Analysis of Downstream Sediment Transport Trends Based on In Situ Data and Numerical Simulation
Abstract
:1. Introduction
2. Study Area and Data
3. Materials and Methods
3.1. Sediment Sampling
3.2. GSTA Model for Sediment Transport Trend Analysis
3.3. Hydrodynamic Modeling
4. Results
4.1. Sediment Types
4.2. Distribution Characteristics of Sediment Grain Size Parameters
4.3. Sediment Dynamic Zoning
4.4. Sediment Transport Trend Analysis
5. Discussion
5.1. Implications of Sediment Grain Size Parameters
5.2. Sediment Dynamic Zoning and Its Significance
5.3. Interpretation of Sediment Transport Trends
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, F.Y.; Zhao, E.J. Damage mechanism and failure risk analysis of offshore pipelines subjected to impact loads from falling object, considering the soil variability. Mar. Struct. 2024, 93, 103544. [Google Scholar] [CrossRef]
- Sun, Q.L.; Wang, Q.; Shi, F.Y.; Alves, T.; Gao, S.; Xie, X.N.; Wu, S.G.; Li, J.B. Runup of landslide-generated tsunamis controlled by paleogeography and sea-level change. Commun. Earth Environ. 2022, 3, 244. [Google Scholar] [CrossRef]
- Zhao, E.J.; Dong, Y.K.; Tang, Y.Z.; Sun, J.K. Numerical investigation of hydrodynamic characteristics and local scour mechanism around submarine pipelines under joint effect of solitary waves and currents. Ocean. Eng. 2021, 222, 108553. [Google Scholar] [CrossRef]
- Zhao, E.J.; Qu, K.; Mu, L. Numerical study of morphological response of the sandy bed after tsunami-like wave overtopping an impermeable seawall. Ocean. Eng. 2019, 186, 106076. [Google Scholar] [CrossRef]
- Zhao, E.J.; Sun, J.K.; Tang, Y.Z.; Mu, L.; Jiang, H.Y. Numerical investigation of tsunami wave impacts on different coastal bridge decks using immersed boundary method. Ocean. Eng. 2020, 201, 107132. [Google Scholar] [CrossRef]
- Zhao, E.J.; Wu, Y.X.; Jiang, F.Y.; Wang, Y.; Zhang, Z.Y.; Nie, C.H. Numerical investigation on the influence of the complete tsunami-like wave on the tandem pipeline. Ocean. Eng. 2024, 294, 116697. [Google Scholar] [CrossRef]
- Brooks, H.L.; Steel, E.; Moore, M. Grain-Size Analysis of Ancient Deep-Marine Sediments Using Laser Diffraction. Front. Earth Sci. 2022, 10, 820866. [Google Scholar] [CrossRef]
- Dawelbeit, A.; Jaillard, E.; Eisawi, A. Grain size analysis of the latest Quaternary Kordofan Sand of Central Sudan: Depositional environment and mode of transportation. Aeolian Res. 2022, 55, 100785. [Google Scholar] [CrossRef]
- Eltijani, A.; Mohammed, M.A.A.; Abuobida, Y.; Yousif, I.M. Integrating CoDA and PCA for enhanced characterization of fluvial depositional processes: A case study of the Shendi formation, Sudan. Discov. Geosci. 2024, 2, 10. [Google Scholar] [CrossRef]
- Pszonka, J.; Sala, D. Application of the mineral liberation analysis (MLA) for extraction of grain size and shape measurements in siliciclastic sedimentary rocks. E3S Web Conf. 2018, 66, 02002. [Google Scholar] [CrossRef]
- Spychala, Y.T.; Ramaaker, T.A.B.; Eggenhuisen, J.T.; Grundvåg, S.A.; Pohl, F.; Wróblewska, S. Proximal to distal grain-size distribution of basin-floor lobes: A study from the Battfjellet Formation, Central Tertiary Basin, Svalbard. Depos. Rec. 2021, 8, 436–456. [Google Scholar] [CrossRef]
- Syvitski, J.P.; Vorosmarty, C.; Kettner, A.J. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Folk, R.L.; Ward, W.C. A Study in the Significance of Grain-Size Parameters. J. Sediment. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Pszonka, J.; Schulz, B. SEM Automated Mineralogy applied for the quantification of mineral and textural sorting in submarine sediment gravity flows. Gospod. Surowcami Miner.—Miner. Resour. Manag. 2022, 38, 105–131. [Google Scholar] [CrossRef]
- Shideler, G.L.; Ślączka, A.; Unrug, R.; Wendorff, M. Textural and mineralogical sorting relationships in Krosno Formation (Oligocene) turbidites, Polish Carpathian Mountains. J. Sediment. Petrol. 1975, 45, 44–56. [Google Scholar]
- McCave, I.N. Size sorting during transport and deposition of fine sediments: Sortable silt and flow speed. Dev. Sedimentol. 2008, 60, 121–142. [Google Scholar] [CrossRef]
- Paterson, G.A.; Heslop, D. New methods for unmixing sediment grain size data. Geochem. Geophys. Geosyst. 2015, 16, 4494–4506. [Google Scholar] [CrossRef]
- Pszonka, J.; Godlewski, P.; Fheed, A.; Dwornik, M.; Schulz, B.; Wendorff, M. Identification and quantification of intergranular volume using SEM automated mineralogy. Mar. Pet. Geol. 2024, 162, 106708. [Google Scholar] [CrossRef]
- Milliman, J.D.; Syvitski, J.P. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. J. Geol. 1992, 100, 525–544. [Google Scholar] [CrossRef]
- Qi, Y.L.; Yu, Q.; Gao, S.; Li, Z.Q.; Fang, X.; Guo, Y.H. Morphological evolution of river mouth spits: Wave effects and self-organization patterns. Estuar. Coast. Shelf Sci. 2021, 262, 107567. [Google Scholar] [CrossRef]
- Gao, S.; Collins, M.B. Analysis of Grain Size Trends, for Defining Sediment Transport Pathways in Marine Environments. J. Coast. Res. 1994, 10, 70–78. Available online: https://www.jstor.org/stable/4298194 (accessed on 10 October 2024).
