Acoustic Imaging Learning-Based Approaches for Marine Litter Detection and Classification
Abstract
:1. Introduction
- Using the previously acquired test tank data with different types of marine litter at multiple acoustic frequencies.
- Creation of an extensive acoustic image dataset with detailed labelling and formatting.
- Implementation of two novel classification algorithms: support vector machine (SVM) and convolutional neural network (CNN).
- Utilisation of two detection algorithms based on transfer learning: single-shot multibox detector (SSD), and You Only Look Once (YOLO), specifically YOLOv8 tuned for marine litter detection.
2. Related Work
2.1. Marine Litter Detection
2.2. Underwater Acoustic Image Classification and Detection
3. Multibeam Echosounder Test Tank Acquisition Setup
3.1. System Setup
3.2. Marine Debris Selection
3.3. High Level Architecture
4. Acoustic Images Dataset
4.1. Acoustic Images Representation
- : Acoustic image pixel coordinates.
- : Acoustic image height representing 1573 backscatter points.
- : Acoustic image width representing 256 beams.
- : Normalised backscatter intensity.
4.1.1. Raw Acoustic Image
4.1.2. Cartesian Acoustic Image
4.1.3. Polar Acoustic Image
4.2. Dataset Labelling and Format
5. Detection and Classification
5.1. Algorithms for Detection and Classification Problems
5.2. Training and Results
5.2.1. Support Vector Machine (SVM)
- C—varies from 0.2 to 1.6 with a step of 0.2.
- gamma—varies from 0.25 to 2.0 with a step of 0.25.
- Kernel types—polynomial (poly), radial basis function (RBF), and sigmoid.
5.2.2. Convolutional Neural Network (CNN)
5.2.3. Single Shot Detector (SSD)
5.2.4. You Only Look Once 8 (YOLOv8)
5.3. Results Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fauziah, S.H.; Rizman-Idid, M.; Cheah, W.; Loh, K.H.; Sharma, S.; NoorMaiza, M.; Bordt, M.; Praphotjanaporn, T.; Samah, A.A.; bin Sabaruddin, J.S.; et al. Marine debris in Malaysia: A review on the pollution intensity and mitigating measures. Mar. Pollut. Bull. 2021, 167, 112258. [Google Scholar] [CrossRef]
- Alizadeh, L.; Liscio, M.C.; Sospiro, P. The phenomenon of greenwashing in the fashion industry: A conceptual framework. Sustain. Chem. Pharm. 2024, 37, 101416. [Google Scholar] [CrossRef]
- Li, M.; Trencher, G.; Asuka, J. The clean energy claims of BP, Chevron, ExxonMobil and Shell: A mismatch between discourse, actions and investments. PLoS ONE 2022, 17, e0263596. [Google Scholar] [CrossRef]
- Yu, E.P.y.; Van Luu, B.; Chen, C.H. Greenwashing in environmental, social and governance disclosures. Res. Int. Bus. Financ. 2020, 52, 101192. [Google Scholar] [CrossRef]
- Galgani, F.; Michela, A.; Gérigny, O.; Maes, T.; Tambutté, E.; Harris, P.T. Marine Litter, Plastic, and Microplastics on the Seafloor. Plastics and the Ocean: Origin, Characterization, Fate, and Impacts; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 151–197. [Google Scholar]
- Löhr, A.; Savelli, H.; Beunen, R.; Kalz, M.; Ragas, A.; Van Belleghem, F. Solutions for global marine litter pollution. Curr. Opin. Environ. Sustain. 2017, 28, 90–99. [Google Scholar] [CrossRef]
- Sivadas, S.K.; Mishra, P.; Kaviarasan, T.; Sambandam, M.; Dhineka, K.; Murthy, M.R.; Nayak, S.; Sivyer, D.; Hoehn, D. Litter and plastic monitoring in the Indian marine environment: A review of current research, policies, waste management, and a roadmap for multidisciplinary action. Mar. Pollut. Bull. 2022, 176, 113424. [Google Scholar] [CrossRef]
- Egger, M.; Quiros, L.; Leone, G.; Ferrari, F.; Boerger, C.M.; Tishler, M. Relative abundance of floating plastic debris and neuston in the eastern North Pacific Ocean. Front. Mar. Sci. 2021, 8, 626026. [Google Scholar] [CrossRef]
- Corcoran, P.L. Benthic plastic debris in marine and fresh water environments. Environ. Sci. Process. Impacts 2015, 17, 1363–1369. [Google Scholar] [CrossRef]
- Soto-Navarro, J.; Jordá, G.; Compa, M.; Alomar, C.; Fossi, M.; Deudero, S. Impact of the marine litter pollution on the Mediterranean biodiversity: A risk assessment study with focus on the marine protected areas. Mar. Pollut. Bull. 2021, 165, 112169. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papageorgiou, D.; Karagaitanakis, A.; Papakonstantinou, A.; Arias Ballesteros, M. Remote sensing of sea surface artificial floating plastic targets with Sentinel-2 and unmanned aerial systems (plastic litter project 2019). Remote Sens. 2020, 12, 2013. [Google Scholar] [CrossRef]
