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Abstract: The chemistry of the pore fluid within clayey sediments frequently changes in various
processes. However, the impacts of pore fluid chemistry have not been well included in the hy-
draulic permeability model, and the physical bases behind the salinity sensitivity of the hydraulic
permeability remains elusive. In this study, a theoretical model for the hydraulic permeability of
clayey sediments is proposed, and impacts of the pore fluid chemistry are quantitatively consid-
ered by introducing electrokinetic flow theory. Available experimental data were used to verify
the theoretical model, and the verified model was further applied as a sensitivity analysis tool to
explore more deeply how hydraulic permeability depends on pore fluid chemistry under different
conditions. Coupling effects of pore water desalination and the effective stress enhancement on the
hydraulic permeability of marine sediments surrounding a depressurization wellbore during hydrate
production are discussed. Results and discussion show that the hydraulic permeability reduction
is significant only when the electric double layer thickness is comparable to the characteristic pore
size, and the reduction becomes more obvious when the ion mobility of the saline solution is smaller
and the surface dielectric potential of clay minerals is lower. During gas hydrate production in the
ocean, the salinity sensitivity of the hydraulic permeability could become either stronger and weaker,
depending on whether the original characteristic pore size of marine sediments is relatively large
or small.

Keywords: seawater intrusion; gas hydrate; salinity; electro-viscous effect; electric double layer;
pore size

1. Introduction

Clay minerals are hydrous silicates with layered structures, and layer silicates are
essentially composed of silicon–oxygen tetrahedral and aluminum-bearing octahedral
units which are stacked in a regular array as continuous two-dimensional sheets [1]. These
distinctive structures largely determine the unique properties (e.g., swelling behavior, high
cation exchange capacity, large specific surface area, etc.) of clay minerals, and the presence
of clay minerals in soils could dramatically alter their chemical and physical properties [2,3].
Soil parent materials on the continent turn into clay minerals when subjected to weathering
and erosion processes, and the clay minerals are carried by rivers, wind or ice into the sea [4].
On the seafloor, clay minerals continuously deposit, and the deposited clay minerals could
be further transported to the ocean floor by gravitational flows (e.g., turbidity currents and
debris flows) [5]. This results in an extremely wide distribution of clay minerals in marine
sediments globally [5,6].
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The pore fluid chemistry of clayey sediments frequently changes during various
processes [7]. Clayey and silty sediments along the continental margins host more than
90% of global gas hydrate accumulation [8,9], and methane recovery from gas hydrates
could reduce the pore fluid salinity, as one volume of gas hydrate would dissociate to about
0.8 volumes of freshwater [10]. Fresh groundwater salinization widely occurs in offshore
and coastal regions due to seawater intrusion [11,12], and seawater–freshwater mixing
zones would move landward if coastal aquifers were further overexploited or sea levels
continuously increased [13,14]. Changes in pore fluid chemistry could alter the mechanical
and hydraulic properties of clays or clayey sediments [7,15–20], and hydraulic permeability
decreases dramatically when subjected to pore fluid desalination [21–24]. Accounting for
the hydraulic permeability responses to changing salinities of pore fluid within clayey
sediments is important for assessing the mechanical instability and production efficiency of
methane extraction from gas hydrates, as well as for evaluating available freshwater storage
volume and contamination of production wells under the threat of seawater intrusion. This
is mainly because the hydraulic permeability of marine sediments is a major factor in
controlling the multiple physical coupling processes of hydrate production [25–27] and
seawater intrusion [28–30].

To numerically simulate the multiple physical coupling processes, theoretical or em-
pirical models of hydraulic permeability are basically required and, in developments of
the models, the interconnected pores within soils are frequently represented by using a
bundle of capillary tubes [31,32]. In these capillary tubes, the fluid moves in parallel layers
without disrupting or mixing (i.e., laminar fluid flow), and the flow rate of each capillary
tube can be calculated by using the Hagen–Poiseuille equation [33]. Once the total flow rate
of all the capillary tubes has been determined, Darcy’s law [34,35] is adopted to calculate
the hydraulic permeability of soils. In these hydraulic models, the Kozeny–Carman (KC)
equation [36,37] is the most widely accepted and highly applicable model. The KC equation
is roughly valid for sandy and silty soils but not for clayey soils [38]. The surface of clay
particles in nature is negatively charged, and pore fluid (i.e., water molecules) near the
clay particle surface is intensively constrained by electric field forces [39]. The constrained
pore fluid and the pore fluid in unconnected pores make little contribution to the pore fluid
transportation. For this reason, the porosity in the KC equation is modified as the effective
porosity within clayey soils, in order to improve model usability [40]. The KC equation
could also be modified by replacing the specific surface area with soil indexes, such as
liquid limit [41], soil water characteristic curve [42], and cation exchange capacity [43]. As
an alternative to the KC equation family, exponential models of hydraulic permeability
have been proposed for clayey soils based on vast flushing data [44–46]. However, due to
the empirical or semiempirical nature of these models for clayey soils, the impact of pore
fluid chemistry has not been well addressed.

