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Abstract: This paper introduces an advanced acoustic imaging system leveraging multibeam water
column data at various frequencies to detect and classify marine litter. This study encompasses (i) the
acquisition of test tank data for diverse types of marine litter at multiple acoustic frequencies; (ii) the
creation of a comprehensive acoustic image dataset with meticulous labelling and formatting; (iii) the
implementation of sophisticated classification algorithms, namely support vector machine (SVM) and
convolutional neural network (CNN), alongside cutting-edge detection algorithms based on transfer
learning, including single-shot multibox detector (SSD) and You Only Look once (YOLO), specifically
YOLOv8. The findings reveal discrimination between different classes of marine litter across the
implemented algorithms for both detection and classification. Furthermore, cross-frequency studies
were conducted to assess model generalisation, evaluating the performance of models trained on one
acoustic frequency when tested with acoustic images based on different frequencies. This approach
underscores the potential of multibeam data in the detection and classification of marine litter in the
water column, paving the way for developing novel research methods in real-life environments.

Keywords: multibeam echosounder; water column data; macroplastics; classification; detection;
convolutional neural networks; machine learning; marine litter; support vector machines; YOLOv8

1. Introduction

Higher standards and improved living conditions have increased the demand for more
materials, leading to greater waste generation [1]. Billions of metric tons are discarded
annually, and without proper waste disposal, many environments are being damaged [2].
Recycling policies are failing to adequately address the disposal of plastic products, primar-
ily composed of single-use plastics. Many companies engage in greenwashing, providing
misinformation about their environmental actions to enhance their reputations and gain
competitive advantages among environmentally conscious consumers [3,4].

The United Nations Environment Programme (UNEP) defines marine litter as any
persistent, manufactured, or processed solid material discarded, disposed of, or abandoned
in the marine and coastal environment [5–7], with plastic being the most prominent. The
accumulation of plastic in the water is rapidly increasing [6]. It is estimated that 60% of all
plastics ever made have been discarded in landfills or the natural environment. Positively
buoyant plastic objects, commonly called floating plastic debris, illustrated in Figure 1, are
influenced by a wide range of physical transport processes [7–10].

Submerged plastic debris can originate from low-density plastics combined with
heavier materials, resulting in negatively buoyant masses that sink below the water’s
surface and biofouling.
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Figure 1. Marine litter in the water column. Courtesy of Unsplash by Naja Jensen.

Microplastics can originate from fragmented parts of larger objects [6]. Detecting
submerged macroplastics in the water column is necessary to capture them before they
generate microplastics, reducing potential global damage. Most marine litter detection
methods are related to debris on the surface of a body of water, with data essentially
acquired by satellites [11]. Some solutions use drones or cameras in aircraft to acquire data
to survey the amount of marine debris that covers the surface of rivers and seas. More
recently, novel techniques are being applied to data extracted by hyperspectral cameras to
better detect and classify marine litter [12].

Robotics can dramatically improve the detection and prediction of risks related to
water pollution, providing new tools for the global management of water resources [13].
The multibeam echosounder (MBES) acquires acoustic data, and depending on the applica-
tion, its raw data can be applied differently. MBES acoustic data, although composed of
backscatter data, can be expressed as bathymetric data and as water column data (WCD) in
the form of acoustic images.

While acoustic images can detect objects in the water column, it is crucial to test the
ability to classify the footprint of a target in such images. Most methods use classical
classifiers, such as support vector machine (SVM), Bayesian classifiers, and random forest
classifiers. Other approaches explore deep neural networks for forward-looking sonar
image classification [14]. There is limited research on classification and detection tasks
performed with WCD, largely due to a low number of available datasets.

This paper contributes to the aforementioned topics and uses the imaging system
setup and the foundations of the qualitative characterisation study that was made in [15]
by leveraging multibeam water column data at various frequencies to detect and classify
marine litter. The study encompasses:

• Using the previously acquired test tank data with different types of marine litter at
multiple acoustic frequencies.

• Creation of an extensive acoustic image dataset with detailed labelling and formatting.
• Implementation of two novel classification algorithms: support vector machine (SVM)

and convolutional neural network (CNN).
• Utilisation of two detection algorithms based on transfer learning: single-shot multibox

detector (SSD), and You Only Look Once (YOLO), specifically YOLOv8 tuned for
marine litter detection.
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The results demonstrate the system’s effectiveness in distinguishing between different
classes of marine litter using varied algorithms for both detection and classification. Cross-
frequency studies were conducted to evaluate model generalisation, assessing performance
when models trained on one acoustic frequency were tested with images based on different
frequencies. This innovative characterisation of multibeam data underscores its potential
in enhancing the detection and classification of marine litter within the water column.

This paper is organised as follows: Section 2 has an overview of the related work in
marine litter detection, focusing on water column litter detection. Section 3 describes the
acoustic acquisition system setup and the solution’s high-level architecture. Section 4 details
the acoustic images dataset and the different acoustic image representations. Section 5
details the training procedures that were made for all the different models and a discussion
of the results. Finally, Section 6 draws some conclusions on the work carried out and
describes future work.

2. Related Work

This section reviews MBES acoustic imaging methods for marine litter detection
and underwater image classification. Section 2.1 covers techniques like aerial surveys,
hyperspectral imaging, and acoustic imaging. Section 2.2 explores classical and deep
learning methods for classifying and detecting underwater acoustic data.