- Freitas, S.; Silva, H.; Silva, E. Hyperspectral Imaging Zero-Shot Learning for Remote Marine Litter Detection and Classification. Remote Sens. 2022, 14, 5516. [Google Scholar] [CrossRef]
- Ribotti, A.; Magni, P.; Mireno, B.; Schroeder, K.; Barton, J.; McCaul, M.; Diamond, D. New cost-effective, interoperable sensors tested on existing ocean observing platforms in application of European directives: The COMMON SENSE European project. In Proceedings of the OCEANS 2015-Genova, Genova, Italy, 18–21 May 2015; pp. 1–9. [Google Scholar]
- Politikos, D.V.; Adamopoulou, A.; Petasis, G.; Galgani, F. Using artificial intelligence to support marine macrolitter research: A content analysis and an online database. Ocean. Coast. Manag. 2023, 233, 106466. [Google Scholar] [CrossRef]
- Guedes, P.; Silva, H.; Wang, S.; Martins, A.; Almeida, J.; Silva, E. Multibeam Multi-Frequency Characterization of Water Column Litter. In Proceedings of the OCEANS 2024-Singapore, Singapore, 15–18 April 2024; pp. 1–6. [Google Scholar]
- Garaba, S.P.; Park, Y.J. Riverine litter monitoring from multispectral fine pixel satellite images. Environ. Adv. 2024, 15, 100451. [Google Scholar] [CrossRef]
- Broere, S.; van Emmerik, T.; González-Fernández, D.; Luxemburg, W.; de Schipper, M.; Cózar, A.; van de Giesen, N. Towards underwater macroplastic monitoring using echo sounding. Front. Earth Sci. 2021, 9, 628704. [Google Scholar] [CrossRef]
- Politikos, D.V.; Fakiris, E.; Davvetas, A.; Klampanos, I.A.; Papatheodorou, G. Automatic detection of seafloor marine litter using towed camera images and deep learning. Mar. Pollut. Bull. 2021, 164, 111974. [Google Scholar] [CrossRef]
- Aleem, A.; Tehsin, S.; Kausar, S.; Jameel, A. Target Classification of Marine Debris Using Deep Learning. Intell. Autom. Soft Comput. 2022, 32, 73–85. [Google Scholar] [CrossRef]
- Bajaj, R.; Garg, S.; Kulkarni, N.; Raut, R. Sea debris detection using deep learning: Diving deep into the sea. In Proceedings of the 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur, Malaysia, 24–26 September 2021; pp. 1–6. [Google Scholar]
- Deng, H.; Ergu, D.; Liu, F.; Ma, B.; Cai, Y. An embeddable algorithm for automatic garbage detection based on complex marine environment. Sensors 2021, 21, 6391. [Google Scholar] [CrossRef]
- Fossum, T.O.; Sture, Ø.; Norgren-Aamot, P.; Hansen, I.M.; Kvisvik, B.C.; Knag, A.C. Underwater autonomous mapping and characterization of marine debris in urban water bodies. arXiv 2022, arXiv:2208.00802. [Google Scholar]
- Fulton, M.; Hong, J.; Islam, M.J.; Sattar, J. Robotic detection of marine litter using deep visual detection models. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 5752–5758. [Google Scholar]
- Hong, J.; Fulton, M.; Sattar, J. Trashcan: A semantically-segmented dataset towards visual detection of marine debris. arXiv 2020, arXiv:2007.08097. [Google Scholar]
- Valdenegro-Toro, M. Submerged marine debris detection with autonomous underwater vehicles. In Proceedings of the 2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA), Amritapuri, India, 18–20 December 2016; pp. 1–7. [Google Scholar]
- Van Emmerik, T.; Kieu-Le, T.C.; Loozen, M.; Van Oeveren, K.; Strady, E.; Bui, X.T.; Egger, M.; Gasperi, J.; Lebreton, L.; Nguyen, P.D.; et al. A methodology to characterize riverine macroplastic emission into the ocean. Front. Mar. Sci. 2018, 5, 372. [Google Scholar] [CrossRef]
- Sheeny, M.; Wallace, A.; Wang, S. 300 GHz radar object recognition based on deep neural networks and transfer learning. IET Radar, Sonar Navig. 2020, 14, 1483–1493. [Google Scholar] [CrossRef]
- Ochal, M.; Vazquez, J.; Petillot, Y.; Wang, S. A comparison of few-shot learning methods for underwater optical and sonar image classification. In Proceedings of the Global Oceans 2020: Singapore–US Gulf Coast, Biloxi, MS, USA, 5–30 October 2020; pp. 1–10. [Google Scholar]
