Microbial Mat Dominated by Amphora spp. and Their Adaptative Strategies in an Arsenic-Rich Brackish Pond
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Diatom Isolation
2.3. Phenotypic and Genotypic Characterization
2.4. Effects of the Presence of AsIII and AsV on Diatoms’ Growth
2.5. Adhesion of Diatoms and Biofilm Formation on the Abiotic Surface in the Presence of AsIII and AsV
2.6. Photosynthetic Pigments’ (Chlorophyll a and c) Concentrations in Biofilms in the Presence of AsIII or AsV
2.7. Statistical Analysis
3. Results
3.1. Diatom Isolation, Phenotypic and Genotypic Characterization
3.2. Effects of AsIII and AsV on Diatoms’ Growth
3.3. Effects of AsIII and AsV on Biofilm Formation
3.4. Photosynthetic Pigments’ (Chlorophyll a and c) Concentrations in Biofilms in the Presence of AsIII and AsV
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garelick, H.; Jones, H.; Dybowska, A.; Valsami-Jones, E. Arsenic Pollution Sources. In Reviews of Environmental Contamination Arsenic Pollution and Remediation: An International Perspective; Garelick, H., Jones, H., Eds.; Springer Science & Business Media: New York, NY, USA, 2008; Volume 197, pp. 17–60. [Google Scholar]
- Oremland, R.S.; Stolz, J.F. The Ecology of Arsenic. Science 2003, 300, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Shaji, E.; Santosh, M.; Sarath, K.V.; Prakash, P.; Deepchand, V.; Divya, B.V. Arsenic contamination of roundwater: A global synopsis with focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. Arsenic in groundwater and the environment. In Essentials of Medical Geology; Selinus, O., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 279–310. [Google Scholar]
- Sharma, V.K.; Sohn, M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environ. Int. 2009, 35, 743–759. [Google Scholar] [CrossRef] [PubMed]
- Casentini, B.; Gallo, M.; Baldi, F. Arsenate and arsenite removal from contaminated water by iron oxides nanoparticles formed inside a bacterial exopolysaccharide. J. Environ. Chem. Eng. 2019, 7, 102908. [Google Scholar] [CrossRef]
- Barral-Fraga, L.; Morin, S.; Rovira, M.D.M.; Urrea, G.; Magellan, K.; Guasch, H. Short-term arsenic exposure reduces diatom cell size in biofilm communities. Environ. Sci. Pollut. Res. 2016, 23, 4257–4270. [Google Scholar] [CrossRef]
- Spanò, A.; Zammuto, V.; Macrì, A.; Agostino, E.; Nicolò, M.S.; Scala, A.; Trombetta, D.; Smeriglio, A.; Ingegneri, M.; Caccamo, M.T.; et al. Arsenic adsorption and toxicity reduction of an exopolysaccharide produced by Bacillus licheniformis B3-15 of shallow hydrothermal vent origin. J. Mar. Sci. Eng. 2023, 11, 325. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasegawa, H.; Lim, R.P. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ. Res. 2012, 116, 118–135. [Google Scholar] [CrossRef]
- Gupta, P.; Diwan, B. Bacterial Exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. 2017, 13, 58–71. [Google Scholar] [CrossRef]
- Papry, R.I.; Ishii, K.; Mamun, M.A.A.; Miah, S.; Naito, K.; Mashio, A.S.; Maki, T.; Hasegawa, H. Arsenic biotransformation potential of six marine diatom species: Effect of temperature and salinity. Sci. Rep. 2019, 9, 10226. [Google Scholar] [CrossRef]
- Levy, J.L.; Stauber, J.L.; Adams, M.S.; Maher, W.A.; Kirby, J.K.; Jolley, D.F. Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ. Toxicol. Chem. 2005, 24, 2630–2639. [Google Scholar] [CrossRef]
- Olguín, E.J.; Sánchez-Galván, G. Heavy metal removal in phytofiltration and phycoremediation: The need to differentiate between bioadsorption and bioaccumulation. New Biotechnol. 2012, 30, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Ye, Z.; Huang, L.; Zhang, C.; Guo, Y.; Zhang, W. Arsenic Occurrence and cycling in the aquatic environment: A comparison between freshwater and seawater. Water 2022, 15, 147. [Google Scholar] [CrossRef]