Clayey sediments inherently imply small pore sizes [47], and the equivalent pore
diameter ranges from several hundred microns down to approximately several nanome-
ters [48,49]. When a polar liquid (e.g., seawater) is forced through microchannels (e.g., small
pores within clays) under an externally applied pressure gradient, an electrostatic potential
(i.e., the streaming potential) is generated along the direction opposite to the pressure-
driven flow due to the presence of an electrical double layer (EDL) near the solid–liquid
interface [50,51]. The EDL is generally divided into two regions, a compact layer (also called
the Stern or Helmholtz layer) and a diffuse layer (also called the Guoy–Chapman layer).
Water molecules in the diffuse layer are pulled by ions moving under the induced streaming
potential and a secondary liquid flow opposite to the pressure-driven flow occurs, resulting
in an overall reduced flow rate in the external pressure gradient direction [52,53]. This retar-
dation effect is usually referred to as the electro-viscous effect [54], and this electro-viscous
effect becomes stronger when the characteristic dimensions of small pores and the EDL
thickness become closer to each other [55]. The electro-viscous effect is treated as a factor
inducing a non-flowing boundary layer coating capillary tubes (i.e., to shrink the tubes
for fluid flow), and the behavior of fluid flow through low-permeability porous media
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(e.g., clays) is analytically explored [56]. To the best of our knowledge, the electro-viscous
effect has not been well included in developments of the hydraulic permeability model for
clayey soils, and impacts of the pore fluid chemistry on hydraulic permeability have not
been sufficiently explored.

This study proposes a theoretical model for the hydraulic permeability of clayey
sediments, and impacts of the pore fluid chemistry are quantified by introducing the
electrokinetic flow theory. The proposed theoretical model is firstly verified by experimental
data, and sensitivity analyses are performed to explore how the hydraulic permeability
alters with changing pore fluid salinity under different pore sizes, ion mobilities, and clayey
minerals. Results are further extended by considering the consolidation behavior of clayey
sediments, and insight is finally provided into the hydraulic permeability change when
subjected to combined variations of pore fluid chemistry and external stress.

2. Model Development

The pore structure of clayey sediments is inherently complex, and the range of pore
sizes can cover almost five orders of magnitude [48]. To simplify the problem and focus on
the impact of pore fluid chemistry, the pore space within clayey sediments is represented
by a bundle of tortuous capillary tubes, and the radii of all the capillary tubes are the same,
which denotes the characteristic pore size. Inside, the walls of all the capillary tubes are
uniformly and negatively charged to a potential ζ (i.e., the zeta potential) relative to the
bulk saline solution filling the tubes, and an EDL with a thickness of κ−1 is developed near
the inside wall (Figure 1). The thickness is temperature dependent [57], and the symbol κ
represents the Debye–Hückel parameter [58], which could be calculated as

κ =

(
8πn0e0

2

ε0ϵkT

) 1
2

(1)

where n0 stands for the bulk number concentration of ions in the saline solution (i.e., elec-
trolyte concentration, ions·m−3), e0 for the proton charge (C), ε0 for the vacuum permittivity
(F·m−1), ϵ for the dielectric constant of saline solution, k for the Boltzmann’s constant, and
T for the absolute temperature (K). The bulk number for concentration of ions is given by

n0 =
c0NA

Ms
(2)

where NA stands for the Avogadro constant, c0 for the mass concentration (i.e., the salinity),
and Ms for the molar mass of solute (i.e., sodium chloride in this study) in the saline
solution (kg·mol−1).
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Figure 1. Illustration of a capillary tube with an electrical double layer (EDL) developed near the
inside wall, which is uniformly and negatively charged to a dimensionless potential Ψs. Thickness of
the EDL is expressed as κ−1, and the capillary tube radius is demonstrated as a. A dimensionless
radial coordinate R is set, starting at the center of the capillary tube.
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For each capillary tube, the volumetric flow rate q is given by [54]

q =
πa4

8µ

∆P
Lt

− ε0
2ϵ2ζ2a2(1 − G)F

16πλµ2
∆P
Lt

(3)

where a stands for the capillary tube radius (m), µ for the saline solution viscosity (Pa·s), Lt
for the capillary tube length (m), ∆P