- Kim, B.; Yu, S.C. Imaging sonar based real-time underwater object detection utilizing AdaBoost method. In Proceedings of the 2017 IEEE Underwater Technology (UT), Busan, Republic of Korea, 21–24 February 2017; pp. 1–5. [Google Scholar]
- Zhao, J.; Mai, D.; Zhang, H.; Wang, S. Automatic Detection and Segmentation on Gas Plumes from Multibeam Water Column Images. Remote Sens. 2020, 12, 3085. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, C.; Bai, B.; Jin, H.; Wei, W. Study on the polystyrene plastic degradation in supercritical water/CO2 mixed environment and carbon fixation of polystyrene plastic in CO2 environment. J. Hazard. Mater. 2022, 421, 126763. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Yang, F.; Zeng, G. Target detection in colorful imaging sonar based on HOG. In Proceedings of the 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Qingdao, China, 14–16 September 2018; pp. 1–5. [Google Scholar]
- Ji, X.; Yang, B.; Tang, Q. Acoustic seabed classification based on multibeam echosounder backscatter data using the PSO-BP-AdaBoost algorithm: A case study from jiaozhou bay, China. IEEE J. Ocean. Eng. 2020, 46, 509–519. [Google Scholar] [CrossRef]
- Valdenegro-Toro, M. Learning objectness from sonar images for class-independent object detection. In Proceedings of the 2019 European Conference on Mobile Robots (ECMR), Prague, Czech Republic, 4–6 September 2019; pp. 1–6. [Google Scholar]
- Singh, D.; Valdenegro-Toro, M. The marine debris dataset for forward-looking sonar semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3741–3749. [Google Scholar]
- Wang, J.; Feng, C.; Wang, L.; Li, G.; He, B. Detection of Weak and Small Targets in Forward-Looking Sonar Image Using Multi-Branch Shuttle Neural Network. IEEE Sens. J. 2022, 22, 6772–6783. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, J.; Gong, Q.; Huang, C.; Zheng, G.; Ma, J. Real-time underwater maritime object detection in side-scan sonar images based on transformer-YOLOv5. Remote Sens. 2021, 13, 3555. [Google Scholar] [CrossRef]
- Huo, G.; Wu, Z.; Li, J. Underwater object classification in sidescan sonar images using deep transfer learning and semisynthetic training data. IEEE Access 2020, 8, 47407–47418. [Google Scholar] [CrossRef]
- Fuchs, L.R.; Gällström, A.; Folkesson, J. Object recognition in forward looking sonar images using transfer learning. In Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 6–9 November 2018; pp. 1–6. [Google Scholar]
- Ge, Q.; Ruan, F.; Qiao, B.; Zhang, Q.; Zuo, X.; Dang, L. Side-scan sonar image classification based on style transfer and pre-trained convolutional neural networks. Electronics 2021, 10, 1823. [Google Scholar] [CrossRef]
- Gaida, T. Acoustic Mapping and Monitoring of the Seabed: From Single-Frequency to Multispectral Multibeam Backscatter. Ph.D. Thesis, TU Delft, Delft, The Netherlands, 2020. [Google Scholar]
- Janowski, L.; Trzcinska, K.; Tegowski, J.; Kruss, A.; Rucinska-Zjadacz, M.; Pocwiardowski, P. Nearshore benthic habitat mapping based on multi-frequency, multibeam echosounder data using a combined object-based approach: A case study from the Rowy Site in the Southern Baltic Sea. Remote Sens. 2018, 10, 1983. [Google Scholar] [CrossRef]
- Gonçalves, P.M.; Ferreira, B.M.; Alves, J.C.; Cruz, N.A. Image segmentation and mapping in an underwater environment using an imaging sonar. In Proceedings of the OCEANS 2022, Hampton Roads, VA, USA, 17–20 October 2022; pp. 1–8. [Google Scholar]
- Chandrashekar, G.; Raaza, A.; Rajendran, V.; Ravikumar, D. Side scan sonar image augmentation for sediment classification using deep learning based transfer learning approach. Mater. Today Proc. 2023, 80, 3263–3273. [Google Scholar] [CrossRef]
- Qin, X.; Luo, X.; Wu, Z.; Shang, J. Optimizing the Sediment Classification of Small Side-Scan Sonar Images Based on Deep Learning. IEEE Access 2021, 9, 29416–29428. [Google Scholar] [CrossRef]
- Zhu, J.; Li, H.; Qing, P.; Hou, J.; Peng, Y. Side-Scan Sonar Image Augmentation Method Based on CC-WGAN. Appl. Sci. 2024, 14, 8031. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Guedes, P. MBES M3 Kongsberg HF Model Test Tank Marine Debris Dataset. 2024. Available online: https://zenodo.org/records/13759505 (accessed on 13 September 2024).
