The Parameterized Oceanic Front-Guided PIX2PIX Model: A Limited Data-Driven Approach to Oceanic Front Sound Speed Reconstruction
Abstract
:1. Introduction
2. Data and Methods
- (1)
- Data preparation: Based on the front-line extraction method, a large number of sections with typical frontal features were obtained, and the KEF sections were evenly divided into three groups to study the sound speed reconstruction effect when the single input profile occupied different positions. The input data used in this study included the sea surface sound speed and the sound profile in the section. When constructing the model, two main input situations were considered: in one, we input only the sea surface and single-profile sound speed; in the other, we superimposed the contour lines of the parameterized oceanic front reconstruction section for input, with the output being the section’s sound speed.
- (2)
- Model construction: The PIX2PIX model included two main parts, namely the generator model (U-Net structure) and the discriminator model (PatchGAN structure). First, the real samples and generator samples were input into the discriminator, which determined whether the input image was real or fake and updated the parameters of the generator and discriminator. This process was repeated until the quality of the samples generated by the generator reached the expected level.
- (3)
- Effect evaluation: By comparing the samples generated by the generator with the real samples, the performance of the sound speed reconstruction model based on the PIX2PIX model was evaluated using evaluation indicators and visual assessment methods.
2.1. Data
2.2. Methodology
2.2.1. Oceanic Front Extraction Method
2.2.2. Parameterized Oceanic Front Model
2.2.3. Principles of PIX2PIX Model
3. Model Training
3.1. Construction of Prediction Model and Physical Parameter Input Method
3.2. Model Training and Effectiveness Evaluation
4. Model Verification
4.1. Evaluation of Underwater Acoustic Propagation Effect
- (1)
- Direct Detection Distance
- (2)
- Convergence Zone Distance
4.2. Evaluation of Sound Speed Reconstruction Effects for In Situ Observation Sections
4.3. Evaluation of Sound Speed Reconstruction Effects for Sections from Different Data Sources
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haining, H.; Yu, L. Underwater Acoustic Detection: Current Status and Future Trends. Bull. Chin. Acad. Sci. 2019, 34, 264–271. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, Z.; Chen, W.; Liang, Y.; Chen, W.; Chen, Y. Ocean Fronts and Their Acoustic Effects: A Review. J. Mar. Sci. Eng. 2022, 10, 2021. [Google Scholar] [CrossRef]
- Colosi, J.A.; Rudnick, D.L. Observations of upper ocean sound-speed structures in the North Pacific and their effects on long-range acoustic propagation at low and mid-frequencies. J. Acoust. Soc. Am. 2020, 148, 2040–2060. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, K.; Duan, R.; Ma, Y. Acoustic propagation analysis with a sound speed feature model in the front area of Kuroshio Extension. Appl. Ocean Res. 2017, 68, 1–10. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, H.; Chai, Z.; Chen, C.; Cui, Z. Influence of shallow ocean front on propagation characteristics of low frequency sound energy flow. In Proceedings of the 2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS), Zhoushan, China, 22–24 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 878–881. [Google Scholar] [CrossRef]
- DeCourcy, B.J.; Lin, Y.-T.; Siegmann, W.L. Effects of front width on acoustic ducting by a continuous curved front over a sloping bottom. J. Acoust. Soc. Am. 2019, 146, 1923–1933. [Google Scholar] [CrossRef]
- Shihe, R.; Hui, W.; Na, L. Review of ocean front in Chinese marginal seas and frontal forecasting. Adv. Earth Sci. 2015, 30, 552–563. [Google Scholar] [CrossRef]