- Gao, S.; Collins, M.; McLaren, P.; Bowles, D. A critique of the “McLaren Method” for defining sediment transport paths; discussion and reply. J. Sediment. Res. 1991, 61, 143–147. [Google Scholar] [CrossRef]
- Pedreros, R.; Howa, H.L.; Michel, D. Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas. Mar. Geol. 1996, 135, 35–49. [Google Scholar] [CrossRef]
- Xiao, X.; Shi, Y.H.; Feng, X.L.; Xu, Y.Q. Surface sediment characteristics and dynamics in beibu gulf. Period. Ocean. Univ. China 2016, 46, 83–89. [Google Scholar] [CrossRef]
- Kawakami, G.; Nishina, K.; Poizot, E. Dominant updriftward sediment transport on the updrift-side of a modern deflected delta, Ishikari coast, Hokkaido, Japan. Mar. Geol. 2021, 436, 106480. [Google Scholar] [CrossRef]
- Paladino, I.M.; Mengatto, M.F.; Mahiques, M.M.; Noernberg, M.A.; Nagai, R.H. End-member modeling and sediment trend analysis as tools for sedimentary processes inference in a subtropical estuary. Estuar. Coast. Shelf Sci. 2022, 278, 108126. [Google Scholar] [CrossRef]
- Duman, M.; Eronat, A.H.; Talas, E. Interplay of natural and anthropogenic factors in sediment dynamics and trace element distribution in Güllük Gulf, western Türkiye: A comprehensive geochemical and hydrodynamic analysis. Cont. Shelf Res. 2024, 282, 105332. [Google Scholar] [CrossRef]
- Gao, S.; Collins, M. Net sediment transport patterns inferred from grain-size trends, based upon definition of ‘Transport Vector’. Sediment. Geol. 1992, 81, 47–60. [Google Scholar] [CrossRef]
- Gao, S. A FORTRAN program for grain-size trend analysis to define net sediment transport pathways. Comput. Geosci. 1996, 22, 449–452. [Google Scholar] [CrossRef]
- Gao, S. Grain size trend analysis: Principle and applicability. Acta Sedimentol. Sin. 2009, 27, 826–836. [Google Scholar]
- Wright, L.D.; Friedrichs, C.T. Gravity-driven sediment transport on continental shelves: A status report. Environ. Sci. Geol. 2006, 26, 2092–2107. [Google Scholar] [CrossRef]
- Wang, X.M.; Qu, H.B.; Xiong, Y.K.; Lu, L.; Hu, K. Grain-size characteristics and transport trend of bottom sediments at the estuary of Changhua River in Hainan. Geoscience 2022, 36, 88–95. [Google Scholar] [CrossRef]
- Xiao, M.; Wu, J.; Chen, Q.; Jin, M.; Zhang, Y. Dynamic change of land use in changhua downstream watershed based on ca-markov model. Trans. Chin. Soc. Agric. Eng. 2012, 28, 231–238. [Google Scholar] [CrossRef]
- Dai, S.P.; Luo, H.X.; Hu, Y.Y.; Zheng, Q.; Li, H.L.; Li, M.F.; Yu, X. Dynamic Land Use Change of Hainan Island in Recent 20 Years Based on GLC30 Data. Agric. Eng. 2021, 11, 61–69. [Google Scholar] [CrossRef]
- Lu, L. Research of Modern Sediment Transport Model of Changhua River Estuary in Hainan Province. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2021. [Google Scholar] [CrossRef]
- Hainan Provincial Academy of Environmental Sciences. Dataset of Hainan Island Ecological System Pattern from 2000 to 2019 (30 m) [Data Set]; International Research Center for Big Data on Sustainable Development Goals: Beijing, China, 2022. [Google Scholar] [CrossRef]
- Xu, D. Sedimentary Records Since Last Deglaciation and the Formation of Modern Sedimentary Pattern in Eastern Beibu Gulf. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2014. [Google Scholar]
- Mao, L.M.; Zhang, Y.L.; Bi, H. Modern pollen deposits in coastal mangrove swamps from northern Hainan Island, China. J. Coast. Res. 2006, 22, 1423–1436. [Google Scholar] [CrossRef]
- Wu, J.Q.; Xiao, M.; Yang, J.T.; Xiao, X.B.; Tang, W.H. Study on distribution characteristics of soil erosion in the lower reaches of Changhua River in Hainan. Technol. Soil Water Conserv. 2012, 2012, 12–15. [Google Scholar] [CrossRef]
