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Abstract: In recent years, underwater environmental monitoring has primarily relied on monitoring
systems based on underwater sensor networks (UWSNs). The underwater sensor node using a
self-powered monitoring system has not been widely used because of the complicated design and
high cost of its energy-harvesting device. Thus, the mobile monitoring nodes within UWSNs are
typically powered by batteries with limited energy, and replacement on the seabed is challenging. As
a result, optimizing the energy consumption of the mobile monitoring network is of significant im-
portance. The clustering algorithm for UWSNs is acknowledged as a vital approach to balancing and
reducing network energy consumption. Nevertheless, most existing clustering algorithms employ
fixed schemes to balance the energy consumption among nodes, which are unable to dynamically
adapt to changes in network topology and do not account for the complexities of the underwater
channel environment, thus not aligning with the actual scenarios of marine environment monitoring.
Consequently, this paper introduces an adaptive clustering algorithm for marine environment moni-
toring (MEMAC). The algorithm incorporates the multipath channel information of the underwater
environment and the traffic weight between nodes into the probability model to calculate the proba-
bility of the node being elected as the cluster head (CH). The final calculated expected revenues are
the user’s revenues after participating in the game under the influence of the multipath effect, and the
revenues of all users jointly determine the performance of the clustering algorithm proposed in this
paper. When the energy consumption of the CH node is too much and needs to be rotated, MEMAC,
through a CH rotation mechanism and a comprehensive analysis of the overall remaining energy of
the network, further optimizes the CH selection strategy while ensuring network stability. Simulation
results indicate that the network lifetime of the proposed MEMAC method is extended by 58.9% and
19.17% compared to the two latest clustering algorithms, the Game Theory-Based Clustering Scheme
(GTC) and the Centralized Control-Based Clustering Scheme (CCCS), respectively. This demonstrates
that the algorithm can achieve efficient energy utilization and notably enhance network performance.

Keywords: marine environment monitoring; game theory; energy balance; clustering algorithm

1. Introduction

The real-time and effective collection of underwater environmental information is en-
abled via the marine environment monitoring system, which also provides early warnings
for abnormal situations. It features advantages such as flexible deployment, high-level
monitoring of real-time performance, and strong stability. Scattered and discontinuous
monitoring data, as well as limited monitoring ranges, are drawbacks of traditional fixed
underwater monitoring centers. Intelligent and multi-sensor integrated acoustic sensor
networks [1] have been widely applied in the collection of marine environmental data [2].
However, the power supply for underwater mobile nodes, which are powered by batteries
that are limited in energy and difficult to replace, leads to issues such as insufficient power
supply, network lifespan reduction due to the death of individual nodes, imbalanced energy
consumption, and interruptions in real-time monitoring [3,4].
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In the context of large-scale UWSNs (underwater wireless sensor networks) used for
marine environment monitoring, clustering has been recognized as an effective means
of improvingnetwork energy management efficiency [5]. The division of UWSNs into
different clusters and the use of cluster head (CH) nodes to schedule and transmit for
cluster members are employed to reduce the energy consumption of both individual
member nodes and the entire network. However, issues such as heavy loads on CH nodes
have led to the application of game theory by many experts to the energy consumption
optimization of acoustic clustering networks. A non-cooperative game-based UWSNs
energy consumption balancing clustering scheme was proposed by Xing et al. [6], which
optimizes the selection strategy of CH nodes to achieve a Nash equilibrium in energy
consumption optimization and extend the network lifespan. Nevertheless, this scheme did
not take into account the assessment of energy levels of ordinary nodes themselves, nor the
significant control overhead of CH nodes.

The literature [7] has proposed a Centralized Control-Based Clustering Scheme (CCCS)
for Energy Efficiency in Underwater Acoustic Sensor Networks. From a global point of
view, the scheme establishes a centralized controller in the cluster to optimize the selection
of relay nodes. However, the disadvantages of this algorithm and the differences between it
and the proposed algorithm are as follows: Firstly, the CCCS will optimize the selection of
CHs according to the collective behavior and interests and lack the evaluation of the node’s
own energy, resulting in the premature death of some nodes. The algorithm proposed in
this paper balances the energy consumption between nodes through a non-cooperative
game and prolonging the life cycle of nodes. Secondly, the centralized scheme has fewer
application scenarios, which also increases the communication and control overhead of
sink nodes. The CHs node in this paper only collects data of member nodes in the cluster,
thus greatly reducing the control overhead of the cluster network. After collecting data,
CHs first carry out data fusion and then forward it to the sink node through multi-hop.
Thus, the communication and control overhead of the sink node is also reduced.