Lt
for the external pressure gradient (Pa·m−1), and λ for

the saline solution conductivity (S·m−1), and this could be calculated as

λ = 2me0n0 (4)

where m stands for the ion mobility (m2·s−1·V−1). The symbol G in Equation (3) represents
an integral function, which is given by [54]

G =
2

(κa)2Ψs

∫ κa

0
RΨ(R)dR (5)

where R stands for the dimensionless radial coordinate, and R = κr with the symbol r
denoting the radial coordinate; Ψ(R) represents the dimensionless potential due to the
negatively charged inside wall; and Ψs = Ψ(κa) = e0ζ

kT denotes the dimensionless zeta
potential. The symbol F in Equation (3) represents another integral function, which is given
by [54]

F =
1
2 (κa)2(1 − G)∫ κa

0 Rcosh Ψ(R)dR + β∗∫ κa
0 R

(
dΨ(R)

dR

)2
dR

(6)

where β∗ represents a dimensionless parameter, which is defined as [54]

β∗ =
ε0

2ϵ2k2T2κ2

16π2µλe02 (7)

The dimensionless potential Ψ(R) is governed by the Poisson–Boltzmann equa-
tion [59], which is widely used to depict the ion distribution around a charged surface, and
a dimensionless form of the Poisson–Boltzmann equation is given by [54]

1
R

d
dR

(
R

dΨ(R)
dR

)
= sinhΨ(R) (8)

The boundary conditions for a capillary tube with a negatively charged inside wall are

Ψ(R = κa) = Ψs =
e0ζ

kT
(9)

and
dΨ(R)

dR

∣∣∣∣
R = 0

= 0 (10)

There is not a single simple analytical solution available for Equations (8)–(10), unless
mathematical approximations are adopted [54,60]. In this study, mathematical approxi-
mations are not used, and Equations (8)–(10) are numerically solved by using an iteration
method. Prior to iterative computations, the hyperbolic sine function sinhΨ(R) is written
as a truncated series, and Equation (8) turns into

1
R

d
dR

(
R

dΨ(R)
dR

)
= Ψ(R) +

Ψ(R)3

3!
+

Ψ(R)5

5!
+

Ψ(R)7

7!
+

Ψ(R)9

9!
(11)
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Once the volumetric flow rate q is determined, the total volumetric flow rate Q of the
capillary tube bundle could be calculated as

Q =
Aϕ

πa2 q (12)

where A stands for the cross-sectional area (m2) of the representative volume element (REV)
of clayey sediments, and ϕ for the porosity of clayey sediments. According to Darcy’s
law [34,35], the hydraulic permeability K of clayey sediments is given by

K =
µQ

A ∆P
L

(13)

where L denotes the REV side length (m) along the porous flow direction, and L = Lt
τ ,

where τ represents the hydraulic tortuosity.
To reexamine the polynomial on the right-hand side of Equation (3), the first term is

exactly consistent with the Hagen–Poiseuille equation, and the second term is solely as a
result of the electrokinetic phenomena. The reduced volumetric flow rate resembles the
volumetric flow rate of a fluid with an increased viscosity (i.e., the electro-viscous effect),
and an apparent viscosity µa is used to recalculate the volumetric flow rate as

q =
πa4

8µa

∆P
Lt

(14)

By comparison of Equations (3) and (14), the apparent viscosity µa is given by

µa

µ
=

(
1 − 8β∗Ψs

2(1 − G)F

(κa)2

)−1

(15)

Equation (11) and the boundary conditions (Equations (9) and (10)) are firstly dispersed
by using the finite difference method, and the iterative computations use the following
equation (

1 − 1
2(i−1)

)
Ψi−1 − (2 + ∆R∆R)Ψi +

(
1 + 1

2(i−1)

)
Ψi+1

= (∆R∆R)
(

Ψi
3

3! + Ψi
5

5! + Ψi
7

7! + Ψi
9

9!

) (16)

where ∆R stands for the spatial step, i for the node number, and ΨN = Ψs while Ψ1 = Ψ2
according to Equations (9) and (10). Then, the symbols G and F could be calculated
according to Equations (5) and (6), followed by computation of the apparent viscosity
µa according to Equation (15). Finally, the hydraulic permeability K could be calculated
according to Equation (13). All the computations in this study are accomplished by using a
self-developed code based on the programming platform of MATLAB R2016a.