References | Sampling System | Dataset Type | Litter Domain | Task |
---|---|---|---|---|
Aleem et al. [19] | Sonar | Sonar image | Floating, Seafloor | Classification, Detection |
Bajaj et al. [20] | AUV/ROV | Optical image | Seafloor | Detection |
Deng et al. [21] | AUV/ROV | Optical image | Seafloor | Classification, Detection |
Fossum et al. [22] | AUV/ROV | Optical image | Seafloor | Classification, Detection |
Fulton et al. [23] | AUV/ROV | Optical image | Seafloor | Classification, Detection |
Hong et al. [24] | AUV/ROV | Optical image | Floating, Seafloor | Classification |
Politikos et al. [18] | AUV/ROV | Optical image | Seafloor | Classification, Detection, Segmentation |
Valdenegro-Toro [25] | Sonar | Sonar image | Floating | Classification, Detection |
Reference | Year | WCD | Task/Technique | Sensor Type | Application |
---|---|---|---|---|---|
Gaida [41] | 2020 | Yes | Statistical Classification | MBES | Acoustic sediment classification |
Janowski et al. [42] | 2018 | Yes | SVM Classification | MBES | Benthic habitat classification |
Aleem et al. [19] | 2022 | No | Faster-RCNN classification model with pre-trained ResNet-50 Model | Adaptive Image Resolution Sonar (ARIS) in FLS configuration | Litter classification in test tank bottom |
Yu et al. [37] | 2021 | No | Pre-trained YOLO5 detection model | Side-Scan Sonar | Shipwreck and submerged container detector |
Ge et al. [40] | 2021 | No | Pre-trained CNN classification model | Side-Scan and synthetic data | Detection of acoustic targets within synthetic data |
Fuchs et al. [39] | 2018 | No | Pre-trained CNN model | Forward-looking imaging sonar | Detection of targets for obstacle avoidance |
Wang et al. [36] | 2022 | No | Pre-trained YOLO5 detection model and YOLO5 adaption | Forward-looking imaging sonar | Detection of weak and small litter |
Valdenegro-Toro [34] | 2019 | No | Supervised CNN detection model | ARIS in FLS configuration | Detect litter without class information |
Wang et al. [32] | 2018 | No | SVM detection with HOG features | Colourful imaging sonar | Wood stakes detection |
Zhao et al. [30] | 2020 | No | AdaBoost cascade detector | MBES | Detection of gas plumes |
Kim and Yu [29] | 2017 | No | AdaBoost cascade detector | Forward-looking imaging sonar | Object detection |
Ji et al. [33] | 2020 | No | PSO-BP-AdaBoost classifier | MBES | Acoustic sediment classification |
Ochal et al. [28] | 2020 | No | Few shot learning | Optical and Side-scan sonar | Underwater image classification |
Operating Frequency | ||||
---|---|---|---|---|
Specifications | 700 kHz | 950 kHz | 1200 kHz | 1400 kHz |
Angular Resolution | 140° × 30° | 140° × 27° | 75° × 21° | 45° × 18° |
Range Interval (m) | 0.2–150 (m) | |||
Beams | 256 | |||
Reflections per beam | 1573 | |||
Pulse Type | Continuous Wave and Linear Frequency Modulation (Chirp) |
Object | Description |
---|---|
PVC Square (1) | Window PVC square of 0.5 m × 0.5 m |
and small PVC square of 0.15 m × 0.15 m | |
PVC traffic cone (2) | Traffic cone lying vertically |
Wooden deck (3) | Square wooden deck with slats |
Vinyl sheet (4) | Thin squared shaped vinyl sheet |
Fish net (5) | Agglomerate with fish nets and buoys |
Operating Frequency | |||
---|---|---|---|
Class | 950 kHz | 1200 kHz | 1400 kHz |
