.

3×3
GWConv

1×1
PWConv

1×1
Conv

Global Average
Pooling

1×1
Conv

1×1
Conv Concat

Global Average
Pooling

Split Tranform Fuse

Spatial - Refined
Feature 𝑋𝑤

Channel - Refined
Feature Y

Y1

Y2

Xup

Xlow

αC

(1−α)C

Figure 8. DCRU structure.

After the conversion is completed in the fusion stage, Y1 and Y2 undergo a global
average pooling to collect the global spatial features, respectively. Finally, the upper and
lower features Y1 and Y2 are merged to obtain the channel-refined feature Y.

In short, The DCRU uses a three-phase strategy to reduce channel redundancy, which
effectively reduces the redundancy along the channel dimension. In addition, DCRU
utilizes lightweight convolution to extract rich representative features, while feature redun-
dancy is performed through low-consumption operations and feature reuse.

4.4. C2f-ORECZ

By referring to the advantages of online convolutional reparameterization (OREPA) [27],
ORECZ, a new convolutional module, is constructed by combining it with convolutional
neural network (CNN) for the problem of accuracy degradation in OREPA. The structure
of the ORECZ module is shown in Figure 9, which consists of a block linearization stage
and a block compression stage.

3×3
Conv

3×3
Conv

3×3
Conv

Scaling

Scaling

Scaling

2×2
Pooling

Figure 9. ORECZ structure.

In the block linearization stage, a Scaling layer (linear scaling) is used to replace the
traditional normalization layer. The Scaling layer contains a learnable vector for scaling
the feature maps in the channel dimension to motivate the network to prevent inter-layer
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dependencies during the training period and to allow branches to move independently in
different directions.

In the block compression stage, following linearization, all linear layers of the network
are concentrated in a re-parameterization block (re-param block), allowing for holistic
optimization during the training process. The structure consisting of multiple linear layers
in the three branches is compressed and merged into an ORECZ block by converting the
operations on the feature mapping in the middle of the linear block to more efficient kernel
operations. This reduces the additional training cost of the reparameterization from O(H×W)

to O((K_H,K_W)), where (H, W), (K_H, K_W) are the spatial shapes of the feature maps and
the convolution kernel.

Overall, the ORECZ module not only maintains the detection performance but also
reduces the parameters through the linearization and compression process and ensures the
diversity of different optimization paths with the network’s representational capabilities.
A three-branch structure compression is used to merge into a single linear block for feature
extraction, which reduces the complex training time block to a single convolutional layer
and maintains high accuracy.

Figure 10 illustrates the structure of the C2f-ORECZ module, where the ORECZ
module replaces the Bottleneck layer in C2f. To maintain optimization diversity and
stabilize the training process, a BN (Batch Normalization) layer and a Relu (Rectified Linear
Unit) layer are sequentially added before the concert operation. The excessive use of BN
and Relu layers has been shown to introduce significant computational overhead during
the training stage, leading to excessively large model weights in past reparameterization
models. Therefore, considering efficiency, the C2f-ORECZ module in this study employs
only one BN layer and one Relu layer, reducing certain training overheads.

1×1
Conv Spilt 1×1

ConvConcatBN ReLUORECZORECZ

Figure 10. C2f-ORECZ structure.

4.5. Small Detection Layer

The research scenario is a port logistics scenario, which contains many small targets,
such as ton bags and operational workers. After feature fusion of the original YOLOv8,
the detection layer outputs three feature maps with different sizes for detecting targets of
different sizes, which are 20 × 20, 40 × 40, and 80 × 80, respectively. Since the maximum
feature map is only 80 × 80, the feature map scale is small and not suitable for detecting
small targets. To improve the accuracy of tonnage bag inspection, while avoiding too much
loss of detailed features due to downsampling, this method is improved for the original
YOLOv8 network structure. The dashed box part shown in Figure 2 is the added 160 × 160
small target detection layer, YOLOv8-TB initially extracts features from the sixth layer
of the backbone and uses Concat splicing to fuse the shallow features extracted from the
neck with the contextual information extracted by the SPPFLKZ attention mechanism, and
finally, output the fourth detector header, which is used as the small target detection header
by enhancing the extraction of the feature details of small targets to enhance the detection
capability of YOLOv8-TB for small targets. Under the condition of reducing the leakage
and false detection rate of small targets, deeper feature transfer and feature fusion are
carried out, which makes small target localization and recognition more accurate.

