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Abstract: This paper introduces a hybrid optimization method that leverages either linear program-
ming (LP) or a genetic algorithm (GA) based on the problem size to enhance the parallel additive
manufacturing (AM) process for ship models. The LP ensures optimality but can experience expo-
nential increases in the computation time as the problem size grows. To address this limitation, the
GA is employed for larger problems, providing optimal solutions within reasonable quality and time
constraints. The method optimizes the module allocation to AM machines and determines the build
processing sequence for each machine, while also considering the availability of workers preparing
for consecutive module production. Applied to a case study, the proposed method achieves a 14%
reduction in the completion time compared to a heuristic method from a previous study. Furthermore,
the method is validated by benchmarking against the heuristic method across various problem sizes,
consistently demonstrating superior performance.

Keywords: ship model; additive manufacturing; scheduling; linear programming; genetic algorithm

1. Introduction

Although computational fluid dynamics (CFD) has demonstrated high accuracy in
evaluating the hydrodynamic performance of ships, ship model testing remains essential
due to physical environmental challenges that are difficult to address with CFD, such
as turbulence modeling, grid resolution, and numerical approximation. With the recent
emergence of low-emission ships, hull shapes are becoming more diverse to accommodate
additional elements for different power systems, such as increased battery sizes. This
diversification leads to an increased demand for model tests. However, research on the
optimization and efficiency of manufacturing costs related to ship models is insufficient.

Conventional ship model manufacturing methods include the use of fiber-reinforced
plastics (FRPs) and wood. FRP, a glass fiber-reinforced plastic, is favored for its high
corrosion resistance, lightweight properties, and durability, making it well suited for model
construction [1]. However, FRP has significant drawbacks: it is flammable and releases
toxic gases upon disposal. Moreover, its production and disposal processes contribute to
environmental pollution. The quality of the final product is highly dependent on the skill
level of the worker, as the hand layup technique is commonly employed [2].

The technique of using computer numerical control (CNC) machines to cut wood for
model fabrication has been a reliable and precise method in the industry for a long time.
CNC machines are also sometimes used in the production of FRP models, offering faster
production times and reduced labor compared to manual methods since the machine can
execute tasks based on the provided input model. However, the high initial costs and
space requirements for large cutting equipment can be a barrier for small businesses or
individuals [3].
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The recent accessibility of additive manufacturing or 3D printing technologies has
significantly accelerated its growth [4]. This technique fabricates 3D models by layering
and bonding materials such as metals, plastics, powders, and liquids. Unlike traditional
casting or machining, which require skilled labor, 3D printing allows anyone to manufac-
ture products. Its widespread use in various industries [5–10] is due to its capacity for
freeform design and quick adaptation to design changes, which shortens production times.
Choi et al. [3] introduced a modular AM approach for producing ship models. They chose
a modular method due to the high initial costs and size limitations of 3D printers, which
can hinder the production of certain models. While integrated methods can simplify the
process by printing models as a single piece, modularity provides a more practical solution
under these constraints.

The modular nature allows ship models to be produced in parallel across multiple
machines, significantly reducing the production time through simultaneous manufacturing.
However, this approach increases the importance of production scheduling, as schedul-
ing decisions can greatly impact the overall production time. By strategically allocating
resources such as 3D printers, materials, and manpower, production supervisors can
maximize productivity and throughput while minimizing costs and idle time.

There has been research on scheduling optimization in AM. For example,
Chergui et al. [11] addressed the parallel production scheduling problem in AM, and
Choi et al. [3] employed a heuristic for scheduling the production of modular ship models,
determining the module allocation and making sequencing decisions simultaneously. How-
ever, previous studies did not consider the availability of the workers needed to prepare
for the next production task upon completion of a module. This factor adds complexity to
the optimization of production scheduling for modular ship models.

In this study, we propose an optimization method for the efficient production schedul-
ing of ship models in AM. Our method aims to minimize the production time of the final
module by optimizing the module allocation and sequencing while considering worker
availability. To achieve this, we employ a hybrid approach that combines linear program-
ming (LP) and a genetic algorithm (GA), selectively using either LP or GA based on the
number of modules being produced to leverage the strengths of both techniques. To val-
idate the efficacy of our approach, we compare the proposed method with a heuristic
approach through case studies.