Moreover, the complex underwater multipath channel conditions are seldom incor-
porated into the node game competition model in existing clustering game algorithms,
which results in the overall benefits of UWSNs being less applicable to actual underwater
scenarios. Therefore, a game-theory-based UWSN adaptive clustering algorithm for marine
environment monitoring is proposed in this paper. The main contributions of this paper
are as follows:

1. In the environmental monitoring system design presented in this paper, power supply
equipment is placed on underwater data vaults located on floating platforms at the
surface, thereby providing power for underwater central nodes. This ensures that the
energy of the central nodes remains unrestricted, enabling them to obtain information
from all underwater nodes within their communication range, which in turn further
ensures the clustering monitoring of a wide range of underwater mobile nodes.

2. A non-cooperative game-based adaptive clustering algorithm is proposed for the
purpose of underwater mobile node clustering monitoring. In this algorithm, un-
derwater node multipath channel information is incorporated into the game model,
The expected return calculated by this game model is the return of users who par-
ticipate in the game under the influence of the multipath effect, and the total return
of all users jointly determines the performance of the clustering algorithm proposed
in this paper to enhance the environmental adaptability of users during the game
competition process.

3. In the MEMAC (Adaptive Clustering of Marine Environmental Monitoring) algorithm
proposed in this paper, the determination of pre-cluster heads is initially performed
according to a distributed non-cooperative game of nodes, followed by the calculation
of the overall remaining energy value of the whole network to ultimately determine
CH nodes. This approach allows for a comprehensive optimization of the strategy for
CH competition.
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4. In the algorithm, the remaining energy and traffic are incorporated as different game
conditions into the calculation of the payoff function, which effectively balances the
energy consumption. Furthermore, CH nodes are rotated in special cases to ensure
network stability.

The rest of this paper is organized as follows: In Section 2, we mainly introduce the
related research on clustering algorithms. In Section 3, we introduce the marine environ-
ment monitoring network model. In Section 4, we introduce the new MEMAC proposed
in this paper in detail. Then, we compare the results through simulation experiments in
Section 5 so as to verify the superiority of the algorithm in this paper, and finally, we share
an outlook and summary in Section 6.

2. Related Work

Research on underwater environmental monitoring was begun in developed countries
of Europe and America as early as the 20th century, with various monitoring instruments
and equipment being designed. In 2009, NEPTUNE, which was established jointly by the
United States and Canada, was officially launched. It is recognized as the world’s largest
cabled ocean observatory network, being capable of achieving gigabit-level bidirectional
transmission communication monitoring. By June 2022, the Global Ocean Observing
System (GOOS) had become the most comprehensive ocean observation system currently
available, with its total number of observation devices exceeding 9000, providing reliable
data for marine environmental protection and disaster early warning [8].

Currently, the increasing use of UWSNs (underwater wireless sensor networks) to
achieve large-scale and flexible monitoring tasks in marine monitoring systems has led to
growing attention and research on clustering algorithms for the large number of underwater
nodes deployed in UWSNs. For example, the LEACH algorithm for balancing node
energy consumption was first proposed by Heinzelman et al. [9], in which CH (cluster
head) nodes are rotated to share their load through the setting of random numbers and
thresholds, although this also leads to uneven energy consumption. A series of more
efficient clustering algorithms have been proposed based on the LEACH algorithm, such
as opportunistic particle swarm optimization [10], energy-saving scalable algorithm [11],
and correlation clustering algorithm [12], which have significantly improved network
performance. Furthermore, Zhang et al. [13] proposed a low-energy clustering method that
non-uniformizes node density, which involves selecting pre-cluster heads through random
number settings and determining the communication range based on their coverage lengths
for CH election. This algorithm enhances the performance of UWSNs, but it also increases
frequent interactions between nodes, leading to instability in the algorithm.

Fixed strategies are used in most of the above solutions to balance node energy con-
sumption, and they are unable to dynamically adjust the node’s own strategy to adapt to
the constantly changing marine monitoring scenarios in a time-varying, complex underwa-
ter environment. As a result, some experts have begun to focus on establishing dynamic
competition models between users through game theory to optimize network performance.

Yang et al. [14] proposed a game theory-based distributed multi-dimensional cluster-
ing protocol, which calculates the probability of Nash equilibrium based on the distance of
nodes to CH and the degree of nodes and selects CH based on the size of the remaining
energy. However, there is still significant room for improvement in energy consumption
optimization with this algorithm. Subsequently, some scholars began to design utility
functions using various strategies to enhance the overall performance of the network, such
as repeated games [15], a dual-cluster head mechanism [16], and two-level management
clustering [17], etc. However, these algorithms only consider the clustering performance of
wireless networks in terrestrial environments, and they do not take into account the impact
of complex underwater environments on game clustering. Therefore, they are not suitable
for marine environments.