3. Model Verification

Numerical computations are conducted with different total grid numbers to study the
grid dependency, and values of the model parameter are summarized in Table 1. Calculated
results for the dimensionless dielectric potential Ψ, the dimensionless parameters G and
F, and the normalized viscosity Γ = µa

µ are shown in Figure 2. It is obvious that, when
the total grid number is larger than 100, the dimensionless dielectric potential curves
overlap each other (Figure 2a), and values of G, F, and Γ are fully independent of the
total grid number. In this study, a total grid number of 10,001 is applied to the following
computations.
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Table 1. Values of the model parameters.

Parameters Values References

Proton charge, e0 (C) 1.6028 × 10−19 [61]
Dielectric constant of saline solution, ϵ (dimensionless) 80 [54]

Avogadro constant, NA (dimensionless) 6.0221 × 1023 [62]
Boltzmann’s constant, k (J·K−1) 1.38065 × 10−23 [61]

Ion mobility, m (m2·s−1·V−1) 5.19 × 10−8 [63]
Surface dielectric potential, ζ (V) −49.3 × 10−3 [39]

Viscosity, µ (Pa·s) 1.0 × 10−3 [54]
Mass concentration of sodium chloride, c0 (dimensionless) 3.5 × 10−2 [64]

Hydraulic tortuosity, τ (dimensionless) 1.15 [65]
Molar mass of sodium chloride, Ms (kg·mol−1) 58.5 × 10−3

Capillary tube radius, a (m) 1.0 × 10−8

Temperature, T (K) 293
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Mesri and Olson [45] prepared slurries of kaolinite, illite, and smectite (mainly mont-
morillonite) in water by repeatedly washing with concentrated saline solutions. The slurries
were first consolidated to pressures ranging from 4.309 kPa to 5.985 kPa in a special sed-
imentation tube and then further consolidated to a pressure of 3.064 MPa through eight
steps in a consolidation ring with a diameter of 63.5 mm. When subjected to consolida-
tion pressure changes, the measured settlement data are used to extract the coefficient
of permeability. Coefficients of permeability of all three clay minerals in saline solutions
with different salinities were reported, and these experimental results are used to verify
the model proposed in this study. The coefficient of permeability K∗ (i.e., the hydraulic
conductivity, m·s−1) is transformed into the hydraulic permeability K (m2) by K = µ

ρg K∗,
where ρ is the fluid density and g is the gravitational acceleration. The void ratio ev of clay
minerals was measured and used to calculate the porosity ϕ = ev

1+ev
. The surface potential

of kaolinite, illite, and montmorillonite minerals is −0.0538 × 10−3 V, −49.3 × 10−3 V, and
−19.3 × 10−3 V, respectively [39]. The hydraulic tortuosity and the characteristic pore size
of clay minerals were unfortunately not measured, a common value of 1.15 was set for the
hydraulic tortuosity (Table 1), and the characteristic pore size was acquired by fitting the
hydraulic permeability.

Experimental and theoretical permeabilities are compared in Figure 3, and the fitted
capillary radius is also included. It is obvious that the theoretical permeability is very



J. Mar. Sci. Eng. 2024, 12, 1937 7 of 21

consistent with the experimental permeability for all three clay minerals under different
conditions of sodium chloride concentration, and values of the Lin’s Concordance Cor-
relation Coefficient (LCCC) [66,67] are all larger than 0.999 (Table 2). The fitted capillary
radius (i.e., the characteristic pore size) generally ranges from 0.1 µm to 1.8 µm for kaolinite
(Figure 3d), from 0.01 µm to 0.20 µm for illite (Figure 3e), and from 0.005 µm to 0.08 µm for
smectite (Figure 3f). These values of the characteristic pore size are quite comparable with
published data [48,49,68,69]. For example, the characteristic pore size of three clayey soils
located in China generally ranges from 0.004 µm to 0.01 µm [68], the pore size of compacted
Edgar Plastic kaolinite mostly ranges from 0.03 µm to 3.0 µm, the characteristic pore size
of Macon kaolinite is roughly 0.2 µm, and the characteristic pore size of Fithian illite is
roughly 0.1 µm [48]; The characteristic pore size of natural clays is about 0.2 µm [49], the
characteristic pore size of Wyoming montmorillonite is 0.07 µm, and the characteristic pore
size of Georgia kaolinite is roughly 0.15 µm [69]. In addition, the fitted capillary radius
generally decreases with decreasing void ratio due to consolidation, and the overall trend
is consistent with the theoretical analyses [70,71], which offer an equation depicting the
trend as

log10 Ω = log10

( a
a∗
)