2. Scheduling Challenges in Additive Manufacturing with Consideration of
Workers’ Availability

Traditionally, scheduling was not a primary concern in the monolithic AM process,
where entire objects were typically produced as single prints. However, efforts to enhance
the efficiency of AM have spurred exploration of various strategies. This includes dividing
oversized products exceeding the capacity of AM, or employing multiple machines to
increase the production volume [12], leading to the emergence of configurations like 3D
printing farms. With the advent of modular AM, where small modules are produced using
multiple AM machines and assembled to create larger products, scheduling has become
a crucial consideration for optimizing the production process. Scheduling, a significant
aspect of traditional manufacturing processes, is increasingly gaining importance in AM as
it evolves toward formats resembling 3D printing farms. With the emergence of modular
AM production, where small modules are produced using multiple AM machines and then
assembled to create larger products, scheduling has become an important consideration
for optimizing the production process. Li et al. [13] addressed the production planning
problem in AM using a parallel production approach that assigns multiple parts to groups
and allocates them to machines. Ransikarbum et al. [14] used a mixed integer linear
programming method to optimize the allocation of modules to machines for multipurpose
optimization. Dvorak et al. [15] explained and modeled the key optimization problem of
minimizing the production time using layered manufacturing, operational research, and
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artificial intelligence. A mathematical approach was proposed for scheduling the build and
post-processing processes for decomposed parts in layered manufacturing [16].

In addition to these AM-specific studies, broader operational research (OR) techniques
offer valuable insights for scheduling in modular AM processes. Our work is similar to the
blocking job shop scheduling problem (BJSSP), which addresses scheduling delays caused
by resource constraints, particularly when tasks are blocked from proceeding to the next
stage due to limited machine capacity. Relevant studies include [17–19]. These studies
explore the complexities of blocking effects, which are also present in modular AM when
machines become bottlenecks.

Furthermore, recent advancements in hybrid algorithms, such as the hybrid differen-
tial evolution (HDE) algorithm [20], have been proposed to handle resource-constrained
project scheduling with flexible project structures. The combination of differential evolution
and forward–backward improvement demonstrates strong potential for managing complex
scheduling problems in resource-limited environments. Similarly, the adaptive large neigh-
borhood search with constraint programming (ALNS-CP) algorithm was proposed for
flexible job shop scheduling [21], which provides an efficient approach to address multiple
resource constraints in production planning. An improved evolutionary algorithm for
parallel batch processing machine scheduling was introduced [22], which combines GAs
with heuristic placement strategies to optimize both part allocation and placement in AM
systems. Rohaninejad et al. [23] also developed a hybrid learning-based meta-heuristic
algorithm for the scheduling of an AM system consisting of parallel SLM machines, com-
bining NSGA-II with k-means clustering and a regression neural network to enhance the
scheduling efficiency. These methods can be particularly useful in modular AM, where
tasks must be efficiently scheduled across multiple machines with varying capabilities.

Lastly, as the importance of production planning for AM has grown, it has become
important to accurately predict the production time for 3D printing. To address this
problem, machine learning-based predictions have been developed to facilitate efficient
production planning [24,25].

In this paper, the objective of scheduling optimization is to minimize the total produc-
tion time, known as the makespan, by simultaneously making module assignment and
sequencing decisions. Figure 1 illustrates the optimization problem.
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In defining the mathematical model, we make the following assumptions: (1) the
required production time for each module is known, (2) multiple identical machines are
used, (3) the production setup time is uniform, and (4) each machine can produce only one
module at a time. Based on these assumptions, the model is constructed, incorporating
flexible production start times and task time limits.

Let us consider an example problem involving two AM machines and four modules,
each with different production times, as shown in Table 1. When these modules are
assigned to the two machines, various schedules can be created depending on the allocation
and sequencing of these modules, as illustrated in Figure 2. The numbers on the bar
graph represent each module number and the red dotted line represents the production
completion time. As shown in Figure 2a, the Gantt chart illustrates an example where
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modules 1 and 3 are produced sequentially on printer 1, while modules 2 and 4 are
produced sequentially on printer 2. Similarly, Figure 2b–d depict Gantt charts representing
different cases of module assignments and production sequences on the printers. These
examples demonstrate how the total production time varies depending on the assignment
and production sequence of the modules.