2.1. Marine Litter Detection

Marine litter detection mostly relies on remote sensing methods, often using un-
manned aerial vehicles (UAV) [14,16]. Other methods include using satellite data, aircraft
cameras, or remote hyperspectral imaging to assess debris on water surfaces [12]. Artificial
intelligence (AI) is employed to detect and classify marine litter using surface imaging
datasets (RGB and hyperspectral cameras), bathymetry studies with acoustic sensors,
and in situ observations at the seabed. However, the latter often occurs without sonar
imaging [14].

A literature review by Politikos et al. [14] summarises studies on marine litter research,
focusing on detection-based algorithms for the automatic visual recognition and identifica-
tion of macroplastics. Most marine debris data are acquired from the surface. Of the eighty
scientific articles surveyed by Politikos et al. [14], only eight involved underwater data
collection. This underwater data collection is primarily conducted using remotely operated
vehicles (ROVs) and autonomous underwater vehicles (AUV) equipped with echosounders
and cameras [14,17]. Only three of these publications addressed floating debris in the water
column, with the remainder focusing on seafloor studies, as do most studies that rely on
echosounder data. The author specified different types of data collected, including optical
and acoustic (sonar) images.

Table 1 is based on a review on marine litter surveying and contains the eight publica-
tions on underwater marine debris studies [14]. These studies evaluated how the adopted
algorithms recognised targets from the collected data.

Table 1. Submerged Marine Litter Surveying, based on [14,18].

References Sampling System Dataset Type Litter Domain Task

Aleem et al. [19] Sonar Sonar image Floating, Seafloor Classification,
Detection

Bajaj et al. [20] AUV/ROV Optical image Seafloor Detection

Deng et al. [21] AUV/ROV Optical image Seafloor Classification,
Detection

Fossum et al. [22] AUV/ROV Optical image Seafloor Classification,
Detection

Fulton et al. [23] AUV/ROV Optical image Seafloor Classification,
Detection
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Table 1. Cont.

References Sampling System Dataset Type Litter Domain Task

Hong et al. [24] AUV/ROV Optical image Floating, Seafloor Classification

Politikos et al. [18] AUV/ROV Optical image Seafloor
Classification,

Detection,
Segmentation

Valdenegro-Toro [25] Sonar Sonar image Floating Classification,
Detection

From the perspective of underwater submerged litter detection, only two studies
in the survey focused on this topic using sonar imaging [19,25]; however, these studies
focused on a small-scale dataset collected from the bottom of a water tank. There is
a lack of field measurements of underwater plastic debris, especially when concerned
with submerged plastic [26]. Some studies used echosounders to detect macroplastics
in the water column. Tests by Broere et al. [17] using a low-cost commercial fish finder
identified plastic objects within the extracted acoustic images in controlled and uncontrolled
environments. This study demonstrated that plastics can be detected in the water column
with acoustic sensors and that different macroplastics have specific signatures related to
their backscatter intensity, allowing for the estimation of litter size or even classification. It
was confirmed that backscatter is affected by the orientation and deformation of an object.
Water flow velocity significantly impacts detection, as increased velocity decreases the
exposure time to the acoustic beams, reducing detection rates. High flow velocity can
deter small macroplastics, which may not produce significant reflections. Additionally, the
variability of reflections from the same object can impact object classification.

2.2. Underwater Acoustic Image Classification and Detection

Since most underwater marine litter detection applications do not rely on acoustic data,
most of the work in this subsection, although varying in application, comprises solutions
based on acoustic images and classification methods.

Object detection similar to that performed with multibeam echosounders is often
facilitated by radars, which provide comparable information and share similar working
principles. Deep neural networks were employed to recognise objects in 300 GHz radar
images using returned power data, akin to multibeam backscatter intensity [27]. This
study examined how power data varies with range, orientation, and different receivers
in a laboratory environment. Due to the limited data available from this type of sensor,
transfer learning was utilised. The study explored deep learning methods for detection
and classification in scenes with multiple objects.

The detection and classification of marine litter using multibeam echosounders face
similar challenges to underwater object recognition tasks performed with optical and sonar
images. Deep convolutional neural networks have proven effective in these tasks, but
they often require extensive datasets to generalise well to unseen examples. Acquiring
and labelling such large volumes of data is costly and time-consuming, particularly for
rare objects or in real-time operations. Few-shot learning (FSL) methods can be promising
in addressing low data availability. Recent research has compared several supervised
and semi-supervised FSL methods using underwater optical and side-scan sonar imagery,
demonstrating that FSL significantly outperforms traditional transfer learning methods.
These insights can be applied to improve the detection and classification of marine litter
with multibeam echosounders, leveraging FSL to enhance model performance despite
limited data [28].

A real-time underwater object detection algorithm using forward-looking imaging
sonar [29] utilised Haar-like features as a weak classifier combined with AdaBoost to
make a strong classifier, improving target detection performance in echosounder images.
These features can reflect changes in the grey level, allowing the identification of edges,
bars, and other simple image structures [29,30]. An algorithm for automatic detection
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and segmentation of gas plumes from water column images (WCIs) was proposed by
Zhao et al. [31]. This author also combined Haar features with local binary patterns (LBP),
which are highly discriminating and invariant to monotonic grey-level images, as are
WCIs. Histogram of oriented gradients (HOG) was considered for feature extraction in
underwater coloured acoustic images [32]. The HOG descriptor focuses on the structure
or shape of an object, generating histograms using the magnitude and orientations of the
gradient for each image region. Due to the large dimension of the HOG feature vector,
a large amount of redundant information was reduced. An SVM classifier trained the
extracted features and chose the radial basis function as the kernel function of the SVM,
which defined the optimal classification surface.