To address this issue, a multi-dimensional game-based underwater adaptive energy-
saving clustering algorithm was proposed in the literature [18], which establishes a multi-
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dimensional game model and increases the opportunity for historical CH nodes to compete
for CH again, further optimizing the strategy for CH election. However, this algorithm
takes less consideration of the state of the nodes themselves and environmental factors,
resulting in weak applicability in real scenarios.

Based on the above analysis, it has been found that none of the existing algorithms
have incorporated underwater channel state information into the establishment of the
game clustering model, and as a result, they lack practicality for monitoring in complex
marine environments.

3. Marine Environment Monitoring Network Model

As shown in Figure 1, the marine monitoring system constructed in this paper is
composed of three main parts: the land-based shore station platform, the surface floating
platforms, and the underwater data vaults along with the nearby central node area. The spe-
cific monitoring process is as follows: a notification of clustering initiation is broadcast
by the central node connected to the underwater data vault to all mobile nodes within
its communication range. Location information is then broadcast via the nodes to the
network upon receiving this information. The clustering of all mobile nodes that receive
the clustering notification is performed using the GTAC algorithm proposed in this paper.
Within the clustered groups, data collected via ordinary member nodes is transmitted to
the CH (cluster head) nodes. The CH nodes first fuse all the received data information
and then, using CH nodes from other clusters as relays, transmit this information to the
underwater central node through a multi-hop method.

Figure 1. Marine environment monitoring network model.
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Secondly, the collected analog signal data is converted into digital signals via the
underwater central node and connected to the watertight connectors installed on the
bulkhead of the data center through the submarine cable. The watertight connectors are
then connected to the main control unit inside the data vault via the network-electrical
composite cables within the vault. After the collected data are parsed according to the
communication protocol, one end of the main control unit is connected to the power
distribution system on the floating platform, providing continuous electrical power to the
underwater central node. On the other end, it is connected to the switch inside the vault
via network cables, converting the digital signals into optical signals and transmitting them
via fiber-optic cables to the switch and server on the floating surface platform. The power
supply system connected to the main control unit on the floating platform is numbered in a
one-to-one correspondence with the underwater data vault where the main control unit is
located. Data uploaded to the floating platform server are first stored and then transmitted
to the land-based shore station monitoring area via wireless satellite communication.

Finally, the data information received by the shore station monitoring system is
transmitted to the shore station server. The server integrates and processes the received
data information and pushes it to the user monitoring terminals. The pushing process
involves, on the one hand, the selection of appropriate communication protocols based
on the data characteristics. On the other hand, information needed for the monitoring
terminals, such as alarms and queries, is filtered out based on user requests.

Before the channel correlation analysis of underwater nodes, it is necessary to use
existing algorithms [19] to locate underwater mobile nodes.

3.1. Channel Correlation of Underwater Nodes

In underwater acoustic communication, channel noise is very complicated; for instance,
sea tides, wind waves, and ship activities will produce noise. In this paper, the noise
of the underwater acoustic channel is uniformly represented as σ2. At the same time,
the attenuation of underwater acoustic channels is severe. If the absorption coefficient of
the ocean is a( f ), the transmitting frequency is f , the distance of each user node is d(km),
and the underwater acoustic propagation coefficient is ε. Then, the attenuation formula of
the underwater acoustic channel can be expressed as follows:

A(d, f ) = dε[a0( f )]d (1)

where the variable d km represents the distance between any two nodes, ε represents the
underwater acoustic propagation coefficient, and the ocean absorption coefficient a0( f ) can
be expressed as [20]:

a0( f ) = 10
0.011 f 2

1+ f 2 +4.4 f 2

4100+ f 2 +2.75×10−5 f 2+3×10−4

(2)

Suppose that the channel set of nodes i is hi = [hi1, hi2, . . . hiL], and L corresponds to
the underwater path L in the channel response between user i and the CH node. Then, the
channel response auto-correlation matrix of user i is Rii = E{hihH

i }. By decomposing the
characteristic of the moment, Rii can be further decomposed into

RiiVi = SVi (3)

If the sub-correlation matrix contains all paths, then the eigenvector V can represent
the vector containing single path information [21], the eigenvalue S in the above formula
is taken as the weight coefficient of V, and the multi-path information of node i can be
expressed as follows:

Ri =
L

∑
i=1

SiLViL (4)
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Then, the channel correlation between user node i and node j can be expressed as
follows:

Ei,j =
E
{

RH
i Rj

}
E
{

RH
i Ri

}
∥E
{

RH
j Rj

} (5)