Table 1. Required build time of modules.

Module Index 1 2 3 4

Time (minute) 500 700 800 900
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However, the previous examples did not consider workers’ available time. Figure 3
shows workers’ available time, divided into start and finish times. The production start time
for each module must fit within these divisions. Figure 4a–d show the revised schedules
adjusted for workers’ availability based on the initial schedules shown in Figure 2a–d.
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The adjusted completion times in Figure 4 reveal an interesting result. Despite identical
module assignments and sequencing decisions, the completion times differ significantly.
While Figure 2d initially shows the shortest production time without considering workers’
availability, Figure 4a becomes the shortest when accounting for workers’ available time.
This demonstrates that the makespan can vary significantly when solutions derived without
considering workers’ availability are implemented in real-world scenarios.

3. Hybrid Method for Parallel Production Scheduling for Additive Manufacturing
3.1. Mathematic Definition Using Linear Programming

To solve the module assignment and sequencing problem, we propose a network-
based model commonly used in scheduling problems, as seen in works like Choi [26].
This model comprises nodes and arcs, as illustrated in Figure 5. In this context, each
network corresponds to a machine, with nodes representing modules and arcs indicating
the production sequence. The source node signifies the starting point of production, and
the sink node represents the endpoint. Other nodes represent modules. Each module must
be processed exactly once and cannot revisit the same node. An arc originating from the
source node and connecting to a module node indicates the commencement of production
for that module. Conversely, an arc leading from a module node to the sink node signifies
the completion of production of the machine. Additionally, the sets Apo, Api, Adh are all
subsets of set A, in which Apo represents the arcs going out from the source node to module
nodes, Api represents the arcs going into the sink node from the module nodes, and Adh
represents the arcs between the modules.
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.

We mathematically describe the optimization problem using the following sets, pa-
rameters, and variables.

Sets:
N Nodes, indexed by i or j
J Nodes associated with modules, indexed by i or j
R AM machines, indexed by k
A Arcs, indexed by (i, j)

Apo Pull-out arcs, indexed by (i, j)
Api Pull-in arcs, indexed by (i, j)
Adh Deadhead arcs, indexed by (i, j)
D Divisions, indexed by d

Parameters:
TBUILD

i The production time of module i
TST

d Start time of division d
TFN

d Finish time of division d
M The big number

Variables:
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xijk 1 if arc (i, j) of AM machine k is selected, 0 otherwise
yid 1 if division d selected by module i, 0 otherwise
ui Production start time of module i
z The latest completion time among the AM machines

Model:
Minimize z (1)

s.t. ∑
k∈R

∑
(i,j)∈Apo∪Adh

xijk = 1 j ∈ J (2)

∑
(i,j)∈Apo

xijk = ∑
(i,j)∈Api

xijk k ∈ R (3)

∑
(i,j)∈Apo

xijk ≤ 1 k ∈ R (4)

∑
(i,j)∈Apo∪Adh

xijk = ∑
(i,j)∈Api∪Adh

xjik j ∈ J, k ∈ R (5)

∑
(i,j)∈Adh

xijk ≤ M ∑
(i,j)∈Apo

xijk k ∈ R (6)

ui + TBUILD
i ≤ z i ∈ J (7)

ui + TBUILD
i ≤ uj + M

(
1 − xijk

)
(i, j) ∈ A, k ∈ R (8)

∑
d∈D

yid = 1 i ∈ J (9)

∑
d∈D

TST
d yid ≤ ui ≤ ∑

d∈D
TFN

d yid i ∈ J (10)

xijk ∈ {0, 1} (i, j) ∈ A, k ∈ R (11)

0 ≤ ui i ∈ N (12)