5. Results and Discussion
5.1. Data Preparation

Due to factors such as individual differences in ton bags (e.g., cargo volume and
model), mutual occlusion, different lighting conditions, and viewing angles in real port
operation environments, the dataset needs to be representative and highly diverse.
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This paper is aimed at the environment of port operation, where existing datasets for
ton bag detection are relatively scarce, with insufficient image annotations, and often con-
tain blurred images. Therefore, it is difficult for public datasets to fulfill the research content
of this paper and serve as an ideal benchmark for challenging port logistics scenarios.

Therefore, this paper cooperates with relevant port enterprises, obtains the logistics
operation video of relevant ports for the port logistics scenario, obtains a certain amount of
data through frame extraction, and forms a dataset for the training and validation of the
final model by means of data enhancement. The dataset contains four classes of objects,
including ton bags, trucks loaded with ton bags, operation workers, and empty trucks. The
four categories are labeled dai, truck, person, and emptytruck.

The distribution of the four categories in the original dataset of 6000 images obtained
from frame extraction is shown in Table 1. Since the main research focus of this study is the
detection of ton bags, we selected samples based on typicality and complexity criteria. This
selection includes samples with representative characteristics under complex conditions,
such as heavy occlusion in the background, unclear object contours, or varying lighting
conditions. After filtering 2000 images, the distribution ratio of the four categories (dai,
truck, person, emptytruck) was 4:2:2:2.

Table 1. The number of raw data in each category.

Category Number

Dai 95,453
Truck 31,263

Person 14,589
Emptytruck 16,728

To address the data imbalance issue, data augmentation techniques were applied
to balance the distribution of the four categories, while also increasing the diversity and
complexity of the samples. Ultimately, the dataset was expanded to 3000 images, and the
distribution of the four categories in the 3000 images is shown in Table 2, ensuring that the
data balance among the categories was maintained.

Table 2. The number of each category after data augmentation.

Category Number

Dai 26,453
Truck 25,271

Person 25,589
Emptytruck 25,728

The dataset for this article has 3000 images, which are divided into train, val, and test.
To ensure balanced data distribution after the split, each category was separately divided
into the training, validation, and test sets, ensuring that the proportions of each category
remain consistent across all sets.The data are divided according to 7:2:1, including 2100 for
the training set, 600 for the validation set, and 300 for the test set, and the size of the input
images is uniformly 640 × 640.

The dataset is also processed for clarity and contour, and the metrics are suitable for
better evaluation of ton-bag detection algorithms in heavily occluded or poorly illuminated
scenarios, as well as being very challenging.

5.2. Experimental Environment and Parameter Configuration

The operating system of this experimental platform is Windows 10, the CPU is Inter
(R) Core (TM) i9-12900H @2.9GHz, the RAM is 16 GB, and the graphics card is Nvidia
GeForce RTX 3060 with a total of 6 GB of video memory. The deep learning framework uses
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Pytorch-GPU 2.0.1, the CUDA version used for 11.3, and cuDNN with version v8.9.1.23 for
GPU acceleration, and Table 3 demonstrates the corresponding parameters.

Table 3. Parameter configuration.

Parameters Settings Parameters Settings

Optimizer SGD lrf 0.01
Epochs 400 weight_decay 0.0005

Batchsize 8 momentum 0.937
Workers 2 warmup_epochs 3

Imgs 640 warmup_momentum 0.8
lr0 0.01 close_mosaic 10

5.3. Evaluation Indicators

In this experiment, precision P, recall R, mean Average Precision mAP, model compu-
tational power (GFLOPs), and model size are used as performance reference indicators.
Among them, P, R, and mAP are used as indicators to evaluate the model detection effect,
and the larger their values, the higher the model detection accuracy. GFLOPs and model
size are used to evaluate how lightweight the model is; smaller values represent a higher
degree of model being lightweight and lower hardware performance requirements.