PVC Square | 551 | 549 | 453 |
PVC traffic cone | 317 | 356 | 305 |
Wooden deck | 356 | 355 | 344 |
Vinyl sheet | 356 | 355 | 425 |
Fish net | 301 | 330 | 313 |
Class | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|
950 kHz SVM model | ||||
950 kHz data | ||||
Fish net | 1.00 | 1.00 | 1.00 | |
Wooden deck | 1.00 | 1.00 | 1.00 | |
PVC traffic cone | 1.00 | 1.00 | 1.00 | 1.00 |
Vinyl | 1.00 | 1.00 | 1.00 | |
PVC square | 1.00 | 1.00 | 1.00 | |
1200 kHz data | ||||
Fish net | 0.00 | 0.00 | 0.00 | |
Wooden deck | 0.19 | 1.00 | 0.32 | |
PVC traffic cone | 0.00 | 0.00 | 0.00 | 0.19 |
Vinyl | 0.00 | 0.00 | 0.00 | |
PVC square | 0.00 | 0.00 | 0.00 | |
1400 kHz data | ||||
Fish net | 0.00 | 0.00 | 0.00 | |
Wooden deck | 0.19 | 1.00 | 0.32 | |
PVC traffic cone | 0.00 | 0.00 | 0.00 | 0.19 |
Vinyl | 0.00 | 0.00 | 0.00 | |
PVC square | 0.00 | 0.00 | 0.00 | |
1200 kHz SVM model | ||||
950 kHz data | ||||
Fish net | 0.72 | 0.67 | 0.69 | |
Wooden deck | 0.46 | 0.74 | 0.56 | |
PVC traffic cone | 0.31 | 0.35 | 0.33 | 0.50 |
Vinyl | 0.51 | 0.51 | 0.51 | |
PVC square | 0.56 | 0.32 | 0.41 | |
1200 kHz data | ||||
Fish net | 1.00 | 1.00 | 1.00 | |
Wooden deck | 1.00 | 1.00 | 1.00 | |
PVC traffic cone | 1.00 | 1.00 | 1.00 | 1.00 |
Vinyl | 1.00 | 1.00 | 1.00 | |
PVC square | 1.00 | 1.00 | 1.00 | |
1400 kHz data | ||||
Fish net | 1.00 | 0.16 | 0.28 | |
Wooden deck | 0.23 | 1.00 | 0.38 | |
PVC traffic cone | 0.54 | 0.11 | 0.19 | 0.26 |
Vinyl | 0.00 | 0.00 | 0.00 | |
PVC square | 0.40 | 0.10 | 0.16 | |
1400 kHz SVM model | ||||
950 kHz data | ||||
Fish net | 0.38 | 0.81 | 0.52 | |
Wooden deck | 0.66 | 0.36 | 0.46 | |
PVC traffic cone | 0.26 | 0.40 | 0.32 | 0.42 |
Vinyl | 0.44 | 0.45 | 0.44 | |
PVC square | 1.00 | 0.18 | 0.31 | |
1200 kHz data | ||||
Fish net | 0.97 | 0.18 | 0.30 | |
Wooden deck | 0.22 | 0.65 | 0.32 | |
PVC traffic cone | 0.35 | 0.25 | 0.29 | 0.35 |
Vinyl | 0.50 | 0.12 | 0.20 | |
PVC square | 0.56 | 0.54 | 0.55 | |
1400 kHz data | ||||
Fish net | 1.00 | 1.00 | 1.00 | |
Wooden deck | 1.00 | 1.00 | 1.00 | |
PVC traffic cone | 1.00 | 1.00 | 1.00 | 1.00 |
Vinyl | 1.00 | 1.00 | 1.00 | |
PVC square | 1.00 | 1.00 | 1.00 |
Class | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|
950 kHz raw CNN model | ||||
950 kHz data | ||||
Fish net | 1.00 | 0.70 | 0.82 | |
Wooden deck | 0.45 | 1.00 | 0.62 | |
PVC traffic cone | 1.00 | 0.51 | 0.68 | 0.77 |
Vinyl sheet | 1.00 | 0.96 | 0.98 | |
PVC Square | 1.00 | 0.69 | 0.82 | |
1200 kHz data | ||||
Fish net | 0.52 | 0.81 | 0.63 | |
Wooden deck | 0.70 | 0.77 | 0.74 | |
PVC traffic cone | 0.48 | 0.33 | 0.39 | 0.56 |
Vinyl sheet | 0.41 | 0.54 | 0.47 | |
PVC Square | 0.82 | 0.39 | 0.53 | |
1400 kHz data | ||||
Fish net | 0.36 | 0.87 | 0.51 | |
Wooden deck | 0.60 | 0.83 | 0.69 | |
PVC traffic cone | 0.12 | 0.02 | 0.03 | 0.46 |
Vinyl sheet | 0.43 | 0.34 | 0.38 | |
PVC Square | 0.62 | 0.29 | 0.39 | |
1200 kHz raw CNN model | ||||
950 kHz data | ||||
Fish net | 1.00 | 0.47 | 0.64 | |
Wooden deck | 1.00 | 0.53 | 0.69 | |
PVC traffic cone | 0.30 | 0.28 | 0.29 | 0.46 |
Vinyl sheet | 0.36 | 0.62 | 0.45 | |
PVC Square | 0.34 | 0.41 | 0.37 | |
1200 kHz data | ||||
Fish net | 0.88 | 1.00 | 0.94 | |
Wooden deck | 0.99 | 0.83 | 0.90 | |
PVC traffic cone | 0.96 | 0.88 | 0.92 | 0.94 |
Vinyl sheet | 0.89 | 0.99 | 0.93 | |