Equation (1) is the objective function of this model, which aims to minimize the module
z that is produced the latest. Equations (2)–(12) represent the production constraints of
multiple AM machines using a network model. Equation (2) indicates that each module
must be produced once, ensuring that all the modules are produced. Equations (3)–(6)
represent network flow conservation constraints. Equation (3) states that the number of
arcs entering the sink node should be equal to the number of arcs leaving the source node.
Equation (4) represents a constraint in which each machine should have only one arc from
the source node to a different node. Equation (5) indicates that the number of arcs assigned
to the source and module nodes is equal to the number of arcs assigned to the sink module
node. Equation (6) is a constraint that mandates the existence of an arc leading to the
sink node if there is an arc between the modules in each machine. Equation (7) sets the
start time of each module as ui and defines z as the sum of the production time and the
module that takes the latest time to produce. Equation (8) is a constraint that requires
the production start time of module j to be after the production start time of the previous
module i. Constraints (9) and (10) are defined to limit the working times. In this model, the
concept of segments has been introduced. The available and unavailable working times are
also segmented, and the production start time of each module must be within the feasible
time division. Equation (9) is a constraint that requires each module to belong to one of
the divisions, and Equation (10) is a constraint that requires the production start time of
each module to be within the specified division range. Equations (11) and (12) represent
constraints on the range of variables.
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3.2. Hybrid Method to Overcome the Size Limitations of Linear Programming

LP offers the advantage of mathematically proving the optimality of solutions and
providing quick results, making it a powerful tool for optimization problems. However,
the optimization time for LP increases exponentially as the problem size grows. To address
this limitation, we adopted a GA as an alternative method for scenarios where the number
of modules exceeds what LP can handle in a reasonable time. GAs are well known for
their effectiveness in finding solutions for complex problems with various constraints due
to their adaptability. However, despite their global search capabilities, GAs often require
relatively long processing times for simpler problems and can become stuck in local optima.

To leverage the strengths of both LP and GAs, we employ a hybrid method. The LP is
used for problems when the problem size is below a certain threshold, and the GA is used
when the problem size exceeds this threshold. We conducted experiments to determine
the appropriate threshold number, investigating the computation times as the problem
size increased. As shown in Figure 6a, the experimental results indicate that when the
number of modules is 14, the computation is completed in approximately 1 s. However,
when the number of modules increases to 15, the computation time sharply rises to around
1500 s. This significant increase is due to the rapid growth in computational complexity
as the number of modules increases. Therefore, we set 15 modules as the threshold value.
Based on this threshold, LP is applied to problems with fewer than 15 modules, while the
GA optimization method, as illustrated in Figure 6b, is employed for problems with 15 or
more modules.
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It is crucial to represent the solutions effectively, which is determined by the chro-
mosome structure in the GA. Figure 7 illustrates the chromosome structure used in the
GA. Each gene represents a module, containing information about the machine assigned
to build the module and its production priority on that machine. The priority is a value
between 0 and 1.

The chromosome representation scheme shown in Figure 7 illustrates how each gene
corresponds to a specific module. Each gene contains information about the machine to
which the module is assigned and the production priority of that module on the machine.
After grouping the modules by their assigned machine, the priority values of the modules
are compared within each group. Modules with lower priority values are produced first.
This process is repeated across all the machines to determine the final allocation and
production order. During the initial population generation, gene values are assigned
randomly, which may result in imbalances, such as some machines being overloaded with
modules while others have none. These initial schedules are then adjusted to consider
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workers’ available time for starting production tasks. Figures 7 and 8 illustrate this schedule
conversion. Figure 8a shows the allocation of modules to machines and their arrangement
by priority without considering worker’s available time. Figure 8b illustrates the adjusted
schedule that accounts for worker’s available time.
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The GA employs a one-point crossover strategy, where the cutting point can occur
anywhere along the chromosome. Figure 9 illustrates an example of one-point crossover,
with the cutting point located in the middle of the parent chromosomes.
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During mutation, the GA randomly determines the number of genes to be altered
and selects those genes accordingly. The selected genes are then replaced with randomly
generated genes. This process helps in achieving global optimization. The overall flow of
the GA is depicted in Figure 10.
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4. Case Study

In the case study, we selected the ship model from the previous study by Choi et al. [3]
and applied our proposed method to its production. The ship’s dimensions, including the
length overall (L.O.A), length between perpendiculars (L.B.P), breadth (B), depth (D), and
draft (T), are provided in Table 2.