A back propagation neural network (BPNN) was developed as a classifier for seabed
sediments with MBES backscatter data in [33]. Of the thirty-four dimensions extracted
that made up the initial feature vector, eight features with high classification were selected,
reducing the workload of the classifier and improving classification efficiency and accuracy.
Particle swarm optimisation was applied to increase the global optimisation ability of the
model as well as to achieve an optimal initial weight for the parameters. Another optimi-
sation was AdaBoost, which uses weak classifiers in the training set and assigns weights
based on the weak classifier’s error. The author proposed the PSO-BP-AdaBoost classifi-
cation algorithm and compared it with a one-level decision tree, a PSO-Backpropagation
algorithm, and an SVM, achieving better accuracy than the three.

According to Valdenegro-Toro [34], classic computer vision methods like AdaBoost
only work well in objects that produce large echosounder shadows, as the Haar features
previously mentioned. The author proposed to detect new objects without class information,
which applies to detecting hard-to-model objects such as marine debris. That was achieved
by using a CNN to estimate and rank the objectness maps from sonar images, being a data-
driven approach. Using forward-looking sonar (FLS) images, different types of marine litter,
such as plastic bottles, cans, glass bottles, tyres, and more, were successfully detected at
the bottom of a test tank by multiple authors [34,35]. Later, an adapted faster region-based
convolutional neural network (R-CNN) algorithm was developed [19]. Transfer learning
was applied for feature extraction to address data scarcity, incorporating the Residual
Network 50 (ResNet-50) into the algorithm.

Transfer learning was used by many authors, with trained networks on large datasets
such as the COCO and ImageNet datasets. A multi-branch shuttle network embedded
in You Only Look Once 5 (YOLO5) was proposed to detect fish with an FLS [36], and a
real-time object detection was proposed with a YOLO5 model for an obstacle avoidance
algorithm in the underwater environment [37]. Transfer learning has been used to create
an automatic, multi-class object classifier using data from a side-scan sonar to detect
sunken shipwrecks and drowning victims, among others [38–40]. A CNN model was
developed based on transfer learning, where a visual geometry group (VGG) model was pre-
trained with ImageNet data and all of its trained layers. This model’s last fully connected
layers were transferred to a new CNN, which was fine-tuned with a semi-synthetic sonar
dataset [40].

The related work on underwater acoustic image classification and detection is sum-
marised in Table 2. The table details the related work, considering the following items:
the author, the year of publication, whether the acquired data are in the water column,
developed algorithms, the application and the type of sensor used.

MBES data, previously acquired in [15], were necessary due to the scarcity of sonar
images for object detection and classification in the scientific community compared to
optical datasets. Existing sonar datasets typically focus on specific target objects and
exhibit varied representations. Additionally, most sonar images do not capture the water
column or are not for marine litter detection. The acquired test tank dataset, previously
characterised qualitatively, was augmented with synthetic data, including multiple targets
in a single acoustic image for numerous detections. This work extends earlier efforts by
developing, training, and testing a multi-label SVM classifier and a shallow CNN multi-
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label classification model. Transfer learning was also applied to a single-shot detector (SSD)
and the YOLO8 model to detect and label marine litter in the test tank data, validating the
effectiveness of marine litter detection using MBES.

Table 2. MBES acoustic data classification and detection related work summary.

Reference Year WCD Task/Technique Sensor Type Application

Gaida [41] 2020 Yes Statistical
Classification MBES Acoustic sedi-

ment classification

Janowski et al. [42] 2018 Yes SVM Classification MBES Benthic
habitat classification

Aleem et al. [19] 2022 No

Faster-RCNN
classification model

with pre-trained
ResNet-50 Model

Adaptive Image
Resolution Sonar

(ARIS) in
FLS configuration

Litter classification in
test tank bottom

Yu et al. [37] 2021 No Pre-trained YOLO5
detection model Side-Scan Sonar

Shipwreck and
submerged

container detector

Ge et al. [40] 2021 No Pre-trained CNN
classification model

Side-Scan and
synthetic data

Detection of acoustic
targets within
synthetic data

Fuchs et al. [39] 2018 No Pre-trained
CNN model

Forward-looking
imaging sonar

Detection of targets
for obstacle avoidance

Wang et al. [36] 2022 No
Pre-trained YOLO5

detection model and
YOLO5 adaption

Forward-looking
imaging sonar

Detection of weak
and small litter

Valdenegro-Toro [34] 2019 No Supervised CNN
detection model

ARIS in
FLS configuration

Detect litter without
class information

Wang et al. [32] 2018 No SVM detection with
HOG features

Colourful
imaging sonar

Wood
stakes detection

Zhao et al. [30] 2020 No AdaBoost cascade
detector MBES Detection of

gas plumes

Kim and Yu [29] 2017 No AdaBoost
cascade detector

Forward-looking
imaging sonar Object detection

Ji et al. [33] 2020 No PSO-BP-
AdaBoost classifier MBES Acoustic sedi-

ment classification

Ochal et al. [28] 2020 No Few shot learning Optical and
Side-scan sonar

Underwater
image classification

3. Multibeam Echosounder Test Tank Acquisition Setup

This section describes the setup of the acoustic imaging system, including the charac-
teristics of the multibeam echosounder (MBES) used, and the test tank setup to perceive
marine debris targets.