- Monds, R.D.; O’Toole, G.A. The developmental model of microbial biofilms: Ten years of a paradigm up for review. Trends Microbiol. 2009, 17, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Zammuto, V.; Spanò, A.; Agostino, E.; Macrì, A.; De Pasquale, C.; Ferlazzo, G.; Rizzo, M.G.; Nicolò, M.S.; Guglielmino, S.; Gugliandolo, C. Anti-Bacterial adhesion on abiotic and biotic surfaces of the exopolysaccharide from the marine Bacillus licheniformis B3-15. Mar. Drugs 2023, 21, 313. [Google Scholar] [CrossRef]
- Bolhuis, H.; Cretoiu, M.S.; Stal, L.J. Molecular ecology of microbial mats. FEMS Microbiol. Ecol. 2014, 90, 335–350. [Google Scholar]
- Magaletti, E.; Urbani, R.; Sist, P.; Ferrari, C.R.; Cicero, A.M. Abundance and chemical characterization of extracellular carbohydrates released by the marine diatom Cylindrotheca fusiformis under N- and P-limitation. Eur. J. Phycol. 2004, 39, 133–142. [Google Scholar] [CrossRef]
- Aslam, S.; Cresswell-Maynard, T.; Thomas, D.N.; Underwood, G.J.C. Production and characterization of the intra-and extracellular carbohydrates and polymeric substances (EPS) of three sea-ice diatom species, and evidence for a cryoprotective role for EPS. J. Phycol. 2012, 48, 1494–1509. [Google Scholar] [CrossRef]
- Caruso, A.; Gargano, M.E.; Valenti, D.; Fiasconaro, A.; Spagnolo, B. Cyclic fluctuations, climatic changes and role of noise in planktonic foraminifera in the mediterranean sea. Fluct. Noise Lett. 2005, 5, 349–355. [Google Scholar] [CrossRef]
- Caruso, G.; Leonardi, M.; Monticelli, L.S.; Decembrini, F.; Azzaro, F.; Crisafi, E.; Zappal, G.; Bergamasco, A.; Vizzini, S. Assessment of the ecological status of transitional waters in Sicily (Italy): First characterisation and classification according to a multiparametric approach. Mar. Pollut. Bull. 2010, 60, 1682–1690. [Google Scholar] [CrossRef]
- Leonardi, M.; Azzaro, F.; Azzaro, M.; Decembrini, F.; Monticelli, L. Ciclo della sostanza organica nell’ecosistema lagunare di Tindari (ME) Biol. Mar. Mediterr. 2000, 7, 222–232. [Google Scholar]
- Leonardi, M.; Giacobbe, S. The Oliveri-Tindari Lagoon (Messina, Italy): Evolution of the trophic-sedimentary environment and mollusc communities in the last twenty years. In Mediterranean Ecosystems; Faranda, F.M., Guglielmo, L., Spezie, G., Eds.; Springer: Milano, Italy, 2001; pp. 305–310. [Google Scholar]
- Mazzola, A.; Bergamasco, A.; Calvo, S.; Caruso, G.; Chemello, R.; Colombo, F.; Giaccone, G.; Gianguzza, P.; Guglielmo, L.; Leonardi, M.; et al. Sicilian transitional waters: Current status and future development. Chem. Ecol. 2010, 26, 267–283. [Google Scholar] [CrossRef]
- Leonardi, M.; Azzaro, F.; Galletta, M.; Giacobbe, M.G.; Masò, M.; Penna, A. Time-series evolution of toxic organisms and related environmental factors in a brackish ecosystem of the Mediterranean Sea. Hydrobiologia 2006, 555, 299–305. [Google Scholar] [CrossRef]
- Leonardi, M.; Bergamasco, A.; Giacobbe, S.; Azzaro, F.; Cosentino, A.; Crupi, A.; Lanza, S.; Randazzo, G.; Crisafi, E. A four decades multiparametric investigation in a Mediterranean dynamic ecosystem: Mollusc assemblages answer to the environmental changes. Estuar. Coast. Shelf Sci. 2020, 234, 106625. [Google Scholar] [CrossRef]
- Signa, G.; Mazzola, A.; Vizzini, S. Effects of a small seagull colony on trophic status and primary production in a mediterranean coastal system (Marinello Ponds, Italy). Estuar. Coast. Shelf Sci. 2012, 111, 27–34. [Google Scholar] [CrossRef]
- Ruta, M.; Pepi, M.; Franchi, E.; Renzi, M.; Volterrani, M.; Perra, G.; Guerranti, C.; Zanini, A.; Focardi, S.E. Contamination levels and state assessment in the lakes of the Oliveri-Tindari Lagoon (North-Eastern Sicily, Italy). Chem. Ecol. 2009, 25, 27–38. [Google Scholar] [CrossRef]