- Burnett, W.; Harper, S.; Preller, R.; Jacobs, G.; LaCroix, K. Overview of operational ocean forecasting in the US Navy: Past, present, and future. Oceanography 2014, 27, 24–31. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Li, X. Effect of Bellhop-based mesoscale ocean front and topography on deep-sea communication and detection. In Proceedings of the International Conference on Signal Processing and Communication Technology (SPCT 2022), Harbin, China, 23–25 December 2022; SPIE: Pamiers, France, 2023. [Google Scholar] [CrossRef]
- Mallik, W.; Jaiman, R.K.; Jelovica, J. Predicting transmission loss in underwater acoustics using convolutional recurrent autoencoder network. J. Acoust. Soc. Am. 2022, 152, 1627–1638. [Google Scholar] [CrossRef]
- McCarthy, R.A.; Sarkar, J.; Merrifield, S.; Bednar, R.; Ung, D.; Nager, A.; Brooks, C.; Terrill, E. Machine learning transmission loss simulations in complex undersea environments with range-dependent bathymetry. J. Acoust. Soc. Am. 2023, 154 (Suppl. S4), A308. [Google Scholar] [CrossRef]
- Mccarthy, R.A.; Merrifield, S.T.; Sarkar, J.; Terrill, E. Machine learning of acoustic propagation models for sound aware autonomous systems. J. Acoust. Soc. Am. 2023, 153 (Suppl. S3), A175. [Google Scholar] [CrossRef]
- Lee-Leon, A.; Yuen, C.; Herremans, D. Underwater Acoustic Communication Receiver Using Deep Belief Network. IEEE Trans. Commun. 2021, 69, 3698–3708. [Google Scholar] [CrossRef]
- Lee, B.M.; Johnson, J.R.; Dowling, D.R. Neural network predictions of acoustic transmission loss uncertainty. J. Acoust. Soc. Am. 2022, 152, A158. [Google Scholar] [CrossRef]
- Zhu, R.; Li, Y.; Chen, Z.; Du, T.; Zhang, Y.; Li, Z.; Jing, Z.; Yang, H.; Jing, Z.; Wu, L. Deep learning improves reconstruction of ocean vertical velocity. Geophys. Res. Lett. 2023, 50, e2023GL104889. [Google Scholar] [CrossRef]
- He, J.; Mahadevan, A. Vertical velocity diagnosed from surface data with Machine learning. Geophys. Res. Lett. 2024, 51, e2023GL104835. [Google Scholar] [CrossRef]
- Khan, S.; Song, Y.; Huang, J.; Piao, S. Analysis of Underwater Acoustic Propagation under the Influence of Mesoscale Ocean Vortices. J. Mar. Sci. Eng. 2021, 9, 799. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Chen, W.; Chen, Y.; Ma, L.; Meng, Z. Ocean front model based on sound speed profile and its influence on sound propagation. In Proceedings of the 2021 OES China Ocean Acoustics (COA), Harbin, China, 14–17 July 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Chen, C.; Ma, Y.; Liu, Y. Reconstructing Sound speed profiles worldwide with Sea surface data. Appl. Ocean Res. 2018, 77, 26–33. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Zhang, Y.; Chen, W.; Meng, Z. Research on reconstruction of the global sound speed profile combining partial underwater prior information. J. Sea Res. 2024, 200, 102516. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, M.; Hu, N.; Zhu, Z.; Li, H.; Wang, Y.; Liu, D. Reconstruction model of three-dimensional ocean sound speed field based on Tucker-denoising autoencoder. Appl. Acoust. 2024, 223, 110091. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, L.; Xu, W.; Li, M.; Zhou, X. A mesoscale eddy reconstruction method based on generative adversarial networks. Front. Mar. Sci. 2024, 11, 1411779. [Google Scholar] [CrossRef]
- Wang, J.; Mao, K.; Chen, X.; Zhu, K. Evolution and Structure of the Kuroshio Extension Front in Spring 2019. J. Mar. Sci. Eng. 2020, 8, 502. [Google Scholar] [CrossRef]
- Kida, S.; Mitsudera, H.; Aoki, S.; Guo, X.; Ito, S.i.; Kobashi, F.; Komori, N.; Kubokawa, A.; Miyama, T.; Morie, R.; et al. Oceanic fronts and jets around Japan: A review. J. Oceanogr. 2015, 71, 469–497. [Google Scholar] [CrossRef]
- Liu, J.; Piao, S.; Zhang, M.; Zhang, S.; Guo, J.; Gong, L. Characteristics of Three-Dimensional Sound Propagation in Western North Pacific Fronts. J. Mar. Sci. Eng. 2021, 9, 1035. [Google Scholar] [CrossRef]
- Ozanich, E.; Gawarkiewicz, G.G.; Lin, Y.-T. Study of acoustic propagation across an oceanic front at the edge of the New England shelf. J. Acoust. Soc. Am. 2022, 152, 3756–3767. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, Y.; Varlamov, S.M.; Miyama, T.; Guo, X.; Hihara, T.; Kiyomatsu, K.; Kachi, M.; Kurihara, Y.; Murakami, H. Assimilation of high-resolution sea surface temperature data into an operational nowcast/forecast system around Japan using a multi-scale three-dimensional variational scheme. Ocean Dyn. 2017, 67, 713–728. [Google Scholar] [CrossRef]