3.1. System Setup

Water column data were collected using the Kongsberg M3 high-frequency model,
which provides high-resolution underwater acoustic imaging composed of beams and
reflections. A sonar beam is defined by its shape, with horizontal and vertical angles
that vary based on the type of sonar used. This array is divided into bins that associate
intensity values with their respective distances and the reflections in the environment [43].
Each acoustic image from this MBES consists of 256 beams, each with 1573 reflections. A
Windows processing unit manages the data acquisition process. The Kongsberg appli-
cation programming interface (API) interfaces with the MBES, handling communication
with the sonar head and processing raw data, specifically for MBES beamforming. This
communication occurs over a standard ethernet cable using TCP/IP commands.

A custom software module was developed within the Robot Operating System 1
(ROS1) framework. This module acquires sensor message data packages. A dedicated
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subscriber was implemented to capture these messages and extract essential MBES data,
including range, bearing, and normalised intensity.

The MBES operates at four distinct frequencies. The field of view (FOV) changes
with each frequency, affecting the angular separation between the 256 beams. Higher
frequencies enhance spatial resolution but may reduce detections because of a narrower
FOV. The MBES uses maximum pulse power for imaging applications, with pulse duration
adjustments to increase long-range detection. This results in a lower ping rate to extend
the detectable range and manage power consumption. The sonar head was configured for
image-enhanced mode, using a time delay fast Fourier transform beamformer for high-
quality image generation. Table 3 depicts the main features of the Kongsberg M3 multibeam
high-frequency echosounder model characteristics in image enhanced mode.

Table 3. Kongsberg M3 Multibeam High-Frequency Echosounder model characteristics in Image
Enhanced mode.

Operating Frequency
Specifications 700 kHz 950 kHz 1200 kHz 1400 kHz

Angular Resolution 140◦× 30◦ 140◦× 27◦ 75◦× 21◦ 45◦× 18◦

Range Interval (m) 0.2–150 (m)
Beams 256

Reflections per beam 1573
Pulse Type Continuous Wave and Linear Frequency Modulation (Chirp)

Data acquisition was carried out in a test tank, as illustrated in Figure 2a. The data
acquired in [15] lacked variety and quantity for each class of selected marine debris. Tests
were conducted in a controlled tank environment, where limitations allowed data acquisi-
tion at only two distances and three directions of arrival relative to the sonar head. These
constraints were caused by the tank’s walls, bottom, and possible surface backscatter. Range
limitations were addressed by setting a maximum range based on the target’s position.
The MBES auto-range feature was disabled, ensuring all 1573 reflections per beam were
confined within the defined range to enhance image resolution.

(a) (b)
Figure 2. Kongsberg M3 Multibeam High-Frequency Echosounder system setup in the test tank.
(a) Test tank setup, (b) MBES capturing the Wooden deck in the water column.

During the data acquisition in [15], targets were placed approximately 2.8 m away,
directly in front of the sonar head. In the latest tests, data were collected at approximately
1.66 m and 3.3 m from the sonar head at a depth of around 2.5 m. For each range, targets
were positioned at angles of 0◦ (directly in front), −18◦ (left), and 18◦ (right). Targets were
also attached to ropes in varying ways to alter their appearance in the water column.

The MBES parameters were adjusted during the tests, while time-variant and image
gains remained constant across different frequencies and acquisition ranges.

The initial MBES mounting was designed for test tank conditions but later upgraded
to a versatile mounting pole suitable for tank and surface vehicle applications, as illustrated
in Figure 2b. This mount pole allows depth adjustment and pitch configuration for various
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mounting angles. Different angles were tested by adjusting the MBES pitch to evaluate their
effects on the results, considering the MBES azimuth. The mounting point was designed
for future compatibility with an AUV.

Targets were placed at depths that prevented the detection of the tank’s bottom
and walls, minimising high backscatter intensities from hard surfaces. This arrangement
ensured that the highest backscatter intensities, normalised by the MBES, originated from
the targets, simulating real-world conditions. The depth placements varied for each target,
depending on its size, to maintain this setup. Data acquisition involved varying the
frequency of the acoustic signals to generate acoustic images.

3.2. Marine Debris Selection

This study selected a collection of marine debris objects typically composed of plastic
materials, such as a square made of polyvinyl chloride (PVC), for experimental testing.
Various objects were chosen, some with the same squared shape, so it would be possible to
study if algorithms could distinguish objects without relying solely on their shape.

The objects were selected for macroplastics detection and the NetTag+ project, with
the primary objective of identifying concentrations of fish nets. Consequently, target
sizes ranged from a PVC square measuring 0.5 m × 0.5 m to a smaller PVC square of
0.15 m × 0.15 m. Specific details of these objects are outlined in Table 4. Although these
objects can occur naturally in the water column, their buoyancy was artificially modified
for the experiments since the materials were new and had not been affected by wear or
biofouling. Positively buoyant targets were weighted while negatively buoyant targets
were tethered using buoys or a crane. The crane facilitated placing the targets at different
fields of view (FOVs) and ranges and allowed for easy adjustment of the target’s depth.
These objects compose the current test tank dataset, with each object corresponding to
a class.

Table 4. Marine Litter objects in the dataset.