- Ruta, M.; Pepi, M.; Gaggi, C.; Bernardini, E.; Focardi, S.; Magaldi, E.; Gasperini, S.; Volterrani, M.; Zanini, A.; Focardi, S.E. As (V)-reduction to as (III) by arsenic-resistant Bacillus spp. bacterial strains isolated from low-contaminated sediments of the Oliveri-Tindari Lagoon, Italy. Chem. Ecol. 2011, 27, 207–219. [Google Scholar] [CrossRef]
- Atzori, P.; Cirrincione, R.; Kern, H.; Mazzoleni, P.; Pezzino, A.; Pugliesi, G.; Pasturo, R.; Trombetta, A. The abundance of 53 elements and petrovolumetric models of the crust in North-Eastern Peloritani mountains (Site 8). Rend. Lincei 2003, 22, 309–358. [Google Scholar]
- Signa, G.; Tramati, C.D.; Vizzini, S. Contamination by trace metals and their trophic transfer to the biota in a Mediterranean coastal system affected by gull guano. Mar. Ecol. Prog. Ser. 2013, 479, 13–24. [Google Scholar] [CrossRef]
- Ryther, J.H.; Guillard, R.R.L. Studies of marine planktonic diatoms: II. Use of Cyclotella nana Hustedt for assays of vitamin B12 in sea water. Can. J. Microbiol. 1962, 8, 437–445. [Google Scholar] [CrossRef]
- Sánchez, C.; Cristóbal, G.; Bueno, G. Diatom identification including life cycle stages through morphological and texture descriptors. PeerJ 2019, 7, e6770. [Google Scholar] [CrossRef]
- Yuan, J.; Li, M.; Lin, S. An improved DNA extraction method for efficient and quantitative recovery of phytoplankton diversity in natural assemblages. PLoS ONE 2015, 10, e0133060. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, I.; Terán, P.; Guamán-Burneo, C.; González, N.; Cruz, A.; Castillejo, P. DNA barcoding approach to characterize microalgae isolated from freshwater systems in Ecuador. Neotrop. Biodivers. 2021, 7, 170–183. [Google Scholar] [CrossRef]
- Lee, S.R.; Oak, J.H.; Chung, I.K.; Lee, J.A. Effective molecular examination of eukaryotic plankton species diversity in environmental seawater using environmental PCR, PCR-RFLP, and sequencing. J. Appl. Phycol. 2010, 22, 699–707. [Google Scholar] [CrossRef]
- Tong, C.Y.; Lew, J.K.; Derek, C.J.C. Algal extracellular organic matter pre-treatment enhances microalgal biofilm adhesion onto microporous substrate. Chemosphere 2022, 307, 135740. [Google Scholar] [CrossRef] [PubMed]
- Abramoff, M.D.; Magelhaes, P.J.; Ram, S.J. Image processing with Image. J. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Zecher, K.; Jagmann, N.; Seemann, P.; Philipp, B. An efficient screening method for the isolation of heterotrophic bacteria influencing growth of diatoms under photoautotrophic conditions. J. Microbiol. Methods 2015, 119, 154–162. [Google Scholar] [CrossRef]
- Jeffrey, S.T.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Prieto-Barajas, C.M.; Valencia-Cantero, E.; Santoyo, G. Microbial mat ecosystems: Structure types, functional diversity, and biotechnological application. Electron. J. Biotechnol. 2018, 31, 48–56. [Google Scholar] [CrossRef]
- Barral-Fraga, L.; Barral, M.T.; MacNeill, K.L.; Martiñá-Prieto, D.; Morin, S.; Rodríguez-Castro, M.C.; Tuulaikhuu, B.-A.; Guasch, H. Biotic and abiotic factors influencing arsenic biogeochemistry and toxicity in fluvial ecosystems: A review. Int. J. Environ. Res. Public Health 2020, 17, 2331. [Google Scholar] [CrossRef]
- Bhosle, N.B.; Subhash, S.S.; Garg, A.; Wagh, A.B.; Evans, L.V. Chemical characterization of exopolysaccharides from the marine fouling diatom Amphora coffeaeformis. Biofouling 1996, 10, 301–307. [Google Scholar] [CrossRef]
- Mitbavkar, S.; Anil, A.C. Diatoms of the microphytobenthic community in a tropical intertidal sand flat influenced by monsoons: Spatial and temporal variations. Mar. Biol. 2006, 148, 693–709. [Google Scholar] [CrossRef]