- Miyazawa, Y.; Kuwano-Yoshida, A.; Nishikawa, H.; Narazaki, T.; Fukuoka, T.; Sato, K. Temperature profiling measurements by sea turtles improve ocean state estimation in the Kuroshio-Oyashio Confluence region. Ocean Dyn. 2019, 69, 267–282. [Google Scholar] [CrossRef]
- Chang, Y.L.; Miyazawa, Y.; Guo, X. Effects of the STCC eddies on the Kuroshio based on the 20-year JCOPE2 reanalysis results. Prog. Oceanogr. 2015, 135, 64–76. [Google Scholar] [CrossRef]
- Chang, Y.-L.K.; Miyazawa, Y.; Béguer-Pon, M.; Han, Y.-S.; Ohashi, K.; Sheng, J. Physical and biological roles of mesoscale eddies in Japanese eel larvae dispersal in the western North Pacific Ocean. Sci. Rep. 2018, 8, 5013. [Google Scholar] [CrossRef]
- Liu, Z.J.; Nakamura, H.; Zhu, X.H.; Nishina, A.; Guo, X.; Dong, M. Tempo-spatial variations of the Kuroshio current in the Tokara Strait based on long-term ferryboat ADCP data. J. Geophys. Res. Ocean. 2019, 124, 6030–6049. [Google Scholar] [CrossRef]
- Donohue, K.A.; Watts, D.R.; Tracey, K.L.; Wimbush, M.H.; Park, J.-H.; Bond, N.A.; Cronin, M.F.; Chen, S.; Qiu, B.; Hacker, P.; et al. Program Studies the Kuroshio Extension. Eos Trans. Am. Geophys. Union 2008, 89, 161–162. [Google Scholar] [CrossRef]
- Ocean Observation Knowledge—Main Observation Lines. 2024. Available online: https://www.data.jma.go.jp/kaiyou/db/vessel_obs/description/obsline.html (accessed on 25 July 2024).
- Yu, P.; Zhang, L.; Liu, M.; Zhong, Q.; Zhang, Y.; Li, X. A comparison of the strength and position variability of the Kuroshio Extension SST front. Acta Oceanol. Sin. 2020, 39, 26–34. [Google Scholar] [CrossRef]
- Dong, S.; Sprintall, J.; Gille, S.T. Location of the Antarctic Polar Front from AMSR-E Satellite Sea Surface Temperature Measurements. J. Phys. Oceanogr. 2006, 36, 2075–2089. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Zhang, X. Analysis on the Characteristics of the Spatial and Temporal Variation of the Kuroshio Extension Front and the Distribution of the Sound Field. J. Ocean Technol. 2015, 34, 15–20. Available online: http://hyjsxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=20150203&flag=1 (accessed on 12 January 2022).
- Seo, Y.; Sugimoto, S.; Hanawa, K. Long-Term Variations of the Kuroshio Extension Path in Winter: Meridional Movement and Path State Change. J. Clim. 2014, 27, 5929–5940. [Google Scholar] [CrossRef]
- Li, S.; Cheng, L.; Zhang, T.; Zhao, H.; Li, J. Striking the right balance: Three-dimensional ocean sound speed field reconstruction using tensor neural networks. J. Acoust. Soc. Am. 2023, 154, 1106–1123. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; Li, H.; Hu, D.; Chen, C.; He, Y. Impact of ocean fronts on the reconstruction of vertical temperature profiles from sea surface measurements. Deep Sea Res. Part I Oceanogr. Res. Pap. 2022, 187, 103833. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Chen, W.; Chen, Y.; Ma, L.; Meng, Z. Reconstruction of ocean front model based on sound speed clustering and its effectiveness in ocean acoustic forecasting. Appl. Sci. 2021, 11, 8461. [Google Scholar] [CrossRef]
- Etter, P.C. Underwater Acoustic Modeling and Simulation, 4th ed.; CRC Press: Boca Raton, FL, USA, 2013; p. 554. [Google Scholar]
- Shields, M.D.; Zhang, J. The generalization of Latin hypercube sampling. Reliab. Eng. Syst. Saf. 2016, 148, 96–108. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Yang, K.; Lu, Y.; Xue, R.; Sun, Q. Transmission characteristics of convergence zone in deep-sea slope. Appl. Acoust. 2018, 139, 222–228. [Google Scholar] [CrossRef]
- Porter, M.B. The Bellhop Manual and User’s Guide: Preliminary Draft; Heat, Light, and Sound Research, Inc.: La Jolla, CA, USA, 2011; Available online: http://oalib.hlsresearch.com/Rays/HLS-2010-1.pdf (accessed on 12 January 2022).