3.2. Node Flow Analysis

Suppose the traffic of node i is x, and its traffic weight coefficient is θ ∈ (0,1). Then, the
weight generated via the traffic of node i can be expressed as follows:

yi = θiX(i) (6)

In addition, according to the location information of nodes, assuming the total number
of nodes in the cluster is n ∈ [1,N], the distance d between node j and node i can be
expressed as follows:

di,j =
N

∑
n=1

∥∥ni − nj
∥∥ (7)

Then, the traffic weight generated via node j to i can be expressed as follows:

yi,j =
θjθiX(i)

di,j
(8)

If node i is a common member node in the cluster, only the cluster head node commu-
nicates with it and generates the single node traffic of the above formula. However, if node
i is a CH node, the member node j in the whole cluster will generate traffic to it. However,
since some nodes may be in a dormant state at some time, it is assumed that the number
of nodes communicating with CH is m. At this time, the sum, W, of the traffic weights
generated via node i can be calculated as follows:

W = θix(i) +
M

∑
j=1

θjθix(i)
mdi,j

(9)

It can be seen that, when the residual energy of node i is equal to or slightly less than j,
if the sum of traffic weights, W, at node i is much larger than node j, it indicates that the
location and communication state of node i are more suitable to be selected as a CH node,
and the election of a CH node in the cluster cannot be determined solely according to the
residual energy.

3.3. UWSN Energy Consumption Model

Since the rate v of the underwater acoustic channel is 1500 m/s [22–24], the transmis-
sion delay, T(K), of K-bit packets under v is as follows:

T(K) =
K
v

(10)

According to the underwater channel attenuation formula in Section 3.1 and the
distance formula in Section 3.2, the energy consumption of sending K-bit data from node j
far away from node i, d m can be expressed as follows:

Esent
i,j (k, d) = P × T(K)× A( d, f) (11)
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where, P is the received power of the node if the ordinary nodes that are active can be
represented as ON. Then, the total amount of data received via CH node is as follows:

Krec
total = KCH +

K

∑
j=1

KONi,j (12)

where KONij represents the data packet received via the ON node, and KCH represents the
amount of data that the CH node itself can perceive. If the transducer of the CH node is set
to Rx mode, then the energy consumption of the CH node when receiving data is the same;
therefore, the energy consumption of node CH to receive K-bit data can be expressed as
follows:

Erec = Krec
total erec (13)

where erec represents the energy consumption of receiving data per unit bit. Similarly,
the energy consumed via data fusion when node i acts as CH is as follows:

Einteg = Krec
total einteg (14)

where einteg indicates the energy consumption per bit of data fusion.

4. MEMAC Algorithm Design
4.1. UWSN Game Clustering

This model is mainly used to realize the process of selecting CH nodes through
game clustering. First, the user node is defined as the set of competitors in the game as
N = {N1, N2, . . . . . . , Nn}. S = {S1, S2, . . . . . . Sn} is the strategy set of node competition.
U = {U1, U2, . . . . . . , Un} is the set of revenue functions of user nodes under different policies.

When the available policy space of each node is S = {PCH, NCH}, PCH indicates the
node that claims to be the pre-cluster head, and NCH indicates the node that selects the
non-cluster head policy.

Assuming that node j is other nodes except i, when both nodes i and j choose strategy
NCH, clustering fails, and the total revenue in the network is 0. To wit,

Ui
(
Si, Sj

)
= 0 (15)

When node i selects strategy PCH, its income function is as follows:

Ui
(
Si, Sj

)
= Riie−φ

(
Eres

i − CPCH
i + βW

)
(16)

where Ci represents the cost when the node selects the PCH strategy, Rii is the multipath
information of node i, and Eres

i is the remaining energy of node i, β is the adjustment
coefficient of the traffic weight W, and βW represents the income reward for nodes with a
significant traffic weight. The purpose is to encourage nodes with a greater traffic weight
to be elected as cluster heads with a greater probability. Riie−φ represents the parameter
that regulates user revenues under multipath conditions.

When node i selects the PCH policy, the cost CPCH
i can be further expressed as follows:

CPCH
i = Erec + Einteg + Esent (17)

When node i chooses NCH, and node j chooses the PCH strategy, the payoff can be
expressed as follows:

Ui(Si, Sj) = (2 − Riie−φ)(Eres
i − CON

i + γi) (18)

When node i selects the NCH strategy, the cost, CON
i , only includes the energy con-

sumption of data transmission, which is far lower than the cost of clustering. Therefore,
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the penalty factor γi is added here to make user nodes compete for cluster heads with a
fairer probability. The specific calculation method is as follows:

ri = bCPCH
i

Eres
i

Emax
j

(19)

where b is the adjustment factor, and the specific value of the cost, CON
i , is as follows:

CON
i = Esent (20)