Object Description

PVC Square (1) Window PVC square of 0.5 m × 0.5 m
and small PVC square of 0.15 m × 0.15 m

PVC traffic cone (2) Traffic cone lying vertically
Wooden deck (3) Square wooden deck with slats

Vinyl sheet (4) Thin squared shaped vinyl sheet
Fish net (5) Agglomerate with fish nets and buoys

The PVC square class contains more occurrences due to the additional data collected
with the smaller square of the same material. This enabled testing whether the material
could still be detected at varying ranges and directions, as well as assessing the potential
for false positives.

Each type of debris in Table 4 has a number that can be mapped in Figure 3.

Figure 3. Marine debris used for the test tank dataset. PVC Squares (1); PVC traffic cone (2); Wooden
deck (3); vinyl sheet (4); fish net (5).
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3.3. High Level Architecture

The acoustic imaging for detection and classification problems of high-level architec-
ture is summarised in Figure 4. After raw data acquisition, data are processed into three
different acoustic imaging representations, which will be detailed in Section 4. Labelling
and annotations were performed and tailored for the specific tasks and model architectures,
enabling the training and validation of different types of networks.

Detection
Model

MBES

Supervisely 
Labelling

Dataset 
format setup

Classification
Model

CNN

Kongsberg 
API

m3_ros
Acquistion

ros 
subscriber

image
generator

hardware

software

processing

TCP/IP
ethernet

TCP/IP
ethernet

raw
acoustic image

polar
acoustic image

cartesian
acoustic image

Fixed image size
Fixed FOV (minimum value)
Same resolution in all dataset

Pixel size computation
Kernel application
Intensity jet painting

SVM SSD YOLO8

Figure 4. High-level architecture for the MBES sensor and acoustic imaging for detection and
classification problems.

4. Acoustic Images Dataset

This section outlines water column image processing. Section 4.1 describes three
representations of acoustic images. Section 4.2 details the labelling and formatting of
datasets for different models, ensuring readiness for training and validation.

4.1. Acoustic Images Representation

The experimental setup described in Section 3 enabled the extraction of raw MBES
data, represented in the PointCloud2 format. This format includes the following fields:

• x, y: Acoustic image pixel coordinates.
• height: Acoustic image height representing 1573 backscatter points.
• width: Acoustic image width representing 256 beams.
• intensity: Normalised backscatter intensity.

Three types of acoustic image representations were generated: raw, polar, and Carte-
sian. The raw and polar representations were tested as inputs for multiple models to
evaluate, which led to better results. The raw representation was designed for real-time
visualisation of MBES acoustic images due to its low storage requirements and fast genera-
tion. The polar representation was created to provide a format that is more interpretable
for human operators. The following subsections detail each type of representation.

4.1.1. Raw Acoustic Image

The raw acoustic image representation, depicted in Figure 5, is a direct mapping of the
normalised intensity of each pixel to its corresponding x and y coordinates, being composed
of a single channel (greyscale). This representation has a fixed resolution of (256 × 1573)
and ensures consistent pixel spacing. However, the varying field of view (FOV) associated
with different acoustic frequencies and the changing range of targets relative to the MBES
induce distortions in target shapes, as shown in Figure 5. This illustration kept the range
constant, yet the resulting acoustic images differ significantly due to the varying field of
view (FOV). Although the range, angle, and intensity data are preserved, this representation
distorts target shapes, making it more challenging to distinguish targets, especially with
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varying ranges. This deformation makes it harder to use the objects’ shape as a feature for
classification and detection models. Nonetheless, this method enables fast image generation
due to the simplicity of its creation, which could be used for real-time visualisation.

(a) (b)
Figure 5. Raw acoustic images of a PVC square at the same range, with varying FOV due to the different
acoustic frequencies. (a) Raw acoustic image of 1200 kHz, (b) Raw acoustic image of 1400 kHz.

4.1.2. Cartesian Acoustic Image

The Cartesian acoustic image shown in Figure 6 facilitates the identification of target
locations, and sonar operators typically use it. In this representation, the range is associated
with the y−axis, with lower y values indicating closer targets. The x−axis represents the
bearing relative to the sonar head, with the centre corresponding to a target directly in
front, having a direction of arrival (DoA) of 0◦. The entire field of view is divided in half,
each representing left and right bearings, providing spatial orientation information. This
representation is based on variable pixel sizes influenced by the minimum distance between
acoustic backscatter points, which affect the FOV and range parameters. Consequently, the
image size varies due to these pixel size differences. To mitigate gaps in the data, a kernel is
applied to the image to interpolate empty pixels. While this enhances visualisation clarity,
many interpolated pixels lack precise intensity data. This Cartesian representation was de-
veloped as an alternative to the rviz ROS package, enhancing the visualisation of captured
targets, particularly with adjustable kernel sizes. Additionally, post-processing was made,
where a jet colour map was used on the normalised intensity data. This representation was
not utilised for classification or detection models, and the image generation by this method
is slower than the other two methods due to the kernel application.

Figure 6. Cartesian acoustic image of a PVC square in the water column.
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4.1.3. Polar Acoustic Image

The Polar acoustic image illustrated in Figure 7 addresses the issues present in the raw
representation by offering a consistent and interpretable format.

Figure 7. polar acoustic image of a PVC square in the water column.