Table 2. Detailed specifications of the ship model [3].

Subject Ship Model (Scale Ratio, λ = 10)

L.O.A [m] 17.6 1.760
L.B.P [m] 12.32 1.232

B [m] 3.98 0.398
D [m] 0.95 0.095
T [m] 0.66 0.066

The authors removed the ship’s interior and divided the ship into 32 modules to fit
six identical AM machines with a maximum size of 300 × 250 × 250 mm, as shown in
Figure 11.
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The production time for each module is specified in Table 3. To account for potential
uncertainties in production, such as variations in the operating conditions and machine
performance, an additional 5% buffer time allowance has been included for each module.
Each module must be assigned to one of the six AM machines for production, and each
module is produced once. [3] used a heuristic method for the production scheduling
problem of the modular ship model. The heuristic method assigned the modules using
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the module index to the available machines in order. Using this heuristic approach, the
makespan was 9813 min.

Table 3. Production time required for each module.

Module Index Time (min) Module Index Time (min)

1, 17 1483 9, 25 1534
2, 18 1711 10, 26 1179
3, 19 1038 11, 27 1408
4, 20 1064 12, 28 1922
5, 21 1510 13, 29 2209
6, 22 873 14, 30 2613
7, 23 1575 15, 31 756
8, 24 745 16, 32 756

To validate the performance of the proposed method, we applied it to the same schedul-
ing problem. Given that the ship model comprises 32 modules, exceeding the threshold of
15, the hybrid method utilized the GA. The optimization algorithms were executed on a
CPU with an Intel(R) Core(TM) i7-13700HX processor operating at 3.70 GHz and 16.0 GB
of memory. The GA hyperparameters were configured as follows: the population size was
50, with 7 elite individuals retained from the top-performing solutions of the previous gen-
eration, 27 individuals generated through crossover, and 16 individuals generated through
mutation. The termination criterion for the GA was set to halt reproduction after generating
3000 solutions. The convergence curve for each generation is shown in Figure 12.
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Due to the stochastic nature of the GA, the results can vary with each run. Empirically,
repeating the GA 10 times yielded the best solution. Each iteration took an average of
27 s, depending on the number of modules. This demonstrated that the scheduling results
could be obtained in a sufficiently short time. Additionally, by running the GA multiple
times, the best, worst, and average results were recorded. The makespan through the GA
was 8481 min for the best result, 9396 min for the worst result, and 8974.1 min on average.
Compared to the heuristic approach, this shows a maximum difference of 1332 min, or
approximately 13.58%. The comparison of the scheduling results is described alongside a
Gantt chart in Figure 13.
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We also applied the proposed method to a different problem, where the same ship
model was divided into larger modules, assuming different numbers of machines and build
capabilities. Under these new assumptions, the ship model was divided into 12 modules to
be assigned to three machines. Table 4 presents the production times for each module.

Table 4. Module production times.

Module Index 1 2 3 4 5 6 7 8 9 10 11 12

Time (minutes) 1483 1711 1711 1038 1064 1064 1510 1510 873 1575 1575 745
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For this problem, the hybrid method used LP instead of the GA because the number
of modules was below the threshold. The optimal schedule derived by the hybrid method
is presented in Figure 14. Using LP ensured the optimality of the solution, and the opti-
mization process took only 0.2 s, highlighting the efficiency of LP for problem sizes under
the threshold for AM processes.
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In comparison, the makespan derived by the heuristic method was 5965 min, whereas
the proposed method yielded a makespan of 5358 min. This reduction of 607 min (approxi-
mately 10.02%) demonstrates the effectiveness of the proposed method in optimizing the
production schedule, both in terms of the computation time and the solution quality.

5. Conclusions

This paper presented a hybrid method that employs either linear programming (LP) or
a genetic algorithm (GA) to tackle the parallel production scheduling problem in additive
manufacturing (AM) for modularized ship models, taking into account workers’ available
time. While some may view the scheduling of ship model production as non-critical,
ineffective scheduling can lead to significant wasted time. For manufacturers operating 3D
printing farms and producing multiple ship models for various customers, the proposed
method is particularly powerful because it can determine the optimal schedule under
conditions involving numerous printers and modules. This research provides a solid
foundation for further exploration and development.