= χ(ev − ev
∗) (17)

where ev
∗ stands for a reference void ratio, a∗ for the corresponding capillary radius, and

χ for a fitting parameter. Fitting curves and experimental data are shown in Figure 4. It
is obvious that Equation (17) can capture the physical bases of the characteristic pore size
change due to consolidation. The fitting parameter χ = 0.741, χ = 0.231, and χ = 0.0958
for kaolinite, illite, and smectite minerals, respectively.
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Figure 3. Comparisons of experimental and theoretical permeabilities of kaolinite (a), illite (b), and
smectite (c) minerals when subjected to consolidation in an oedometer cell. The fitted capillary
radius (i.e., the characteristic pore size) changes with the void ratio of kaolinite (d), illite (e), and
smectite (f) minerals. The dimension N represents normality and, for the sodium chloride (NaCl)
solution, 1.0 N stands for a mass concentration of 0.0585. The dimension mD represents millidarcy,
and 1.0 mD = 0.987 × 10−15 m2.
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Table 2. Values of the Lin’s Concordance Correlation Coefficient (LCCC).

Experimental Conditions LCCC Figure Reference

Kaolinite (0.0001 N NaCl) 0.99982 Figure 3a

[45]

Kaolinite (1.0 N NaCl) 0.99978

Illite (0.001 N NaCl) 0.99984 Figure 3b
Illite (1.0 N NaCl) 0.99997

Smectite (0.001 N NaCl) 0.99993 Figure 3c
Smectite (0.1 N NaCl) 0.99999

Bentonite A (D. I. Water) 0.99982
Figure 5a

[21]

Bentonite A (0.1 N NaCl) 0.99982
Bentonite A (1.0 N NaCl) 0.99980

Bentonite B (D. I. Water) 0.99992
Figure 5bBentonite B (0.1 N NaCl) 0.99980

Bentonite B (1.0 N NaCl) 0.99989

Bentonite C (D. I. Water) 0.99996
Figure 5cBentonite C (0.1 N NaCl) 0.99962

Bentonite C (1.0 N NaCl) 0.99990

Bentonite D (D. I. Water) 0.99984
Figure 5dBentonite D (0.1 N NaCl) 0.99974

Bentonite D (1.0 N NaCl) 0.99987
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Figure 5. Comparisons of experimental and theoretical permeabilities of bentonites A (a), B (b), C (c),
and D (d) when subjected to consolidation in an oedometer cell. The abbreviation “D. I. Water” in the
legend denotes deionized water. The dimension N represents normality and, for the sodium chloride
(NaCl) solution, 1.0 N stands for a mass concentration of 0.0585. The dimension mD represents
millidarcy, and 1.0 mD = 0.987 × 10−15 m2.

Mishra et al. [21] prepared samples of bentonite A, B, C, and D with the initial water
content equal to their respective liquid limits and consolidated the samples in an oedometer
cell with a diameter of 60 mm. The vertical loading increased from 4.9 kPa to 1.254 MPa
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through seven steps with a unit incremental ratio, and the hydraulic conductivity of ben-
tonites under different conditions of sodium chloride concentration is obtained according
to the method used by Mesri and Olson [45]. The experimental results are used to further
verify the model proposed in this study. All these bentonite samples are mixtures of basalt
soil and bentonite with a mixing ratio of 100:20 by dry weight, and the liquid limit of all
these samples ranges from 310.5% to 615.5%. The clay content of all these samples ranges
from 61.4% to 82.8%, and the major mineral component of the clay is montmorillonite.
Thus, the surface potential ζ of clay minerals is selected as −19.3× 10−3 V [39] in this study.