The x and y coordinates of points, along with their intensity values, are used as input
to generate a two-dimensional (2D) image representing these points in polar space. The
maximum accepted field of view (FOV) and range are considered. A fixed FOV is applied
for all frequencies to ensure all acoustic images have the same fixed width without pixels
lacking intensity values. The algorithm computes the range (r) and angle (θ) for each point
(i). The range is computed using the Euclidean distance formula:

rangei =
√

x2
i + y2

i (1)

The angle (θ) is computed using the arctangent function:

thetai = arctan2(yi, xi) (2)

The range resolution is defined as 0.002 m/pixel based on specifications, and the theta
resolution is set to 0.1◦, given by:

thetaresolution =
minimum f ov

beamsnumber
(3)

The dimensions of the output image are determined based on these resolutions and
the maximum values, ensuring consistent image resolution without compromising scale:

imageheight =
rangemax

rangeresolution
+ 1 (4)

imagewidth =
f ovmax

thetaresolution
+ 1 (5)

Two mapping operations convert polar coordinates to polar image indices. Equation (6)
converts the angular position (θ) into a column index (x) within the polar image:

x =

⌊(
imagewidth − 1

f ovmax

)
θ +

imagewidth − 1
2

⌋
(6)

The current angle (θ) is scaled to fit within the image width, defined as the first
member of Equation (6), and then centred to ensure symmetrical angular positions across
the image width.

Equation (7) converts the radial distance (r) into a row index (y) within the polar image:
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y =

⌊( imageheight − 1
rangemax

)
r
⌋

(7)

The range (r) is scaled to fit within the image height. The mapped indices assign each
point’s normalised intensity to its corresponding polar image position. This process iterates
over all points represented in polar coordinates, effectively populating the polar image
with intensity values based on their spatial distribution.

This method allows for generating acoustic images that facilitate the computation of
a target’s range and bearing relative to the sonar head. The varying FOV with different
acoustic frequencies does not affect the resulting image dimensions or scale due to the
fixed range and theta resolutions. Consistent image dimensions are beneficial for input into
classification and detection models.

4.2. Dataset Labelling and Format

The dataset comprises five classes, as detailed in Table 4. Three acoustic frequencies
were selected for the dataset: 950 kHz, 1200 kHz, and 1400 kHz. The 700 kHz frequency
was excluded due to excessive noise in the MBES backscatter data, likely caused by the
large field of view (FOV) and side-lobe interference from the test tank walls. The number of
images per class at each frequency is presented in Table 5. The dataset is primarily balanced,
except for the PVC square, which has higher occurrences.

Table 5. Test tank dataset with its classes and number of occurrences at each operating frequency.

Operating Frequency
Class 950 kHz 1200 kHz 1400 kHz

PVC Square 551 549 453
PVC traffic cone 317 356 305

Wooden deck 356 355 344
Vinyl sheet 356 355 425

Fish net 301 330 313

For classification tasks, images were stored in directories named after their respective
classes, facilitating organised dataset management and straightforward class identifica-
tion during training. Simple data augmentation techniques, including horizontal flips
and brightness adjustments, were applied to enhance the dataset. Since the data consist
of sonar images, horizontal flips were used to simulate different fields of view (FOVs).
Brightness adjustments were made to mimic variations in backscatter intensity. These
transformations aimed to improve generalisation and have been discussed by other au-
thors [44,45]. Although synthetic data augmentation methods, such as generative adversar-
ial networks (GANs), were considered, they were not implemented in the current scope of
development [46].

Labelling and annotation were necessary for detection tasks due to the presence
of bounding boxes. This was accomplished using the Supervisely platform, where the
bounding boxes were annotated for the entire dataset, including augmented data. The
augmented dataset included images with multiple objects and some without targets. Data
augmentation techniques were also applied to this dataset, including horizontal and vertical
flips, zoom, and brightness adjustments. The Common Objects in Context (COCO) format
was used for detection tasks, and a specific COCO format adaptation was made for the You
Only Look Once 8 (YOLOv8) model.

This structured approach to dataset labelling and annotation, combined with data
augmentation, ensures that both classification and detection models are trained on diverse
and comprehensive datasets, enhancing their performance and robustness.
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5. Detection and Classification

This section details the detection and classification algorithms implemented and tested
to detect marine debris objects in the water column acoustic images. Section 5.1 describes
the chosen algorithms based on the state-of-the-art approaches. Section 5.2 details how the
algorithms were implemented and their results.

5.1. Algorithms for Detection and Classification Problems

The complexity and variability of marine litter, along with the characteristics of sonar
images, present significant challenges for developing accurate and efficient classification
and detection methods. The selection of algorithms was based on the nature of the acoustic
images, their footprints, and the review of the state-of-the-art techniques and where they
were commonly applied. Machine learning and deep learning methods, typically used for
this type of data, can offer promising solutions. Selecting appropriate algorithms is crucial
for achieving high accuracy and efficiency. Testing these algorithms with the acquired data
was necessary to determine if it was possible to accurately discriminate the selected marine
debris in the test tank dataset.

SVM and CNN were chosen for the multi-class classification of sonar acoustic images.
The decision to use SVM is based on its robustness in high-dimensional feature spaces,
which is advantageous for the complex features in sonar images. Although SVMs can be
slower to train with large datasets, efficient kernels, such as the Radial Basis Function (RBF),
mitigate this issue [47].