5.4. Experimental Results

In order to validate the effectiveness of the SPPFLKZ attention mechanism, C2f-SCTT,
C2f-ORECZ, and the small target detection head were used in this experiment. In this
paper, ablation experiments and comparison experiments are set up to investigate the
performance impact of the proposed improved method on the YOLOv8n model.

5.4.1. SPPFLKZ Validity Analysis

In this paper, we conduct comparative experiments for the SPPFLKZ attention mecha-
nism with other mainstream attention mechanisms under the same conditions (uniform
configurations as well as the same dataset), including six attention mechanisms, namely
ACmix [28], SE [29], EMA [30], ECA [31], LKA, and LSKA.

According to Table 4, SPPFLKZ significantly performs better than ACmix, SE, EMA,
ECA, LKA, and LSKA in accuracy metrics such as Precision, Recall, etc. Despite the fact
that SPPFLKZ is slightly larger than some of the models in terms of parameter calculations
and model sizes, it still leads in terms of overall accuracy. This suggests that SPPFLKZ
performs well across multiple evaluation metrics, demonstrating its combined strength in
effectiveness.

Table 4. Comparative trials of attention mechanisms.

Model Precision Recall mAP50 mAP50-95 FLOPs/G Model Size/MB

ACmix 94.2 91.1 95.1 77.2 9.3 13.21
SE 93.8 90.3 92.7 76.8 9.1 12.01

EMA 93.7 90.7 92.5 76.6 9.0 10.11
ECA 93.4 90.5 94.7 76.3 9.1 11.15
LKA 94.3 91.2 94.9 77.4 9.4 13.16

LSKA 94.2 90.6 94.6 76.9 9.3 12.06
SPPFLKZ 94.5 91.9 95.3 78.1 9.2 12.03

5.4.2. Model Comparison Experiment

In this paper, nine classical target detection methods including SSD, Faster R-CNN,
YOLOv3-tiny, YOLOv4-tiny, YOLOX-s, YOLOv5s, YOLOv7-tiny, YOLOv8n, and YOLOv9-
c [32–34], while small target detection algorithms are used in the target detection compar-
ison experiments to compare their performance with the present YOLOv8-TB algorithm
under the same conditions.
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According to Table 5, YOLOv8n has higher Precision, Recall, and mAP than SSD,
Faster R-CNN, YOLOX-s, YOLOv5s, YOLOv7-tiny, and YOLOv9, while the amount of
parameter computation and the size of the model is smaller than that of the other six
networks. YOLOv8n has a larger parameter computation and model size is larger than
YOLOv3-tiny and YOLOv4-tiny, but Precision, Recall, and mAP are much larger than these
two networks. Compared to the original YOLOv8n, YOLOv8-TB not only achieved a 3.7%
and 5% improvement in mAP50 and mAP50-95, respectively, but also increased precision by
4.3%. Additionally, FLOPS was reduced by 0.9 G, and the model size decreased by 4.42 MB.
Compared with the related literature algorithms in recent years, such as Refs. [33,34], this
paper’s algorithm shows its superiority in all indicators.

Table 5. Model comparison experiment.

Model Precision Recall mAP50 mAP50-95 FLOPs/G Model Size/MB

SSD 79.6 23.8 42.1 56.3 34.8 46.1
Faster R-CNN 80.8 71.5 76.2 62.7 206.6 108
YOLOv3-tiny 61.7 56.8 62.5 51.2 5.6 5.8
YOLOv4-tiny 63.5 58.2 65.7 49.8 7.0 6.4

YOLOX-s 77.1 62.4 76.5 59.4 26.8 39.3
YOLOv5s 74.9 59.7 73.6 56.1 16.5 27.1

YOLOv7-tiny 81.6 78.2 82.5 66.9 13.9 18.6
YOLOv8n 91.4 91.7 92.7 76.1 8.9 11.3
YOLOv9-c 90.1 88.9 91.8 75.1 238.9 98.6