- Ma, S.; Guo, X.; Zhang, L.; Lan, Q.; Huang, C. Riemannian Geometric Modeling of Underwater Acoustic Ray Propagation·Application—Riemannian Geometric Model of Convergence Zone in the Deep Ocean. Acta Phys. Sin. 2023, 72, 108–120. [Google Scholar] [CrossRef]
Feature | KEF Strength/m·s−1·km−1 | Fitting (y = ax3 + bx2 + cx + d) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.5 | 1 | 1.5 | 2 | 2.5 | 3 | a | b | c | d | |
SSS/m·s−1 | 8.42 | 9.60 | 8.80 | 7.50 | 7.33 | 3.96 | 2.02 | −11.96 | 20.00 | −0.22 |
SLD/m | 27.41 | 29.04 | 19.47 | 16.27 | 11.87 | 12.00 | 9.25 | −48.65 | 68.98 | −1.15 |
BSLS/m·s−1 | 9.12 | 10.29 | 9.22 | 7.69 | 7.68 | 4.03 | 2.21 | −13.00 | 21.49 | −0.20 |
TLSS/m·s−1·m−1 | −0.02 | −0.06 | −0.10 | −0.15 | −0.16 | −0.17 | 0.00 | −0.01 | −0.06 | 0.01 |
SCAD/m | 389.14 | 587.26 | 668.18 | 720.29 | 791.62 | 781.00 | 45.18 | −348.85 | 890.64 | −6.70 |
SCAS/m·s−1 | 6.01 | 12.44 | 17.32 | 24.75 | 26.91 | 29.63 | −0.67 | 1.17 | 12.29 | −0.40 |
CD/m | 1849 | 2719 | 2915 | 2860 | 2958 | 3352 | 321 | −2181 | 4637 | −122 |
CDS/m·s−1 | 29.99 | 50.44 | 63.68 | 72.80 | 72.14 | 67.72 | 3.10 | −26.74 | 79.46 | −4.47 |
DE/m | −1789 | −2656 | −2856 | −2779 | −2967 | −3224 | −313 | 2146 | −4570 | 145 |
Section Depth | Input | Index | Number of Iterations | |||||||
---|---|---|---|---|---|---|---|---|---|---|
10 | 50 | 100 | 200 | 300 | 500 | 800 | ||||
1000 m | Profile | South side | MAE | 12.25 | 3.63 | 4.29 | 3.48 | 3.54 | 3.56 | 3.54 |
SSIM | 0.16 | 0.39 | 0.46 | 0.50 | 0.52 | 0.54 | 0.52 | |||
Center | MAE | 12.04 | 3.39 | 2.57 | 1.91 | 2.42 | 1.81 | 2.42 | ||
SSIM | 0.25 | 0.46 | 0.50 | 0.58 | 0.61 | 0.62 | 0.61 | |||
North side | MAE | 13.39 | 3.99 | 4.22 | 3.96 | 4.04 | 3.30 | 4.04 | ||
SSIM | 0.17 | 0.36 | 0.42 | 0.48 | 0.53 | 0.59 | 0.53 | |||
Profile + Parameterized Front Model | South side | MAE | 11.88 | 4.07 | 3.33 | 3.35 | 3.31 | 2.98 | 3.31 | |
SSIM | 0.18 | 0.38 | 0.46 | 0.46 | 0.53 | 0.57 | 0.53 | |||
Center | MAE | 13.94 | 7.64 | 3.00 | 2.30 | 1.95 | 2.10 | 1.95 | ||
SSIM | 0.15 | 0.31 | 0.48 | 0.56 | 0.63 | 0.61 | 0.63 | |||
North side | MAE | 11.78 | 5.02 | 3.97 | 2.57 | 2.52 | 3.48 | 2.52 | ||
SSIM | 0.26 | 0.39 | 0.46 | 0.59 | 0.59 | 0.59 | 0.59 |
Section Depth | Input | Index | Number of Iterations | |||||||
---|---|---|---|---|---|---|---|---|---|---|