PVC Square | 1.00 | 1.00 | 1.00 | |
1400 kHz data | ||||
Fish net | 0.65 | 0.94 | 0.77 | |
Wooden deck | 0.60 | 0.42 | 0.49 | |
PVC traffic cone | 0.04 | 0.02 | 0.02 | 0.51 |
Vinyl sheet | 0.33 | 0.71 | 0.45 | |
PVC Square | 1.00 | 0.45 | 0.62 | |
1400 kHz raw CNN model | ||||
950 kHz data | ||||
Fish net | 1.00 | 0.19 | 0.32 | |
Wooden deck | 0.51 | 0.31 | 0.39 | |
PVC traffic cone | 0.03 | 0.00 | 0.01 | 0.33 |
Vinyl sheet | 0.49 | 0.31 | 0.38 | |
PVC Square | 0.25 | 0.74 | 0.38 | |
1200 kHz data | ||||
Fish net | 1.00 | 0.21 | 0.34 | |
Wooden deck | 0.72 | 0.45 | 0.55 | |
PVC traffic cone | 0.61 | 0.52 | 0.56 | 0.55 |
Vinyl sheet | 0.42 | 0.92 | 0.57 | |
PVC Square | 0.58 | 0.61 | 0.60 | |
1400 kHz data | ||||
Fish net | 1.00 | 0.96 | 0.98 | |
Wooden deck | 1.00 | 0.98 | 0.99 | |
PVC traffic cone | 0.83 | 1.00 | 0.91 | 0.96 |
Vinyl sheet | 0.97 | 1.00 | 0.98 | |
PVC Square | 1.00 | 0.88 | 0.94 |
Class | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|
950 kHz polar CNN model | ||||
950 kHz data | ||||
Fish net | 1.00 | 1.00 | 1.00 | |
Wooden deck | 1.00 | 0.99 | 0.99 | |
PVC traffic cone | 0.93 | 1.00 | 0.96 | 0.98 |
Vinyl sheet | 0.97 | 1.00 | 0.99 | |
PVC Square | 1.00 | 0.95 | 0.97 | |
1200 kHz data | ||||
Fish net | 0.85 | 0.83 | 0.84 | |
Wooden deck | 0.92 | 0.76 | 0.83 | |
PVC traffic cone | 1.00 | 0.42 | 0.59 | 0.65 |
Vinyl sheet | 0.36 | 1.00 | 0.53 | |
PVC Square | 0.96 | 0.41 | 0.57 | |
1400 kHz data | ||||
Fish net | 0.57 | 0.71 | 0.63 | |
Wooden deck | 0.67 | 0.62 | 0.64 | |
PVC traffic cone | 0.55 | 0.47 | 0.50 | 0.59 |
Vinyl sheet | 0.49 | 0.83 | 0.61 | |
PVC Square | 1.00 | 0.35 | 0.52 | |
1200 kHz polar CNN model | ||||
950 kHz data | ||||
Fish net | 0.85 | 0.75 | 0.85 | |
Wooden deck | 0.95 | 0.66 | 0.80 | |
PVC traffic cone | 0.68 | 0.84 | 0.75 | 0.76 |
Vinyl sheet | 0.86 | 0.55 | 0.71 | |
PVC Square | 0.61 | 0.93 | 0.73 | |
1200 kHz data | ||||
Fish net | 0.99 | 1.00 | 0.99 | |
Wooden deck | 1.00 | 0.83 | 0.91 | |
PVC traffic cone | 0.90 | 1.00 | 0.95 | 0.97 |
Vinyl sheet | 0.97 | 1.00 | 1.00 | |
PVC Square | 0.98 | 1.00 | 0.99 | |
1400 kHz data | ||||
Fish net | 0.67 | 0.99 | 0.80 | |
Wooden deck | 0.70 | 0.37 | 0.48 | |
PVC traffic cone | 0.48 | 0.98 | 0.64 | 0.67 |
Vinyl sheet | 1.00 | 0.47 | 0.64 | |
PVC Square | 0.82 | 0.63 | 0.71 | |
1400 kHz polar CNN model | ||||
950 kHz data | ||||
Fish net | 0.66 | 0.66 | 0.66 | |
Wooden deck | 0.77 | 0.55 | 0.64 | |
PVC traffic cone | 0.53 | 0.82 | 0.64 | 0.63 |
Vinyl sheet | 0.64 | 0.79 | 0.71 | |
PVC Square | 0.62 | 0.44 | 0.51 | |
1200 kHz data | ||||
Fish net | 0.90 | 0.88 | 0.89 | |
Wooden deck | 0.66 | 0.18 | 0.28 | |
PVC traffic cone | 0.80 | 0.75 | 0.78 | 0.75 |
Vinyl sheet | 0.51 | 1.00 | 0.68 | |
PVC Square | 0.97 | 0.88 | 0.92 | |
1400 kHz data | ||||
Fish net | 0.95 | 1.00 | 0.98 | |
Wooden deck | 0.91 | 0.91 | 0.91 | |
PVC traffic cone | 0.85 | 0.98 | 0.91 | 0.90 |
Vinyl sheet | 0.84 | 0.93 | 0.88 | |
PVC Square | 0.91 | 0.74 | 0.85 |
Class | Precision | Recall | mAP | AP for IoU | AP for IoU |
---|---|---|---|---|---|
Threshold at 0.6 | Threshold at 0.75 | ||||
950 kHz SSD model | |||||
950 kHz data | |||||
PVC traffic cone | 0.8657 | 0.8712 | 0.8680 | 0.9693 | 0.8680 |
PVC Square | 0.8440 | 0.8489 | 0.8494 | 0.5347 | 0.8494 |