33 93.3 89.6 92.3 76.2 8.5 7.11
34 93.5 89.1 92.4 76.6 8.6 7.32

YOLOv8-TB 95.7 92.2 96.4 81.1 8.0 6.88

5.4.3. Ablation Experiment

In order to verify the effectiveness and superiority of each improvement module of
this paper’s algorithm YOLOv8-TB, ablation experiments are carried out by different com-
binations of multiple improvement modules using Precision, Recall, mAP@50, mAP@50-95,
FLOPs/G, and model size/M as evaluation indexes. Table 4 shows the corresponding
experimental data.

Table 6 shows the comparative results of the ablation experiments, indicating that the
performance of several YOLOv8-TB improvement modules has been enhanced. Further-
more, the effectiveness of YOLOv8-TB can be concluded by the combination of different
improvement modules. The model with the SPPFLKZ module added improves by 3.1%,
2.6%, and 2% over YOLOv8n in terms of precision, mAP50, and mAP50-95, respectively,
indicating that the SPPFLKZ module based on the LZKAC self-attention mechanism is
more effective in improving the feature expression performance when performing feature
extraction. In comparison with YOLOv8n, the models with the individual addition of
the C2f-SCTT and C2f-ORECZ modules showed improvements in precision, mAP50, and
mAP50-95, while significantly reducing flops and model size. Additionally, the model that
combines both C2f-SCTT and C2f-ORECZ achieved a 1.7% increase in precision, a 2.2%
increase in mAP50, and a 0.8% increase in mAP50-95, along with a reduction of 1.5 G in
flops and 6.23 MB in model size compared to YOLOv8n. These performance comparisons
indicate that the use of C2f-SCTT and C2f-ORECZ in the network significantly reduces
spatial and channel redundancy, while also improving small object detection capabilities.
Compared to YOLOv8n, the model with the addition of the small target detection layer
improved by 2.7% and 1.6% on mAP50 and mAP50-95, respectively, indicating that the ad-
dition of the small-target detection layer improves the accuracy of the small-target detection
and proves the effectiveness of the small-target detection layer.
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Table 6. Ablation experiments.

Small Detection
Layer SPPFLKZ C2f-SCTT C2f-ORECZ Precision Recall mAP50 mAP50-95 FLOPs/G Model

Size/MB

× × × × 91.4 91.7 92.7 76.1 8.9 11.3
✓ × × × 94.8 90.3 95.4 77.7 9.2 12.18
× ✓ × × 94.5 91.9 95.3 78.1 9.2 12.03
× × ✓ × 92.5 91.1 94.5 75.2 8.2 7.67
× × × ✓ 93.9 90.2 94.7 74.8 8.1 7.51
✓ ✓ × × 94.6 91.6 96.4 79.8 9.5 13.49
✓ × ✓ × 93.2 91.7 95.2 77.1 8.5 8.78
✓ × × ✓ 95.1 91.3 95.6 78.4 8.4 8.45
× ✓ ✓ × 94.3 90.9 94.6 79.2 8.4 8.50
× ✓ × ✓ 94.6 91.8 95.7 78.6 8.5 8.67
× × ✓ ✓ 93.1 90.6 94.9 76.9 7.4 5.07
✓ ✓ ✓ × 95.1 91.6 96.2 79.6 8.8 9.44
✓ ✓ × ✓ 93.7 90.1 96.3 79.2 8.7 9.15
× ✓ ✓ ✓ 94.8 91.2 96.2 79.1 7.7 5.43
✓ × ✓ ✓ 95.3 91.8 96.1 79.4 7.8 5.62
✓ ✓ ✓ ✓ 95.7 92.2 96.4 81.1 8.0 6.88

Note: ‘×’ indicates that the component is not added to the model, while ‘✓’ indicates it is added to the model.
Bold values highlight the highest scores.