CNNs were also selected due to their ability to capture spatial hierarchies in images
through convolutional layers. This capability allows CNNs to automatically learn and
extract relevant features from images, reducing the need for manual feature engineering.
CNNs have demonstrated superior performance in image classification tasks due to their
proficiency in modelling complex patterns. Despite requiring substantial computational
resources and time for training, CNNs generally achieve higher accuracy than traditional
methods like SVM [48].

YOLO (You Only Look Once) version 8 and the single-shot multibox detector (SSD)
were chosen for object detection in sonar acoustic images. YOLOv8 is designed for real-time
detection, treating detection as a single regression problem that directly predicts bounding
boxes and class probabilities. This design facilitates efficient processing, maintaining a good
balance between speed and accuracy, essential for real-time applications. While YOLOv8
may not achieve the highest accuracy among detection models, its efficiency makes it a
practical choice for applications requiring real-time processing [49].

The SSD balances speed and accuracy, making it suitable for applications where both
factors are essential. SSD uses feature maps at different scales to detect objects of various
sizes, enhancing detection performance. Like YOLO, SSD requires only a single forward
pass through the network to detect objects, ensuring efficiency. Although SSD is more
complex due to its use of multiple feature maps and default boxes, it allows for greater
flexibility in detecting objects of different sizes [50].

Three acquisitions were conducted, each corresponding to one of the three operating
frequencies: 950 kHz, 1200 kHz, and 1400 kHz. Consequently, three models were trained
for each frequency. The training was performed on an NVIDIA GeForce RTX 3060 Mobile
GPU. The development environment primarily utilised TensorFlow 2, with specific APIs
employed for different models. The SVM model was implemented using the sklearn
library, and the CNN model was built with keras. The detector models were trained
using transfer learning from initial weights derived from the COCO dataset, including
the SSD and the YOLOv8. The SSD model was trained using the TensorFlow 2 Detection
API, the YOLO8 model was trained using the Supervisely platform, and the inference was
performed using the ultralytics library.

The machine and deep learning algorithms used in this study are widely applied
in state-of-the-art research across various domains. The focus of this work was not on
developing new algorithms but rather on applying proven learning-based methods to this
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specific application. The successful characterisation and detection of the proposed targets in
a controlled environment serve as essential groundwork for future real-world experiments.

5.2. Training and Results
5.2.1. Support Vector Machine (SVM)

An algorithm was developed to optimise the performance of the support vector ma-
chine (SVM) model through grid search. The process involves systematically exploring and
evaluating hyperparameter combinations to identify the best-performing configurations.
The aim was to ensure that the SVM classifier is robust and generalises unseen data well.

The algorithm considers three critical hyperparameters for optimisation: the regulari-
sation parameter (C), the kernel coefficient (gamma), and the kernel types (that were chosen
taking into account that it is a multi-class classification problem):

• C—varies from 0.2 to 1.6 with a step of 0.2.
• gamma—varies from 0.25 to 2.0 with a step of 0.25.
• Kernel types—polynomial (poly), radial basis function (RBF), and sigmoid.

The combined dataset, made of the original and augmented data, was split into training,
validation, and test sets. This step ensures that the model has sufficient data to learn from
while also providing separate sets for validation and testing to evaluate model performance.

The grid search algorithm evaluated all possible combinations of the specified hy-
perparameters using 2-fold cross-validation (CV) for computational efficiency. The mean
performance scores across the cross-validation folds are recorded for each combination.
These scores are analysed to identify the best hyperparameters for each performance metric.
The algorithm also evaluates the model performance based on accuracy, precision, and
recall. Custom scoring functions are defined to assess precision and recall with weighted
averaging, which accounts for class imbalances. The optimal hyperparameters for accuracy,
precision, and recall are identified, defining an optimal classification surface. If different
hyperparameters are optimal for each metric, multiple models are trained, each optimised
for a specific metric. This ensures that the best possible model is available for different
evaluation criteria. If the optimal parameters are the same across all metrics, a single model
is trained with these parameters.

Inference was applied to the dataset corresponding to the frequency the model was
trained on and the data of the other frequencies. This cross-frequency evaluation helps
determine the models’ robustness and adaptability when applied to data acquired under
different acoustic conditions. The results of each model from the other acoustic frequencies
data are available in Table 6. The models trained on a specific frequency demonstrated
overfitting when tested with acoustic images of the same frequency. This overfitting can
be attributed to the low variability of the images obtained in a controlled environment. In
such settings, the images did not capture objects from different angles, resulting in limited
variations in the object footprints, underlining the current dataset limitations. This is
notorious across all trained models. This will be addressed in the near future, where MBES
data will be acquired from an unmanned surface vehicle (USV) in a real-life controlled
environment where targets will be placed in a harbour within known locations.

Table 6. Performance Metrics for SVM Models with different multibeam acoustic frequencies.

Class Precision Recall F1-Score Accuracy

950 kHz SVM model

950 kHz data

Fish net 1.00 1.00 1.00
Wooden deck 1.00 1.00 1.00
PVC traffic cone 1.00 1.00 1.00 1.00
Vinyl 1.00 1.00 1.00
PVC square 1.00 1.00 1.00
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Table 6. Cont.