Experimental and theoretical permeabilities are compared in Figure 5. It is obvious that
the theoretical permeability is also very consistent with the experimental permeability for
all these bentonites under different conditions of sodium chloride concentration, and all the
LCCC values are larger than 0.999 (Table 2). The fitted capillary radius (i.e., the characteristic
pore size) of all these bentonites is demonstrated in Figure 6. It is demonstrated that
the fitted characteristic pore size mostly ranges from 0.1 µm to 1.6 µm for bentonite A
(Figure 6a), from 0.03 µm to 0.84 µm for bentonite B (Figure 6b), from 0.04 µm to 1.05 µm
for bentonite C (Figure 6c), and from 0.02 µm to 0.84 µm for bentonite D (Figure 6d).
These values for the characteristic pore size are also quite comparable with the published
data [48,49,68,69]. The fitted characteristic pore size also decreases with decreasing void
ratio due to consolidation, and experimental data of the normalized capillary radius Ω
together with fitting curves are shown in Figure 7. It is obvious that Equation (17) could
also capture the physical bases of the characteristic pore size change due to consolidation.
The fitting parameter χ = 1.123, χ = 0.675, χ = 0.811, and χ = 0.438 for bentonite A,
B, C, and D, respectively.
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Figure 6. The fitted capillary radius (i.e., the characteristic pore size) changes with void ratio of
bentonites A (a), B (b), C (c), and D (d). The abbreviation “D. I. Water” denotes deionized water. For
the sodium chloride (NaCl) solution, the normality 1.0 N stands for a mass concentration of 0.0585.

In addition to the void ratio dependent data, Mishra et al. [21] provided the hydraulic
conductivity of bentonites at a particular void ratio of 1.2 to show the dependence on the
sodium chloride concentration. For each concentration, the fitted capillary radii corre-
sponding to neighbor void ratios just lower and higher than 1.2 are used to calculate the
hydraulic permeability of bentonites. The calculated results, together with corresponding
experimental data, are shown in Figures 8 and 9. It is demonstrated that the experimental
data of all these bentonites mostly occur between the theoretical results, which are acquired
by using the lower and higher neighbor void ratios. This further demonstrates the capabil-
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ity of the proposed model to predict the void ratio dependent hydraulic permeability of
clayey sediments considering the impact of pore fluid chemistry.
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4. Sensitivity Analysis
4.1. Effects of the Characteristic Pore Size

A dimensionless hydraulic permeability Π = K
∼
K

is defined to characterize the elec-

trokinetic phenomena effect, and the symbol
∼
K represents the hydraulic permeability of

clayey sediments when the electrokinetic phenomena are not considered. It is easy to
deduce a brief formulation Π = Γ−1. The normalized viscosity Γ and the dimensionless
hydraulic permeability Π, changing with the electrolyte concentration n0 under different
conditions of the capillary radius, are shown in Figure 10. It is demonstrated that the nor-
malized viscosity Γ and the dimensionless hydraulic permeability Π are independent of the
electrolyte concentration n0 when the capillary radius a (i.e., the characteristic pore size) is
large (i.e., a = 1.0 µm) or small (i.e., a = 0.0001 µm). For the medium sized capillary radii,
the normalized viscosity Γ and the dimensionless hydraulic permeability Π are dependent
on the electrolyte concentration n0. More specifically, the normalized viscosity Γ decreases
while the dimensionless hydraulic permeability Π increases with increasing electrolyte
concentration for a = 0.1 µm. For a = 0.01 µm, the normalized viscosity Γ firstly in-
creases and then decreases with increasing electrolyte concentration, but the dimensionless
hydraulic permeability Π changes inversely. With the capillary radius further decreasing
to a = 0.001 µm, the normalized viscosity Γ increases, while the dimensionless hydraulic
permeability Π decreases with increasing electrolyte concentration.

The dimensionless capillary radius κa and the hydraulic permeability K, changing
with the electrolyte concentration n0, are shown in Figure 11. It is demonstrated that the di-
mensionless capillary radius κa is far from the unit line for a = 1.0 µm and a = 0.0001 µm.
For the medium sized capillary radii, the dimensionless capillary radius κa approaches the
unit line to some extent, or even crosses the unit line (a = 0.01 µm). This indicates that
effects of the electrokinetic phenomena are significant when the dimensionless capillary
radius κa is close to the unit, and the effects should be considered. The capillary radius a
largely controls the hydraulic permeability of clayey sediments. When the capillary radius
is unchanged, the hydraulic permeability changes along with the electrolyte concentration
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are small. It could be inferred that the characteristic pore size is not only a major factor
denoting effects of the electrokinetic phenomena but also directly controls the hydraulic
permeability of clayey sediments.
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Figure 10. The normalized viscosity Γ (a) and the normalized hydraulic permeability Π (b) changes
with the electrolyte concentration n0 under different conditions of the capillary radius a.
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4.2. Effects of Ion Mobility