5.4.4. Cross-Validation Experiment

To evaluate the robustness of the model, this paper introduces K-fold cross-validation,
with the performance metrics shown in Table 7. Through 5-fold cross-validation, the model
demonstrated stable performance across different validation sets. The Precision values for
each fold were 95.6%, 95.7%, 95.9%, 95.8%, and 95.5%, respectively. The mAP50 values
for each fold were 96.3%, 96.5%, 96.4%, 96.6%, and 96.2%, while the mAP50-95 values
were 80.8%, 81.1%, 80.9%, 81.2%, and 80.8%. The final average Precision was 95.7%, the
mAP50 was 96.4%, and the mAP50-95 was 80.9%. These results indicate that YOLOv8-TB
consistently maintains high detection accuracy and generalization ability across different
dataset partitions.

Table 7. The results of the cross-validation.

Folds Precision Recall mAP50 mAP50-95

1 95.6 92.2 96.3 80.9
2 95.7 92.4 96.5 81.1
3 95.9 92.3 96.4 80.9
4 95.8 92.5 96.6 81.3
5 95.5 92.1 96.2 80.8

Average 95.7 92.3 96.4 81

Overall, this paper proposes the YOLOv8-TB model and comprehensively validates it
through 5-fold cross-validation. The experimental results show that the model performs
well across multiple dataset partitions, further confirming its robustness and generalization
ability. Cross-validation not only reduces the bias caused by random splits but also provides
a more comprehensive evaluation of the model’s practical application value.

5.5. Algorithm Effect Verification

In this experiment, three representative scenarios in the port logistics ton-bag dataset
are selected to be divided into three groups, A, B, and C. From left to right, we show the
comparison of the detection effects of YOLOv8-TB [33], YOLOv9, YOLOv8n, and YOLOv7-
tiny in daytime operation, nighttime operation, and ton-bag contiguous blocking situations.
Figure 11 illustrates the corresponding detection effect.
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Figure 11. Comparison of the effect of the logistics of ton bag detection.

As can be seen from the detection effect comparison graph, YOLOv8-TB shows obvi-
ous advantages in dealing with complex scenarios such as daytime operation, nighttime
operation, and ton bag contiguous occlusion situations.

In the daytime operation experiments of Group A, for the distant small targets ton
bags, workers, etc. [33], YOLOv9, YOLOv8n, and YOLOv7-tiny have a certain amount of
missed detections, and some of the detected targets are detected with low confidence of the
detection frame, while YOLOv8-TB accurately identifies the targets that are missed by the
other comparative models.

In Group B dark operation experiments, under the dark light environment, YOLOv9,
YOLOv8n, and YOLOv7-tiny missed most of the ton bag targets, and some workers
mistakenly detected ton bags, with a low confidence level of the target detection frame, as
in Ref. [33]. In Group B dark operation experiments, under the dark light environment,
YOLOv9, YOLOv8n, and YOLOv7-tiny showed most of the missed detection of the ton
bag targets, and also some workers mistakenly detected them as ton bags, with a low
confidence level of the target detection frame of the literature [33]. In contrast, YOLOv8-TB
was able to accurately detect nearly all of the ton bag targets without false detection results,
which greatly improves the ability to detect small targets under poor lighting conditions.

In the experiments of Group C ton bags with contiguous occlusion [33], YOLOv9,
YOLOv8n, and YOLOv7-tiny can identify the ton bags with obvious contours in the
front row, but almost completely miss the detection of ton bags with inconspicuous con-
tours or mixed backgrounds, especially those rear ton bags that are heavily occluded,
and the confidence level of the partially detected detection frames is not high. On the
contrary, YOLOv8-TB detects ton bags with inconspicuous contours and conjoined body
targets four times higher than YOLOv9, YOLOv8n, and YOLOv7-tiny [33], and detects
ton bags with severely occluded rear rows six times higher than YOLOv9, YOLOv8n, and
YOLOv7-tiny [33], which greatly improves the detection of severely occluded ton bags
with inconspicuous contours and contiguous body targets, especially those severely oc-
cluded and inconspicuous contours of conjoined ton bags, while still maintaining a high
confidence level.