The case study demonstrated the proposed method’s effectiveness by applying it to a
ship model from earlier research [3]. The new method significantly reduced the makespan
when compared to the heuristic approach. In a scenario involving 32 modules, the GA-
derived schedule achieved the best makespan of 8481 min, a substantial improvement over
the heuristic method’s 9813 min. Furthermore, when the ship model was divided into
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12 larger modules and assigned to three machines, the hybrid method using LP resulted in
a makespan of 5358 min, compared to 5965 min with the heuristic method. This reduction
of 607 min (approximately 10.02%) underscores the method’s ability to optimize production
schedules effectively, both in terms of the computation time and the solution quality.

However, there is room for improvement. In this paper, we assumed fixed produc-
tion times and no failures. In practice, the estimated production time of modules can be
uncertain, and this uncertainty can vary depending on the operating software for the 3D
printers. To determine more robust solutions, the model needs to account for uncertainties
caused by estimation errors and potential production failures. In particular, addressing the
variability in production times is a crucial area for future research, as real-world manufac-
turing conditions often involve fluctuations due to machine performance and operational
factors. Incorporating this variability would significantly enhance the applicability and
robustness of the proposed scheduling method.

Moreover, this study did not consider potential scheduling conflicts due to pre-existing
tasks or maintenance schedules. In industrial settings, machines are often shared between
multiple tasks or undergo maintenance, leading to scheduling challenges. Future research
should incorporate these factors to further improve the real-world relevance and applica-
bility of the proposed method.

Additionally, we assumed the homogeneous build capabilities of 3D printers and no
production failures or pre-existing tasks. However, in real-world scenarios, companies
often operate a variety of 3D printers with different capacities and may encounter unex-
pected failures or have ongoing commitments that need to be managed. This diversity in
machine capabilities, along with the possibility of failures and varying availability, must
be considered to create a truly effective scheduling method. Future research will address
these factors to improve the robustness and real-world applicability of the proposed model.
While the proposed method has shown potential in controlled experimental settings, further
validation in real-world manufacturing environments is necessary. Testing the model in
diverse industrial settings will help assess its robustness and applicability under practical
conditions, where machine variability, production failures, and operational constraints
are prevalent. Such testing will ensure that the model can deliver optimized scheduling
solutions in real-world scenarios.

Lastly, an optimized solution can be achieved when the scheduling problem is handled
together with the module division problem. The scheduling results are highly depen-
dent on the module division decisions. Therefore, future research should integrate these
two consecutive problems into a single, unified problem to improve the overall efficiency
and effectiveness.
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10. Taşdemir, A.; Nohut, S. An overview of wire arc additive manufacturing (WAAM) in shipbuilding industry. Ships Offshore Struct.

2021, 16, 797–814. [CrossRef]
11. Chergui, A.; Hadj-Hamou, K.; Vignat, F. Production scheduling and nesting in additive manufacturing. Comput. Ind. Eng. 2018,

126, 292–301. [CrossRef]
12. Luo, L.; Baran, I.; Rusinkiewicz, S.; Matusik, W. Chopper. ACM Trans. Graph. 2012, 31, 129. [CrossRef]
13. Li, Q.; Kucukkoc, I.; Zhang, D.Z. Production planning in additive manufacturing and 3D printing. Comput. Oper. Res. 2017, 83,

157–172. [CrossRef]
14. Ransikarbum, K.; Ha, S.; Ma, J.; Kim, N. Multi-objective optimization analysis for part-to-Printer assignment in a network of 3D

fused deposition modeling. J. Manuf. Syst. 2017, 43, 35–46. [CrossRef]
15. Dvorak, F.; Micali, M.; Mathieug, M. Planning and scheduling in additive manufacturing. Intel. Artif. 2018, 21, 40–52.

[CrossRef]
16. Oh, Y.; Cho, Y. Scheduling of build and post processes for decomposed parts in additive manufacturing. Addit. Manuf. 2022,

59, 103164. [CrossRef]
17. Dabah, A.; Bendjoudi, A.; AitZai, A.; Taboudjemat, N.N. Efficient Parallel Tabu Search for the Blocking Job Shop Scheduling

Problem. Soft Comput. 2019, 23, 13283–13295. [CrossRef]
18. Mogali, J.K.; Barbulescu, L.; Smith, S.F. Efficient Primal Heuristic Updates for the Blocking Job Shop Problem. Eur. J. Oper. Res.