The normalized viscosity Γ and the dimensionless hydraulic permeability Π, changing with
the electrolyte concentration n0 under different conditions of ion mobility, are shown in Figure 12.
It is demonstrated that the normalized viscosity Γ decreases (Figure 12a), while the dimensionless
hydraulic permeability Π increases (Figure 12b) with increasing electrolyte concentration for
a = 0.1 µm. For a = 0.01 µm, the normalized viscosity Γ firstly increases and then



J. Mar. Sci. Eng. 2024, 12, 1937 14 of 21

decreases (Figure 12c) with increasing electrolyte concentration, but the dimensionless hydraulic
permeability Π firstly decreases and then increases (Figure 12d) with increasing electrolyte
concentration. The normalized viscosity Γ increases (Figure 12e), while the dimensionless
hydraulic permeability Π decreases (Figure 12f) with increasing electrolyte concentration for
a = 0.001 µm. These responses to the electrolyte concentration change become much stronger
when a smaller ion mobility is applied. The dimensionless capillary radius κa and the hydraulic
permeability K, changing with the electrolyte concentration n0, are shown in Figure 13. It
is obvious that the dimensionless capillary radius κa increases with increasing electrolyte
concentration, and the change process is independent of the ion mobility (Figure 13a,c,e). The
hydraulic permeability K decreases (Figure 13b) with increasing electrolyte concentration for
a = 0.1 µm. The hydraulic permeability K firstly decreases and then increases (Figure 13d)
with increasing electrolyte concentration for a = 0.01 µm. The hydraulic permeability K
decreases (Figure 13f) with increasing electrolyte concentration for a = 0.001 µm. In addition,
the maximal change in hydraulic permeability decreases with increasing ion mobility.
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Figure 12. The normalized viscosity Γ (a,c,e) and the normalized hydraulic permeability Π (b,d,f) change
with the electrolyte concentration n0 under different conditions of dimensionless ion mobility mN = m

m∗ ,
where m∗ = 1.0 × 10−8 m2s−1V−1. The capillary radius a = 0.1 µm (a,b), a = 0.01 µm (c,d), and
a = 0.001 µm (e,f).
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Figure 13. The dimensionless capillary radius κa (a,c,e) and the hydraulic permeability K (b,d,f)
change with the electrolyte concentration n0 under different conditions of the dimensionless ion
mobility mN = m

m∗ , where m∗ = 1.0 × 10−8 m2s−1V−1. The capillary radius a = 0.1 µm (a,b),
a = 0.01 µm (c,d), and a = 0.001 µm (e,f).

4.3. Effects of the Surface Dielectric Potential

The normalized viscosity Γ, the dimensionless hydraulic permeability Π, the dimen-
sionless capillary radius κa, and the hydraulic permeability K, changing with the electrolyte
concentration n0 under different conditions of the surface dielectric potential ζ, are shown
in Figure 14. It is demonstrated that the normalized viscosity Γ firstly increases and then
decreases (Figure 14a), the dimensionless hydraulic permeability Π firstly decreases and
then increases (Figure 14b), the dimensionless capillary radius κa increases (Figure 14c),
and the hydraulic permeability K firstly decreases and then increases (Figure 14d) with
increasing electrolyte concentration. The maximal change in the normalized viscosity Γ,
dimensionless hydraulic permeability Π, and the hydraulic permeability K decreases with
increasing surface dielectric potential ζ. In addition, dependence of the dimensionless
capillary radius on the electrolyte concentration is unchanged when different values are
assigned to the surface dielectric potential.
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Figure 14. The normalized viscosity Γ (a), the normalized hydraulic permeability Π (b), the dimen-
sionless capillary radius κa (c), and the hydraulic permeability K (d), changing with the electrolyte
concentration n0 under different conditions of the dimensionless surface dielectric potential ζN = ζ

ζ∗ ,

where ζ∗ = 1.0 × 10−3 V. The capillary radius a = 0.01 µm.

5. Discussion

Depressurization is currently a preferred method to recover natural gas from hydrate
deposits in the ocean, and marine sediments surrounding the wellbore experience pore
fluid chemistry changes (e.g., desalination) and increased effective stress, which causes
further consolidation. During the consolidation, the characteristic pore size of marine
sediments generally decreases. Results of the sensitivity analyses have shown that the
decreased characteristic pore size and the decreased pore fluid salinity could jointly affect
the hydraulic permeability of clayey sediments, and the coupling effects of pore fluid de-
salination and increased effective stress during gas hydrate production by depressurization
are discussed in this section.