10 | 50 | 100 | 200 | 300 | 500 | 800 | ||||
5500 m | Profile | South side | MAE | 7.35 | 1.99 | 1.41 | 0.87 | 0.84 | 0.84 | 0.84 |
SSIM | 0.17 | 0.51 | 0.68 | 0.75 | 0.77 | 0.79 | 0.77 | |||
Center | MAE | 9.09 | 2.70 | 1.18 | 0.79 | 0.66 | 0.63 | 0.66 | ||
SSIM | 0.18 | 0.50 | 0.65 | 0.73 | 0.80 | 0.80 | 0.80 | |||
North side | MAE | 7.97 | 2.09 | 1.81 | 1.19 | 1.08 | 0.94 | 1.08 | ||
SSIM | 0.14 | 0.53 | 0.69 | 0.75 | 0.77 | 0.79 | 0.77 | |||
Profile + Parameterized Front Model | South side | MAE | 8.07 | 2.97 | 1.26 | 1.19 | 0.95 | 0.87 | 0.95 | |
SSIM | 0.12 | 0.40 | 0.62 | 0.69 | 0.76 | 0.78 | 0.76 | |||
Center | MAE | 9.65 | 3.76 | 1.17 | 0.85 | 0.63 | 0.62 | 0.63 | ||
SSIM | 0.11 | 0.42 | 0.65 | 0.74 | 0.78 | 0.79 | 0.78 | |||
North side | MAE | 9.01 | 2.87 | 1.72 | 0.90 | 0.77 | 1.02 | 0.77 | ||
SSIM | 0.16 | 0.44 | 0.63 | 0.75 | 0.78 | 0.79 | 0.78 |
Data Source | Number of Sections | South Side | Center | Nouth Side | |||
---|---|---|---|---|---|---|---|
MAE | SSIM | MAE | SSIM | MAE | SSIM | ||
Japan Seasonal Cruises | 50 | 3.61 | 0.65 | 3.80 | 0.68 | 3.74 | 0.69 |
KESS Project | 4 | 3.19 | 0.70 | 3.36 | 0.69 | 3.18 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Zhang, L.; Ma, X.; Li, M.; Yao, Z. The Parameterized Oceanic Front-Guided PIX2PIX Model: A Limited Data-Driven Approach to Oceanic Front Sound Speed Reconstruction. J. Mar. Sci. Eng. 2024, 12, 1918. https://doi.org/10.3390/jmse12111918
Xu W, Zhang L, Ma X, Li M, Yao Z. The Parameterized Oceanic Front-Guided PIX2PIX Model: A Limited Data-Driven Approach to Oceanic Front Sound Speed Reconstruction. Journal of Marine Science and Engineering. 2024; 12(11):1918. https://doi.org/10.3390/jmse12111918
Chicago/Turabian StyleXu, Weishuai, Lei Zhang, Xiaodong Ma, Ming Li, and Zhongshan Yao. 2024. "The Parameterized Oceanic Front-Guided PIX2PIX Model: A Limited Data-Driven Approach to Oceanic Front Sound Speed Reconstruction" Journal of Marine Science and Engineering 12, no. 11: 1918. https://doi.org/10.3390/jmse12111918
APA StyleXu, W., Zhang, L., Ma, X., Li, M., & Yao, Z. (2024). The Parameterized Oceanic Front-Guided PIX2PIX Model: A Limited Data-Driven Approach to Oceanic Front Sound Speed Reconstruction. Journal of Marine Science and Engineering, 12(11), 1918. https://doi.org/10.3390/jmse12111918