In a round of the game, if only the node with the maximum remaining energy is
considered the cluster head without considering the traffic between nodes, nodes with
less traffic can be elected as the CH. For example, when the node with the maximum
remaining energy but less traffic, node i, chooses the PCH strategy, there exists a node, j,
with the maximum traffic, whose remaining energy is slightly less than that of node i, but its
traffic is much greater than that of node i. In this case, if node j chooses the NCH strategy,
the node i with less traffic, but which acts as the CH, will require a greater scheduling
cost to complete data transmission, resulting in a decrease in overall network performance.
Therefore, this paper incorporates the traffic weight of nodes as part of the reward value in
the payoff function, allowing nodes with slightly less energy than node i but the greatest
traffic weight, such as node j, to be elected as cluster heads with a higher probability and
thereby enhancing the performance of the network.

Furthermore, in the formula for the penalty factor, ri, as Eres
i approaches Emax

j , the penalty
increases, making it more likely for node i to select the PCH strategy due to the penalty and
thereby balancing the energy consumption of the nodes. The algorithm involves node i
continuously engaging in a game between the PCH and NCH strategies until convergence
is achieved.

4.2. Analysis of Game Probabilities

Since pure-strategy Nash equilibria can lead to local optimal solutions, it is neces-
sary to consider the equilibrium states of mixed strategies. In this paper, the choice of
Nash equilibrium probabilities for different strategies within the probability distribution
PR = Pa, Pb of multipath channel information is permitted to adapt to the complex under-
water multipath channels while ensuring a Nash equilibrium in the global state.

The probability distribution PR can be expressed as follows:

PR =


R = R1

(
P1

a , P1
b
)

R = R2
(

P2
a , P2

b
)

. . . . . . . . . . . .
R = Rn

(
Pn

a , Pn
b
) (21)

where P1
a is the probability that node i selects policy PCH under multipath channel R1,

and P1
b is the probability that node i selects policy NCH under multipath channel R1.

Further, the expected utility of node i choosing PCH strategy can be expressed as follows:

Uexpect
i (Si = PCH) = Re−φ

(
Eres

i − CPCH
i + βW

)
(22)

Similarly, the expected utility of node i choosing the NCH strategy can be expressed
as follows:

Uexpect
i (Si = NCH)

=
(
2 − Rie−φ

)
(Eres

i − CON
i

−γi)

(
1 −

(
1 − Pi

a

)N−1
) (23)
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Since each node has the same expectation for selecting PCH and NCH policies, we get
the following:

Uexpect
i (Si = PCH) = Uexpect

i (Si = NCH) (24)

When it is combined with Formulas (22)–(24) above, we can get the following:

Pi
a = 1 −

(
1 −

(
Eres

i − CPCH
i + βW

)
(2 − Rie−φ)

(
Eres

i − CON
i − γi

))N−1

(25)

Let (2−Rie−φ) in the above equation = ϵ, (Eres
i − CPCH

i + βW) = ω1, (Eres
i − CON

i +
γi) = ω2; then,

Pi
a = 1 −

(
1 − ω1

εω2

)N−1
(26)

From Formula (26), the probability of node i choosing NCH can be obtained:

Pi
b = 1 − Pi

a =

(
1 − ω1

εω2

)N−1
(27)

In sum, all nodes can obtain the probability of choosing the PCH or NCH strategy
under the condition of equal expected probability through their own multipath channel
state information, that is, the state of Nash equilibrium in which no node has the motivation
to change strategies.

4.3. Design and Implementation of Clustering Protocol

The overall flow of the clustering algorithm in this paper is shown in Algorithm 1,
and the steps are as follows:

1. Initialize the network, set the distance range, D, of the cluster, and start the clustering
notification based on the central node.

2. Using Formulas (3) and (4), the multipath channel information R of node i is calculated.
The traffic weight yij when node i is an ordinary ON node and the total traffic weight
W when node i is a CH node are calculated by combining Formulas (6)–(9).

3. By combining Formulas (11)–(15), the revenue Ui of node i participating in the game is
obtained. Substitute Formulas (4), (9) and (15) into Formula (22) to find the expected
revenue of user i as a PCH node.

4. Node i is used as PCH and NCH, respectively, whether their expected revenues are
equal or not. If yes, node i is added to the set of PCH; otherwise, add node i to the set
of ON.

5. With the probability Pi
a calculated via Formula (26), PCH nodes are elected, as well as

a set, SPCH = {PCH1, PCH2, . . . . . . PCHn}. If the relation RANi < Pi
a is not satisfied,

then the node i sets itself as an ordinary node.
6. All nodes in the SPCH set participate in the CH node competition, and the node with

the lowest Ti value in the set is selected as the CH node.
7. When the probability calculated via Formula (26) is zero, it is determined whether to

rotate CH nodes according to Formula (31). If yes, node rotation is carried out.
8. If the formula is not met, go back to Step 6, and start from Step 6.
9. Every time a clustering period, T, is reached, new clustering is performed.