Fish net | 0.7104 | 0.7222 | 0.7186 | 0.7123 | 0.7186 |
Wooden deck | 0.9704 | 0.9769 | 0.9780 | 0.9802 | 0.9780 |
Vinyl sheet | 0.9831 | 0.9900 | 0.9872 | 0.958 | 0.9872 |
1200 kHz data | |||||
PVC traffic cone | 0.1725 | 0.3354 | 0.2843 | 0.3248 | 0.2843 |
PVC Square | 0.0012 | 0.0039 | 0.0012 | 0.0 | 0.0012 |
Fish net | 0.2353 | 0.3518 | 0.2631 | 0.0 | 0.2631 |
Wooden deck | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Vinyl sheet | 0.0245 | 0.0820 | 0.0295 | 0.6505 | 0.0295 |
1400 kHz data | |||||
PVC traffic cone | 0.0016 | 0.0047 | 0.0195 | 0.0297 | 0.0195 |
PVC Square | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fish net | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wooden deck | 0.0049 | 0.0126 | 0.0172 | 0.0713 | 0.0172 |
Vinyl sheet | 0.0209 | 0.0323 | 0.0295 | 0.0 | 0.0295 |
1200 kHz SSD model | |||||
950 kHz data | |||||
PVC traffic cone | 0.2799 | 0.3509 | 0.2889 | 0.5049 | 0.2889 |
PVC Square | 0.0042 | 0.0076 | 0.0270 | 0.0000 | 0.0270 |
Fish net | 0.3153 | 0.4266 | 0.3528 | 0.0 | 0.3528 |
Wooden deck | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Vinyl sheet | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
1200 kHz data | |||||
Fish net | 0.9501 | 0.9832 | 0.9720 | -1.0 | 0.9720 |
PVC traffic cone | 0.9716 | 0.9801 | 0.9789 | 0.9822 | 0.9789 |
PVC Square | 0.7256 | 0.7423 | 0.7332 | 0.5743 | 0.7332 |
Wooden deck | 0.8730 | 0.8810 | 0.8812 | 1.0000 | 0.8812 |
Vinyl sheet | 0.9633 | 0.9900 | 0.9762 | 0.0000 | 0.9762 |
1400 kHz data | |||||
Fish net | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PVC traffic cone | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PVC Square | 0.0004 | 0.0008 | 0.0143 | 0.0218 | 0.0143 |
Wooden deck | 0.0023 | 0.0029 | 0.0456 | 0.0000 | 0.0456 |
Vinyl sheet | 0.1963 | 0.2766 | 0.2695 | 0.0000 | 0.2695 |
1400 kHz SSD model | |||||
950 kHz data | |||||
PVC traffic cone | 0.0009 | 0.0017 | 0.0138 | 0.0049 | 0.0138 |
PVC Square | 0.2227 | 0.3113 | 0.3111 | 0.0000 | 0.3111 |
Wooden deck | 0.0021 | 0.0064 | 0.0384 | 0.0000 | 0.0384 |
Fish net | 0.0029 | 0.0048 | 0.0159 | 0.0178 | 0.0159 |
Vinyl sheet | 0.0005 | 0.0014 | 0.0242 | 0.0000 | 0.0242 |
1200 kHz data | |||||
PVC traffic cone | 0.0003 | 0.0003 | 0.0160 | 0.0198 | 0.0160 |
PVC Square | 0.0129 | 0.0355 | 0.1301 | 0.3307 | 0.1301 |
Wooden deck | 0.0067 | 0.0070 | 0.1225 | 0.0000 | 0.1225 |
Fish net | 0.0391 | 0.0472 | 0.1714 | 0.1772 | 0.1714 |
Vinyl sheet | 0.5067 | 0.6278 | 0.5426 | 0.8000 | 0.5426 |
1400 kHz data | |||||
Fish net | 0.9847 | 0.9901 | 0.9930 | 0.9871 | 0.9930 |
PVC traffic cone | 0.9791 | 0.9900 | 0.9862 | 0.9851 | 0.9862 |
PVC Square | 0.9425 | 0.9501 | 0.9479 | 0.8752 | 0.9479 |
Wooden deck | 0.8700 | 0.8713 | 0.8739 | 0.4950 | 0.8739 |
Vinyl sheet | 0.8896 | 0.9092 | 0.9017 | 0.9000 | 0.9017 |
Class | Precision | Recall | F1 | mAP | Fitness |
---|---|---|---|---|---|
950 kHz YOLOv8 model | |||||
950 kHz data | |||||
Fish net | 1.00 | 1.00 | 1.00 | 0.9921 | |
PVC traffic cone | 0.9303 | 0.9966 | 0.9623 | 0.9186 | |
Wooden deck | 0.9925 | 1.00 | 0.9962 | 0.9757 | 0.9603 |
Vinyl sheet | 0.9915 | 1.00 | 0.9957 | 0.9911 | |
PVC Square | 0.9925 | 0.9213 | 0.9556 | 0.9100 | |
1200 kHz data | |||||
Fish net | 0.7490 | 0.6316 | 0.6853 | 0.2702 | |