Dependence of the hydraulic permeability K on pore fluid salinity c0 is characterized
by defining a salinity sensitivity index η as

η =
1
K

∂K
∂c0

(18)

If values of the salinity sensitivity index are negative, it is indicated that the hydraulic
permeability increases when the pore fluid salinity decreases (i.e., negatively correlated).
Positive values of the salinity sensitivity index mean that the hydraulic permeability is
positively correlated to the pore fluid salinity. Whether the values are negative or positive,
the larger the absolute value of the salinity sensitivity index, the higher the level of the
salinity sensitivity of the hydraulic permeability.

The salinity sensitivity index η, changing with the normalized pore fluid salinity Λ
under different conditions of the capillary radius a, is demonstrated in Figure 15a. The
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normalized pore fluid salinity Λ is defined as the ratio of the pore fluid salinity after
desalination over the original pore fluid salinity (i.e., the seawater salinity), and Λ = 100%
indicates that the seawater has not been desalinized. It is demonstrated that the salinity
sensitivity index η barely changes with the normalized salinity Λ for a = 0.001 µm.
When the capillary radius increases to a = 0.01 µm, the salinity sensitivity index η
decreases with decreasing normalized salinity Λ (i.e., increasing desalination degree). The
salinity sensitivity index η obviously increases with decreasing normalized salinity Λ for
a = 0.1 µm. When the capillary radius further increases to a = 1.0 µm, the salinity
sensitivity index η slightly increases with decreasing normalized salinity desalination
degree Λ. These responses could be explained by the dimensionless capillary radius change
(Figure 15b). It is demonstrated that the dimensionless capillary radius for a = 1.0 µm
is much larger than the unit, and the dimensionless capillary radius for a = 0.001 µm
is much smaller than the unit. For medium-sized capillary radii (i.e., a = 0.1 µm and
a = 0.01 µm), the dimensionless capillary radius is much closer to the unit. The salinity
sensitivity index η and its absolute value |η|, changing with the capillary radius a, are
shown in Figure 15c,d, respectively. It is demonstrated that the salinity sensitivity index
η increases when the capillary radius decreases from a = 1.0 µm to a = 0.1 µm and
from a = 0.01 µm to a = 0.001 µm. However, when the capillary radius decreases from
a = 0.1 µm to a = 0.01 µm, the salinity sensitivity index η decreases. In addition, the
absolute salinity sensitivity index |η| increases when the capillary radius decreases from
a = 1.0 µm to a = 0.1 µm and decreases when the capillary radius decreases from
a = 0.01 µm to a = 0.001 µm. This indicates that the salinity sensitivity of the hydraulic
permeability is characteristic pore size dependent, and whether the salinity sensitivity
becomes stronger or weaker highly depends on the original characteristic pore size of
clayey sediments when subjected to consolidation.
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6. Conclusions

This study derives and verifies a theoretical model for the hydraulic permeability
of clayey sediments, and the verified model is used as a base for sensitivity analyses to
deepen the understanding of how hydraulic permeability depends on the pore fluid salinity.
Results are further extended to discuss responses of the hydraulic permeability to combined
changes in the effective stress and pore fluid salinity during gas hydrate production. The
main conclusions are drawn as follows:

The hydraulic permeability of clayey sediments saturated with a saline solution is
reduced, due to the development of an electric double layer near the surface of clay minerals,
and the permeability reduction is significant only when the electric double layer thickness
is comparable to the characteristic pore size. In addition, a smaller ion mobility of the saline
solution and a lower surface dielectric potential of the clay minerals both lead to a bigger
reduction in hydraulic permeability.

During hydrate production by depressurization in the ocean, sensitivity of the hy-
draulic permeability to the decreasing salinity of seawater within marine sediments is
dependent on the desalination degree and the reduction history of pore sizes. When sub-
jected to a desalination of seawater within marine sediments, with decreasing void ratio
due to consolidation, the salinity sensitivity becomes stronger if the original characteristic
pore size is relatively large (e.g., several microns) but becomes weaker if relatively small
(e.g., several nanometers).

Although the pore size distribution and the fabric of clay particles are excluded,
the theoretical model could certainly calculate the macroscopic hydraulic permeability
of clayey sediments from the microscopic thickness of an electric double layer near the
surface of clay minerals. Impacts of the pore fluid chemistry are properly considered, and
the theoretical model has significant potential in gas hydrate production and seawater
intrusion prevention.
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