2021, 295, 82–101. [CrossRef]
19. Oddi, A.; Rasconi, R.; Cesta, A.; Smith, S. Iterative Improvement Algorithms for the Blocking Job Shop. In Proceedings of

the International Conference on Automated Planning and Scheduling, Atibaia, Sao Paulo, Brazil, 25–29 June 2012; Volume 22,
pp. 199–206.

20. van der Beek, T.; Souravlias, D.; van Essen, J.; Pruyn, J.; Aardal, K. Hybrid differential evolution algorithm for the resource
constrained project scheduling problem with a flexible project structure and consumption and production of resources. Eur. J.
Oper. Res. 2024, 313, 92–111. [CrossRef]

21. Kasapidis, G.A.; Paraskevopoulos, D.C.; Mourtos, I.; Repoussis, P.P. A unified solution framework for flexible job shop scheduling
problems with multiple resource constraints. Eur. J. Oper. Res. 2024, 320, 479–495. [CrossRef]

22. Zhang, J.; Yao, X.; Li, Y. Improved evolutionary algorithm for parallel batch processing machine scheduling in additive manufac-
turing. Int. J. Prod. Res. 2020, 58, 2263–2282. [CrossRef]

23. Rohaninejad, M.; Tavakkoli-Moghaddam, R.; Vahedi-Nouri, B.; Hanzálek, Z.; Shirazian, S. A hybrid learning-based meta-heuristic
algorithm for scheduling of an additive manufacturing system consisting of parallel SLM machines. Int. J. Prod. Res. 2022, 60,
6205–6225. [CrossRef]

24. Di Angelo, L.; Di Stefano, P. A neural network-based build time estimator for layer manufactured objects. Int. J. Adv. Manuf.
Technol. 2011, 57, 215–224. [CrossRef]

25. Oh, Y.; Sharp, M.; Sprock, T.; Kwon, S. Neural network-based build time estimation for additive manufacturing: A performance
comparison. J. Comput. Des. Eng. 2021, 8, 1243–1256. [CrossRef]

26. Choi, M. A hybrid method for the determination of the minimum number of transport vehicles in a shipyard. J. Korean Soc. Mar.
Eng. 2021, 45, 51–59. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1177/0731684414530790
https://doi.org/10.1016/j.oceaneng.2024.117685
https://doi.org/10.1016/j.mattod.2017.07.001
https://doi.org/10.1007/s11947-015-1528-6
https://doi.org/10.1080/17452759.2015.1111519
https://doi.org/10.1016/j.bushor.2017.05.011
https://doi.org/10.3390/machines8040084
https://doi.org/10.1080/17445302.2020.1786232
https://doi.org/10.1016/j.cie.2018.09.048
https://doi.org/10.1145/2366145.2366148
https://doi.org/10.1016/j.cor.2017.01.013
https://doi.org/10.1016/j.jmsy.2017.02.012
https://doi.org/10.4114/intartif.vol21iss62pp40-52
https://doi.org/10.1016/j.addma.2022.103164
https://doi.org/10.1007/s00500-019-03871-1
https://doi.org/10.1016/j.ejor.2021.02.051
https://doi.org/10.1016/j.ejor.2023.07.043
https://doi.org/10.1016/j.ejor.2024.08.010
https://doi.org/10.1080/00207543.2019.1617447
https://doi.org/10.1080/00207543.2021.1987550
https://doi.org/10.1007/s00170-011-3284-8
https://doi.org/10.1093/jcde/qwab044
https://doi.org/10.5916/jamet.2021.45.2.51

	Introduction 
	Scheduling Challenges in Additive Manufacturing with Consideration of Workers’ Availability 
	Hybrid Method for Parallel Production Scheduling for Additive Manufacturing 
	Mathematic Definition Using Linear Programming 
	Hybrid Method to Overcome the Size Limitations of Linear Programming 

	Case Study 
	Conclusions 
	References