The detailed process is as follows:
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Algorithm 1 MEMAC algorithm

Input: Dataset SPCH = {PCH1, PCH2, . . . . . . PCHn}, the random number RANi, total
underwater noise σ2, the node traffic weight W, the adjustment coefficients θ1 and θ2.

1: Using Formulas (3) and (4), the multipath channel information R of node i is calculated.
2: The traffic weight yij when node i is an ordinary ON node and the total traffic weight

W when node i is a CH node are calculated by combining Formulas (6)–(9).
3: By combining Formulas (11)–(15), the revenue Ui of node i participating in the game

is obtained.
4: Substitute Formulas (4), (9) and (15) into Formula (22) to find the expected revenue of

user i as a PCH node.
5: for i ∈ [1, N] do
6: if Uexpect

i (Si = PCH) = Uexpect
i (Si = NCH) then Si ∈ SPCH

7: else Si ∈ SON
8: end if
9: end for

10: Initialize the distance, D, between two CHs.
11: Use Formula (26) to calculate the Pi

a
12: for i ∈ [1, N] do
13: if RANi < Pi

a then Si = PCH
14: else Si = ON
15: end if
16: if Si = PCH then Si ∈ SPCH
17: end if
18: Use Formula (31) to calculate the Ti
19: if Ti < Tj and Si ∈ SPCH then Si = CH
20: else Repeat steps 16-19
21: end if

22: if Si = CH and δ1

(
Eres

i
Emax

j

)
+ δ2

(
Wi
Wj

)
> 1 then CH rotation

23: else Reapeat steps 11-22
24: end if
25: end for
Output: The CH node is user i (or the CH node is user j)

4.3.1. Network Initialization

Assume that the communication radius of the node is R, the distance between two CH
nodes is D, and the length, width, and height of the entire network are, respectively, L, W,
and H; g(0.5,1) is a gradient coefficient. If the overlap between clusters is allowed at most
for 1/4 of the parts, the distance can be set as follows:

D ≥ (1 + g)R (28)

After that, the central node broadcasts a notification to the whole network to start
clustering, and then each node in the cluster starts to exchange relevant status information
with its neighbor nodes, including node ID, node location, and the energy, Eneigh, consumed
via the neighbor nodes in the interaction process.

4.3.2. PCH Selection

Node i determines whether user i is selected as PCH, according to the probability
Pi

a, calculated according to its own multipath information, Rii. The specific process is as
follows: First, the node generates a random number, RANi, through a random function,
and then it judges whether the relation RANi < Pi

a is established. If it is, i selects the PCH
strategy; otherwise, the NCH strategy is selected. Finally, all nodes elected as PCH form a
set containing preselected cluster heads, SPCH = {PCH1, PCH2 . . . PCHn}.
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4.3.3. CH Competition

In the formed SPCH set, the optimal PCH is selected by estimating the energy con-
sumption and the state of the global network. The specific process is as follows: First,
each competing PCHi broadcasts a short control packet, PCOi, which includes the node ID,
the node identification PCHi, the priority of the node selected as CH, and the estimated
total energy consumption of the network at this time. Here, when node i competes for the
CH status, the total energy consumption of the entire cluster network can be estimated
as follows:

ζi = µ

(
1 −

CPCH
i + ∑N−1

j=1,j ̸=i Con
j

NE

)
(29)

where N is the total number of nodes in the network, E is the initial energy of nodes, µ is
the weight coefficient, ζi is the weight of the estimated residual energy consumption of the
network, and the maximum distance in the whole cluster can be expressed as follows:

dmax =
(

L2 + W2 + (1 + g)2R2
) 1

2 (30)

Then, when node i claims to be node CH, the time required to wait for confirmation
from other nodes after broadcasting PCOi packets can be calculated as follows:

Ti = η
dmax

v
(1 − ζi) (31)

where v = 1500 m/s is the propagation speed of the underwater acoustic signal, and η is the
time adjustment coefficient. It can be seen that, when the total residual energy weight, ζi,
in the network is larger, the time required for node i to wait for all other member nodes to
confirm that it is a CH node is shorter so as to ensure that the node with the most residual
energy can compete and be elected as a CH node at the fastest speed.