- Zhang, P.; Ruan, H.M.; Dai, P.D.; Zhao, L.R.; Zhang, J.B. Spatiotemporal river flux and composition of nutrients affecting adjacent coastal water quality in Hainan Island. J. Hydrol. 2020, 591, 125293. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Xiong, P.; Meng, Q.C.; Dudzinska-Nowak, J.; Chen, H.; Zhang, H.; Zhou, F.; Miluch, J.; Harff, J. Morphogenesis of a late Pleistocene delta off the south-western Hainan Island unraveled by numerical modeling. J. Asian Earth Sci. 2020, 195, 104351. [Google Scholar] [CrossRef]
- Zhao, L.; Cai, G.Q.; Zhong, H.X.; Li, B.; Zou, L.Q.; Li, S.; Han, Y.F. Grain-size characteristics and sedimentary environment of surface sediments in the shallow sea in the southeast of Hainan Island. Mar. Geol. Quat. Geol. 2021, 41, 64–74. [Google Scholar] [CrossRef]
- Zhu, L.R.; Liu, Y.H.; Ye, C.Q. Runoff change and influencing factors of Changhua River in arid area of Hainan Island. Ecol. Sci. 2020, 39, 183–189. [Google Scholar]
- Gao, J. Study on Sediment Transport Model in Changhua River Estuary of Hainan Province Based on Remote Sensing Analysis. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2014. [Google Scholar]
- Chen, C.; Liu, H.; Beardsley, R.C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Chen, C.; Xue, P.; Ding, P.; Beardsley, R.C.; Xu, Q.; Mao, X.; Gao, G.; Qi, J.; Li, C.; Lin, H.; et al. Physical mechanisms for the offshore detachment of the Changjiang Diluted Water in the East China Sea. J. Geophys. Res. Ocean. 2008, 113, C02002. [Google Scholar] [CrossRef]
- Jiang, L.; Xia, M. Dynamics of the Chesapeake Bay outflow plume: Realistic plume simulation and its seasonal and interannual variability. J. Geophys. Res. Ocean. 2016, 121, 1424–1445. [Google Scholar] [CrossRef]
- Lai, W.; Pan, J.; Devlin, A.T. Impact of tides and winds on estuarine circulation in the Pearl River Estuary. Cont. Shelf Res. 2018, 168, 68–82. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, E.; Li, X.; Zhang, S. Application of Wave-current coupled Sediment Transport Models with Variable Grain Properties for Coastal Morphodynamics: A Case Study of the Changhua River, Hainan. EGUsphere 2024, preprint. [Google Scholar] [CrossRef]
- Flemming, B.W. A revised textural classification of gravel free muddy sediments on the basis of ternary diagrams. Cont. Shelf Res. 2000, 20, 1125–1137. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Li, X.; Zhao, E.; Wang, Y.; Zhang, S.; Xu, Z.; Wang, Q.; Jiang, D.; Xing, Z. Analysis of Downstream Sediment Transport Trends Based on In Situ Data and Numerical Simulation. J. Mar. Sci. Eng. 2024, 12, 1982. https://doi.org/10.3390/jmse12111982
Wu Y, Li X, Zhao E, Wang Y, Zhang S, Xu Z, Wang Q, Jiang D, Xing Z. Analysis of Downstream Sediment Transport Trends Based on In Situ Data and Numerical Simulation. Journal of Marine Science and Engineering. 2024; 12(11):1982. https://doi.org/10.3390/jmse12111982
Chicago/Turabian StyleWu, Yuxi, Xiwen Li, Enjin Zhao, Yang Wang, Shiyou Zhang, Zhiming Xu, Qinjun Wang, Dongxu Jiang, and Zhuang Xing. 2024. "Analysis of Downstream Sediment Transport Trends Based on In Situ Data and Numerical Simulation" Journal of Marine Science and Engineering 12, no. 11: 1982. https://doi.org/10.3390/jmse12111982
APA StyleWu, Y., Li, X., Zhao, E., Wang, Y., Zhang, S., Xu, Z., Wang, Q., Jiang, D., & Xing, Z. (2024). Analysis of Downstream Sediment Transport Trends Based on In Situ Data and Numerical Simulation. Journal of Marine Science and Engineering, 12(11), 1982. https://doi.org/10.3390/jmse12111982