- Mitbavkar, S.; Anil, A.C. Species interactions within a fouling diatom community: Roles of nutrients, initial inoculum and competitive strategies. Biofouling 2007, 23, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Stratton, G.W.; Corke, C.T. The effect of cadmium ions on the growth, photosynthesis and nitrogen activity of Anabaena inaequalis. Can. J. Microbiol. 1979, 25, 1094–1099. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Rai, L.C. Cr and Hg toxicity assessed in situ using the structural and functional-characteristics of algal communities. Environ. Toxicol. Water Qual. 1991, 6, 97–107. [Google Scholar] [CrossRef]
- Anantharaj, K.; Govindasamy, C.; Natanamurugaraj, G.; Jeyachandran, S. Effect of heavy metals on marine diatom Amphora coffeaeformis (Agardh. Kutz). Glob. J. Environ. Res. 2011, 5, 112–117. [Google Scholar]
- Naveed, S.; Li, C.; Zhang, J.; Zhang, C.; Ge, Y. Sorption and transformation of arsenic by extracellular polymeric substances extracted from Synechocystis sp. PCC6803. Ecotoxicol. Environ. Saf. 2020, 206, 111200. [Google Scholar] [CrossRef]
- Chow, S.; Lee, C.; Engel, A. The influence of extracellular polysaccharides, growth rate, and free coccoliths on the coagulation efficiency of Emiliania huxleyi. Mar. Chem. 2015, 175, 5–17. [Google Scholar] [CrossRef]
- Leandro, S.M.; Gil, M.C.; Delgadillo, I. Partial characterisation of exopolysaccharides exudated by planktonic diatoms maintained in batch cultures. Acta Oecol. 2003, 24, 49–55. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, C.; Santschi, P.H. Chemical composition and 234Th (IV) binding of extracellular polymeric substances (EPS) produced by the marine diatom Amphora sp. Mar. Chem. 2008, 112, 81–92. [Google Scholar] [CrossRef]
- Coste, M.; Boutry, S.; Tison-Rosebery, J.; Delmas, F. Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006). Ecol. Indic. 2009, 9, 621–650. [Google Scholar] [CrossRef]
- Rodríguez-Castro, M.C.; Urrea, G.; Guasch, H. Influence of the interaction between phosphate and arsenate on periphyton’s growth and its nutrient uptake capacity. Sci. Total Environ. 2015, 503, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Mekkawy, I.A.; Mahmoud, U.M.; Moneeb, R.H.; Sayed, A.E.D.H. Significance assessment of Amphora coffeaeformis in arsenic-induced hemato-biochemical alterations of African catfish (Clarias gariepinus). Front. Mar. Sci. 2020, 7, 191. [Google Scholar] [CrossRef]
Strain | Phylogenetic Affiliation | BLAST Similarity (%) | Accession No. |
---|---|---|---|
24 | Amphora capitellata 10S149 isolate D | 99.8 | JQ886459.1 |
26 | Amphora coffeaeformis strain NZmm1W4 | 100 | KY054933.1 |
27 | Amphora montana isolate DHmm3W2 | 100 | KU561121.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agostino, E.; Macrì, A.; Zammuto, V.; D’Alessandro, M.; Nicolò, M.S.; Giacobbe, S.; Gugliandolo, C. Microbial Mat Dominated by Amphora spp. and Their Adaptative Strategies in an Arsenic-Rich Brackish Pond. J. Mar. Sci. Eng. 2024, 12, 1966. https://doi.org/10.3390/jmse12111966
Agostino E, Macrì A, Zammuto V, D’Alessandro M, Nicolò MS, Giacobbe S, Gugliandolo C. Microbial Mat Dominated by Amphora spp. and Their Adaptative Strategies in an Arsenic-Rich Brackish Pond. Journal of Marine Science and Engineering. 2024; 12(11):1966. https://doi.org/10.3390/jmse12111966
Chicago/Turabian StyleAgostino, Eleonora, Angela Macrì, Vincenzo Zammuto, Michela D’Alessandro, Marco Sebastiano Nicolò, Salvatore Giacobbe, and Concetta Gugliandolo. 2024. "Microbial Mat Dominated by Amphora spp. and Their Adaptative Strategies in an Arsenic-Rich Brackish Pond" Journal of Marine Science and Engineering 12, no. 11: 1966. https://doi.org/10.3390/jmse12111966
APA StyleAgostino, E., Macrì, A., Zammuto, V., D’Alessandro, M., Nicolò, M. S., Giacobbe, S., & Gugliandolo, C. (2024). Microbial Mat Dominated by Amphora spp. and Their Adaptative Strategies in an Arsenic-Rich Brackish Pond. Journal of Marine Science and Engineering, 12(11), 1966. https://doi.org/10.3390/jmse12111966