4.3.4. CH Rotation

When the probability calculated via the formula is zero, CH rotation is required for
this node. In this case, the conditions for CH rotation are set as follows:

δ1

(
Eres

i
Emax

j

)
+ δ2

(
Wi
Wj

)
> 1 (32)

where θ1 and θ2 are the adjustment coefficients. When the above formula is established, it
means that the sum of the specific gravity of another node, j, in the residual energy and
flow begins to be greater than that of the current CH node, i; that is, node j is more suitable
as the cluster head node.

5. Simulation and Performance Analysis

In this chapter, the simulation of the MEMAC algorithm proposed in this paper is
carried out using the ns-3 simulator. The network scenario depicted in Figure 2 is used as an
example of an area covered by a central node. where the nodes are systematically grouped
into multiple clusters, with nodes of identical color signifying their affiliation to the same
cluster. In this network area, Sink node is the central node, apart from the central node, the
total number of nodes is set to 30. All nodes are randomly and uniformly distributed within
a 6000 × 6000 × 6000 m three-dimensional space. The position coordinates of the central
node at the seabed are (3000, 3000, 3000). Each node is equipped with its own node ID and
location information, and a weight coefficient for node traffic ranging from 0 to 1 is included.
The initial energy, E1, of the node is set to 100 nj/bit. The gradient control coefficient for the
inter-cluster distance is set to g(0.5,1). The length of the data packets is 1024 bits, and the
length of the control packets for campaigning for CH nodes is 150 bits. The operational
data rate of the nodes is maintained at 1 kbps. The transmission power of the nodes can be
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adjusted between 1 W and 30 W to meet different communication requirements within and
between clusters. A single simulation run lasts for 15,000 s. The repetitions with different
seeds are set to 2000. In this simulation experiment, a collision avoidance MAC (DC-MAC)
protocol in the literature [25] was adopted to carry out CH scheduling and transmission.
The complete parameter settings are detailed in Table 1.

Figure 2. Network topology scene simulation.

Table 1. Simulation parameter.

Parameter Value

Network size 6000 × 6000 × 6000 (m)
Sink location (3000, 3000, 3000)

Node size 30
Transmission rate 1 kbps

f 10 kHZ
E1 100 nJ/bit

Transmitter power 1 to 30 w
g 0.5 to 1
η 0.65

δ1, δ2 0 to 1
µ 0.46

Simulation time 15,000 s

The performance of the MEMAC algorithm proposed in this paper is verified by
comparing it with three representative algorithms in the field: LEACH [9], CCCS [7],
and GTC [6].

5.1. Comparison of the Lifespan of a Network

Network lifetime is considered one of the key metrics for assessing the effectiveness
of clustering algorithms, and it is gauged according to the time until the first node within
a cluster dies post-clustering. As depicted in Figure 3, the first node deaths for the four
algorithms, LEACH, GTC, CCCS, and MEMAC, occurred at rounds 484, 900, 1200, and
1430, respectively. The reason for this is that the MEMAC algorithm employs a multipath
channel information model, an environment-adaptive CH competition mechanism, a traffic
weight model, a residual energy-balancing mechanism, and a CH rotation mechanism,
comprehensively, and it takes into account the overall remaining energy of the network to
comprehensively decide on the election of CH nodes, thereby delaying the occurrence of
node death to the latest possible time. Compared to the other three algorithms, the network
lifetime was extended by 195.5%, 58.9%, and 19.17%, respectively, which effectively balances
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the energy consumption among nodes. However, between rounds 1300 and 1400, there
was a significant increase in the death rate of nodes within the MEMAC algorithm’s cluster,
indicating that there may be a short period during which the algorithm cannot balance all
nodes in the network.

Figure 3. Performance comparison of four algorithms in terms of network lifetime.

As can be seen from the curve changes of CCCS in Figure 3, most nodes in the
algorithm began to die after 1369 simulation rounds, and only a few nodes died between
the 1200th and 1369th rounds. This is because CCCS’s centralized control mechanism
evaluates the node’s own energy, resulting in the premature deaths of very few nodes.

It can be seen that the energy consumption of a single node is a decisive factor in the
length of the network lifetime. The premature exhaustion of the energy of a single node in
the CCCS algorithm greatly shortens its lifetime. As can be seen from the greatly increased
number of continuous simulation rounds of nodes, the algorithm can optimize the overall
energy consumption of its underwater mobile network. The MEMAC proposed in this
paper not only draws on the advantages of the CCCS algorithm for centralized control in
each cluster but also fully considers the energy benefits of each node from the perspective
of the whole network, thus achieving higher efficiency than CCCS.

Figure 4 presents a comparison of the number of simulation rounds for these algo-
rithms when the proportion of node deaths reaches 1%, 30%, 50%, and 80%. The larger the
number of simulation rounds, the longer the network life is at various stages of remaining
node numbers. It is observed that the network lifetime of the MEMAC algorithm, irrespec-
tive of the proportion of remaining live nodes, exceeds that of the other three protocols.
Consequently, it is determined that the MEMAC algorithm clearly outperforms the other
three algorithms in prolonging the overall average network lifetime.