From the detection comparison experiments, it can be seen that the improved algo-
rithm YOLOv8-TB can detect targets that cannot be detected by other models, which proves
that the algorithm in this paper can improve the problems of inaccurate positioning of small
targets of ton bags and insufficient expression of target features during port operations.
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5.6. Data Analysis

Figure 12 shows the P-R curve of YOLOv8-TB on the validation set. Precision is a
measure of the relevance of the results, while recall is a measure of how many truly relevant
results were returned. The average precision-recall on the validation set is 0.932, 0.995,
0.942, and 0.995 for ton bags, trucks, persons, and empty trucks, respectively, and 0.966
overall for all categories.

Figure 12. P-R curve.

Figure 13 illustrates the confusion matrix of YOLOv8-TB on the validation set. From
the figure, it can be seen that the TP rates for these four categories are 0.87, 1, 0.89, and 1 for
tonne bags, trucks, persons, and empty trucks, respectively.

Figure 13. Confusion matrix.

After the data for validation, the performance of the model in this paper is affirmed,
and the detection ability of the small target of the tonnage bag is effective.

In order to compare the detection effect of different improvement modules on different
types of objects, Figure 14 shows the mAP for the four types of targets in the ShipPort
Logistics ton bag operation dataset. According to the experimental results, it can be seen
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that compared with YOLOv8n, the detection accuracy of the model with the addition of
the four different improvement schemes alone has risen to a certain extent, among which
the SPPFLKZ Attention Module and the Small Target Detection Layer have significantly
increased the accuracy of the recognition of the ton bag’s small targets. Using the C2f-SCTT
and C2f-ORECZ modules alone, small target recognition accuracies for ton bags show a
small improvement along with a significant reduction in model size. When these modules
are used in conjunction with the small target detection layer, the recognition of small targets
such as ton bags and workers shows a significant and stable improvement.
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Figure 14. Visual comparison of detection accuracy.

Figures 15 and 16 demonstrate the overall situation of Recall and mAP50 after 400 rounds
for YOLOv8n and YOLOv8-TB. It can be seen that the overall convergence of YOLOv8-TB
is more stable than that of YOLOv8n, and at the same time, from the point of view of the
exact value, YOLOv8-TB rises more rapidly.

Figure 15. Recall trend.
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Figure 16. mAP50 trend.

Figures 17 and 18 show the loss function curves and accuracy curves of YOLOv8-TB
on the training set and validation set, respectively. From the loss function curves, it can be
seen that the loss curves of the training set and validation set almost decline synchronously
and gradually stabilize, indicating that the model is well-fitted and has good generalization
ability. From the accuracy curves, it is evident that the precision and confidence curves of
the model for different categories (“dai”, “truck”, “person”, “emptytruck”) are very close,
and there is no significant difference between the overall performance of the validation set
and the training set. This demonstrates the consistency of the model during the training and
validation phases, with no obvious signs of overfitting. The model shows high precision
across different categories, and the confidence curves rise with increasing confidence and
tend to stabilize, indicating that the model has strong generalization ability.

Figure 17. The loss function curves for the training set and validation set.
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train val

Figure 18. The accuracy curves for the training set and validation set.

5.7. Performance Evaluation of the Training, Validation, and Test Sets

The performance metrics of YOLOv8-TB on the training, validation, and test sets
are shown in Table 8. The precision and recall values on the three datasets are very close,
indicating that the model can effectively distinguish between positive and negative samples,
demonstrating strong generalization ability. The mAP50 on the training, validation, and test
sets is almost identical, showing that the model maintains high object detection performance
across different datasets when the IoU is set to 0.5. The mAP50-95, which is a stricter metric
covering performance at various IoU thresholds, is also very close across the training,
validation, and test sets. This further confirms that the model performs consistently across
different datasets and possesses good generalization ability.

Table 8. The overall performance metrics of the partition set.

Set Precision Recall mAP50 mAP50-95

Train 96.4 91.8 96.5 80.4
Val 95.7 92.2 96.4 81.1
Test 96.1 92.4 96.4 80.6

Figure 19 shows the detection performance metrics of YOLOv8-TB on the training,
validation, and test sets for the four annotated categories. The Precision, Recall, mAP50,
and mAP50-95 values across the training, validation, and test sets are very similar for each
category, indicating that the model can accurately detect the targets without significant loss
in performance. This demonstrates that the YOLOv8-TB model performs well in terms of
generalization in this task, with no evident signs of overfitting.