PVC traffic cone | 0.0157 | 0.0120 | 0.0136 | 0.0031 | |
Wooden deck | 0.1016 | 0.1000 | 0.1008 | 0.0260 | 0.0695 |
Vinyl sheet | 0.00 | 0.00 | 0.00 | 0.00 | |
PVC Square | 0.00 | 0.00 | 0.00 | 0.00 | |
1400 kHz data | |||||
Fish net | 0.0134 | 0.9630 | 0.0264 | 0.0119 | |
PVC traffic cone | 0.0025 | 0.50 | 0.0050 | 0.0012 | |
Wooden deck | 0.00 | 0.00 | 0.00 | 0.00 | 0.0031 |
Vinyl sheet | 0.00 | 0.00 | 0.00 | 0.00 | |
PVC Square | 0.0015 | 0.0714 | 0.0030 | 0.0002 | |
1200 kHz YOLOv8 model | |||||
950 kHz data | |||||
Fish net | 0.9333 | 1.00 | 0.9655 | 0.6900 | |
PVC traffic cone | 0.0268 | 0.9545 | 0.0520 | 0.0488 | |
Wooden deck | 0.0238 | 0.9565 | 0.0464 | 0.0133 | 0.1599 |
Vinyl sheet | 0.0097 | 0.9259 | 0.0193 | 0.0010 | |
PVC Square | 0.0 | 0.0 | 0.0 | 0.0 | |
1200 kHz data | |||||
Fish net | 0.9906 | 1.00 | 0.9953 | 0.9950 | |
PVC traffic cone | 1.00 | 0.9958 | 0.9979 | 0.9279 | |
Wooden deck | 0.9943 | 1.00 | 0.9971 | 0.9831 | 0.9789 |
Vinyl sheet | 0.9980 | 1.00 | 0.9990 | 0.9905 | |
PVC Square | 0.9945 | 1.00 | 0.9972 | 0.9887 | |
1400 kHz data | |||||
Fish net | 1.00 | 0.00 | 0.00 | 0.00 | |
PVC traffic cone | 1.00 | 0.00 | 0.00 | 0.00 | |
Wooden deck | 0.00 | 0.00 | 0.00 | 0.0751 | 0.1024 |
Vinyl sheet | 0.7445 | 0.9048 | 0.8169 | 0.3754 | |
PVC Square | 0.00 | 0.00 | 0.00 | 0.00 | |
1400 kHz YOLOv8 model | |||||
950 kHz data | |||||
Fish net | 0.00 | 0.00 | 0.00 | 0.0047 | |
PVC traffic cone | 1.00 | 0.00 | 0.00 | 0.00 | |
Wooden deck | 0.00 | 0.00 | 0.00 | 0.00 | 0.1109 |
Vinyl sheet | 0.00 | 0.00 | 0.00 | 0.00 | |
PVC Square | 0.9494 | 0.9130 | 0.9309 | 0.5055 | |
1200 kHz data | |||||
Fish net | 1.00 | 0.00 | 0.00 | 0.00 | |
PVC traffic cone | 1.00 | 0.00 | 0.00 | 0.04 | |
Wooden deck | 1.00 | 0.00 | 0.00 | 0.00 | 0.0891 |
Vinyl sheet | 0.9108 | 0.9167 | 0.9137 | 0.3401 | |
PVC Square | 1.00 | 0.00 | 0.00 | 0.00 | |
1400 kHz data | |||||
Fish net | 0.7756 | 1.00 | 0.8736 | 0.8568 | |
PVC traffic cone | 0.8707 | 0.7921 | 0.8295 | 0.5482 | |
Wooden deck | 0.9857 | 1.00 | 0.9928 | 0.8250 | 0.7822 |
Vinyl sheet | 0.7938 | 0.9529 | 0.8661 | 0.7661 | |
PVC Square | 1.00 | 0.8476 | 0.9175 | 0.8106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guedes, P.A.; Silva, H.M.; Wang, S.; Martins, A.; Almeida, J.; Silva, E. Acoustic Imaging Learning-Based Approaches for Marine Litter Detection and Classification. J. Mar. Sci. Eng. 2024, 12, 1984. https://doi.org/10.3390/jmse12111984
Guedes PA, Silva HM, Wang S, Martins A, Almeida J, Silva E. Acoustic Imaging Learning-Based Approaches for Marine Litter Detection and Classification. Journal of Marine Science and Engineering. 2024; 12(11):1984. https://doi.org/10.3390/jmse12111984
Chicago/Turabian StyleGuedes, Pedro Alves, Hugo Miguel Silva, Sen Wang, Alfredo Martins, José Almeida, and Eduardo Silva. 2024. "Acoustic Imaging Learning-Based Approaches for Marine Litter Detection and Classification" Journal of Marine Science and Engineering 12, no. 11: 1984. https://doi.org/10.3390/jmse12111984
APA StyleGuedes, P. A., Silva, H. M., Wang, S., Martins, A., Almeida, J., & Silva, E. (2024). Acoustic Imaging Learning-Based Approaches for Marine Litter Detection and Classification. Journal of Marine Science and Engineering, 12(11), 1984. https://doi.org/10.3390/jmse12111984