Figure 4. Simulation rounds corresponding to different node death ratios.
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5.2. Comparison of Average Residual Energy at Node

From Figure 5, it is evident that a slower decline in the average residual energy
consumption is exhibited by the MEMAC algorithm proposed in this paper when compared
to the other three algorithms. Moreover, the nodes undergo a significantly greater number
of rounds when the energy is ultimately depleted, indicating that the longest energy usage
time is also shown via this algorithm. This is due to the incorporation of multipath channel
information of underwater nodes into the model of inter-node competitive games via the
MEMAC algorithm, which enhances the adaptability of the nodes during the clustering
process in complex underwater environments.

Figure 5. Comparison of average residual energy in nodes.

The average energy consumption curve of the CCCS and GTC algorithm has little
difference in the decline rate, which is because CHs nodes of CCCS and GTC adopt
the practice of centralized control of the data transmission of network nodes in their
clusters. And the curve decline rate of these two algorithms is slower than that of the
classical LEACH protocol, which is due to the randomness of CHs’ selection in the LEACH
algorithm. In the initial 150 rounds of simulation, the average energy consumption of the
GTC algorithm decreased at a slower rate than that of the CCCS algorithm because the
centralized control overhead of CCCS was greater than that of GTC, thus consuming more
energy. However, with the increase in the number of simulation rounds, CCCS consumed
less energy than GTC. CCCS reduces the communication costs required for centralized
control. However, a faster average energy consumption decline rate is shown for the CCCS
protocol than the MEMAC algorithm proposed in this paper within the underwater model.

5.3. Comparison of Total Data Received via Central Node

As shown in Figure 6, with the increase in network load, a higher total data reception
at the central node is achieved using the MEMAC algorithm compared to the other three
algorithms. This is due to the incorporation of the traffic weight of nodes as a reward
value into the model for selecting the PCH strategy via the algorithm, which accelerates
its convergence to the Nash equilibrium. This enables more data to be received within the
same time frame.
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Figure 6. Comparison of the total data received by the central node.

Additionally, the total remaining energy in the network is taken as a constraint in the
CH competition for the algorithm, which factors this into the strategy for CH election. This
approach leads to an increase in the overall network lifespan and the time for receiving
data packets, thereby further increasing the total amount of data that can be received via
the central node.

6. Conclusions

In the field of real-time marine environment monitoring, mobile node monitoring
based on UWSNs is recognized as an efficient monitoring method today. However, the user
nodes in UWSNs, being powered via batteries, lead to significant energy consumption
and difficulty in replacement. Hence, the MEMAC algorithm is proposed in this paper.
Firstly, a method is designed via the algorithm to place the power distribution system of
underwater data warehouses on the floating surface platforms, allowing the power system
to provide continuous electricity to underwater central nodes while being easy to maintain.
This enables the uninterrupted acquisition of marine information collected via other mobile
underwater nodes through clustering and better aggregation of this information. Secondly,
the traffic weights of underwater nodes are proportionally adjusted via the MEMAC
algorithm proposed in this paper and used as rewards for the node-selection PCH strategy,
allowing for more rational participation in PCH competition. The channel state information
of nodes is also introduced into the game model for PCH competition via the algorithm,
thereby enhancing the environmental adaptability of the clustering algorithm. Lastly,
the overall energy consumption level of the network is introduced to optimize the strategy
for CH competition, and the setting of CH rotation thresholds via the algorithm ensures
the overall stability of the network.

Simulation experiments have demonstrated that the algorithm proposed in this paper
is outperformed by none of the three classical algorithms, LEACH, CCCS, or GTC, in terms
of the network lifespan, the average residual energy of nodes, and the total amount of data
received via the central node. Thus, while network stability is ensured, the adaptability of
node clustering is improved, and the overall performance of the network is optimized.

In future work, the DC-MAC protocol based on game theory in the literature [25] will
be further improved, and the scheduling strategy for the CH node in the MAC protocol
will be optimized according to the communication distance between nodes so as to avoid
the collision between underwater mobile nodes and CHs. In addition, the communication
method adopted in this paper is mainly underwater acoustic communication. The articles
“Underwater Moving Object Detection Using Superficial Electromagnetic Flow Velometer
Array-Based Artificial Lateral Line System [26]” and “An optical system for suppression of
laser echo energy from the water surface on single-band bathymetric “LiDAR””, [27] other
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communication media, like optical systems’ relevant technologies and methods, and future
work will also increase attention and improve research.
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