Overall, the YOLOv8-TB model demonstrates consistent and high-level performance
across the training, validation, and test sets, indicating no signs of overfitting and maintain-
ing strong detection capabilities on unseen data. The metrics, including Precision, Recall,
mAP50, and mAP50-95, suggest that the model possesses strong generalization ability,
handling tasks across different datasets effectively. Therefore, YOLOv8-TB exhibits high
reliability and practicality for real-world applications.



J. Mar. Sci. Eng. 2024, 12, 1916 21 of 24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Dai/Precision

Truck/Precision

Person/Precision

Emptytruck/Precision

Dai/Recall

Truck/Recall

Person/Recall

Emptytruck/Recall

Dai/map50

Truck/map50

Person/map50

Emptytruck/map50

Dai/map50-95

Truck/map50-95

Person/map50-95

Emptytruck/map50-95

Test Val Train

Figure 19. Class-wise detection performance metrics on training, validation, and test sets.

6. Conclusions

This paper proposes a ton bag target detection algorithm, YOLOv8-TB, based on im-
provements to YOLOv8. From a scientific perspective, YOLOv8-TB introduces an enhanced
attention module, SPPFLKZ, which significantly improves feature extraction performance
with only a minor increase in model parameters. Furthermore, the newly proposed C2f-
SCTT and C2f-ORECZ modules not only achieve the goal of model lightweight but also
enhance detection capabilities. The addition of a 160 × 160 small target detection layer
improves the model’s sensitivity to conjoined and occluded small targets in dense ton bag
detection, solving the issues of misdetection and omission. This research paves the way for
future innovations in real-time detection systems. From a practical perspective, YOLOv8-
TB addresses the challenges of small target feature representation and the low accuracy
of traditional port detection. In terms of societal impact, the accurate real-time detection
provided by YOLOv8-TB helps reduce delays, prevent cargo accidents, and optimize labor
utilization, ultimately lowering costs for shipping companies and consumers. Additionally,
the adoption of AI-based detection systems in ports accelerates the advancement of smart
port technologies, contributing to the sustainable development and innovation of the global
logistics industry.

Through experimentation, YOLOv8-TB had the advantages of lower model size, less
computation, and higher detection accuracy. On the dataset, mAP@50 and mAP@50-95
were improved by 3.7% and 5%, respectively, with a reduction of 4.42 MB in model size.
YOLOv8-TB both improved the accuracy of the model and could be deployed and run
smoothly on resource-constrained embedded inspection devices through its lightweight
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design, which made YOLOv8-TB capable of accomplishing the task of being deployed in
the field in port operation scenarios, and it was an effective and high-performance network
model to deal with the problem of detecting ton bags in port logistics.
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Abbreviations
The following abbreviations are used in this manuscript:

TB Ton Bag
YOLOv8 You Only Look Once version 8
SPPFLKZ Modified SPPF module with Large Kernel Attention with Convolution
C2f-SCTT Modified C2f block with DSRU and DCRU
DSRU Deformable Spatial Reconstruction Unit
DCRU Deformable Channel Reconstruction Unit
C2f-ORECZ Modified C2f block with ORECZ
ORECZ Online Convolutional Reparameterization Extended Block
C2f Cross Stage Partial Bottleneck with 2 Conv layers and Feature Fusion
LZKAC Large Kernel Attention with Convolution
SPPF Spatial Pyramid Pooling Fast
LKA Large Kernel Attention
LSKA Large Separable Kernel Attention
MaxPool2d Max Pooling 2D
SCConv Split Convolution
GN Group Normalization
DW Deep Width
GWConv Group Convolution
PWConv Point-by-point Convolution
CNN Convolutional neural network
BN Batch Normalization
ReLU Rectified Linear Unit
mAP mean Average Precision
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