Class Precision Recall F1-Score Accuracy

1200 kHz data

Fish net 0.00 0.00 0.00
Wooden deck 0.19 1.00 0.32
PVC traffic cone 0.00 0.00 0.00 0.19
Vinyl 0.00 0.00 0.00
PVC square 0.00 0.00 0.00

1400 kHz data

Fish net 0.00 0.00 0.00
Wooden deck 0.19 1.00 0.32
PVC traffic cone 0.00 0.00 0.00 0.19
Vinyl 0.00 0.00 0.00
PVC square 0.00 0.00 0.00

1200 kHz SVM model

950 kHz data

Fish net 0.72 0.67 0.69
Wooden deck 0.46 0.74 0.56
PVC traffic cone 0.31 0.35 0.33 0.50
Vinyl 0.51 0.51 0.51
PVC square 0.56 0.32 0.41

1200 kHz data

Fish net 1.00 1.00 1.00
Wooden deck 1.00 1.00 1.00
PVC traffic cone 1.00 1.00 1.00 1.00
Vinyl 1.00 1.00 1.00
PVC square 1.00 1.00 1.00

1400 kHz data

Fish net 1.00 0.16 0.28
Wooden deck 0.23 1.00 0.38
PVC traffic cone 0.54 0.11 0.19 0.26
Vinyl 0.00 0.00 0.00
PVC square 0.40 0.10 0.16

1400 kHz SVM model

950 kHz data

Fish net 0.38 0.81 0.52
Wooden deck 0.66 0.36 0.46
PVC traffic cone 0.26 0.40 0.32 0.42
Vinyl 0.44 0.45 0.44
PVC square 1.00 0.18 0.31

1200 kHz data

Fish net 0.97 0.18 0.30
Wooden deck 0.22 0.65 0.32
PVC traffic cone 0.35 0.25 0.29 0.35
Vinyl 0.50 0.12 0.20
PVC square 0.56 0.54 0.55

1400 kHz data

Fish net 1.00 1.00 1.00
Wooden deck 1.00 1.00 1.00
PVC traffic cone 1.00 1.00 1.00 1.00
Vinyl 1.00 1.00 1.00
PVC square 1.00 1.00 1.00
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5.2.2. Convolutional Neural Network (CNN)

A convolutional neural network (CNN) algorithm was developed, and class activation
maps (CAM) were employed to identify the most informative regions in the images used
by the model. The images and labels were split into training, validation, and test sets. The
labels are one-hot encoded to facilitate multi-class classification.

The CNN architecture comprises several layers: an input layer and two convolutional
layers with 32 and 64 filters, each with a kernel size of 3 × 3 and rectified linear unit (ReLU)
activation functions. Max-pooling layers follow each convolutional layer to reduce the
spatial dimensions of the feature maps. The output from these layers is then flattened and
passed through a dense layer with 64 units and ReLU activation. The final output layer
uses a softmax activation function to produce a probability distribution over the classes.
The model is compiled using the Adam optimizer, categorical cross-entropy as the loss
function, and metrics including accuracy, precision, and recall.

The model’s performance is evaluated on the test set, generating key metrics such as
test loss, accuracy, precision, and recall. Class activation maps (CAM) were generated to
visualize the regions in the input images that CNN focused on when making its predictions.
This helps in understanding which parts of the pictures are most influential in the model’s
decision-making process, providing insight into the model’s interpretability.

Each trained model was evaluated on datasets corresponding to different acoustic
frequencies to assess generalisation. The models were trained using both raw and polar
acoustic image representations. The results for each acoustic image representation are
summarised in Table 7 and Table 8, respectively. This cross-frequency evaluation, similar
to that applied in the support vector machine (SVM) models, aimed to determine the
robustness and adaptability of the CNN models when applied to data acquired under
different acoustic conditions.

The models trained on polar acoustic images were less prone to overfitting compared
to those trained on raw images, a trend observed across all frequencies. While these models
still showed signs of overfitting, the effect was less pronounced than with the SVM model.
The generation of CAMs provided insight into the models’ focus areas, revealing whether
they concentrated on pixels and features associated with backscatter data from marine
debris targets. Upon generating the CAMs, it was confirmed that the marine debris objects
and their backscatter significantly influenced the model’s decision-making process, as
illustrated in Figure 8. This finding underscored the importance of the marine debris and
their backscatter in the model’s predictions, affirming that the models primarily relied on
these features despite the overfitting issue.

Table 7. Performance Metrics for CNN Models with different multibeam acoustic frequencies with
the raw acoustic image representation.

Class Precision Recall F1-Score Accuracy

950 kHz raw CNN model

950 kHz data

Fish net 1.00 0.70 0.82
Wooden deck 0.45 1.00 0.62
PVC traffic cone 1.00 0.51 0.68 0.77
Vinyl sheet 1.00 0.96 0.98
PVC Square 1.00 0.69 0.82

1200 kHz data

Fish net 0.52 0.81 0.63
Wooden deck 0.70 0.77 0.74
PVC traffic cone 0.48 0.33 0.39 0.56
Vinyl sheet 0.41 0.54 0.47
PVC Square 0.82 0.39 0.53
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Table 7. Cont.

Class Precision Recall F1-Score Accuracy

1400 kHz data

Fish net 0.36 0.87 0.51
Wooden deck 0.60 0.83 0.69
PVC traffic cone 0.12 0.02 0.03 0.46
Vinyl sheet 0.43 0.34 0.38
PVC Square 0.62 0.29 0.39

1200 kHz raw CNN model

950 kHz data

Fish net 1.00 0.47 0.64
Wooden deck 1.00 0.53 0.69
PVC traffic cone 0.30 0.28 0.29 0.46
Vinyl sheet 0.36 0.62 0.45
PVC Square 0.34 0.41 0.37

1200 kHz data

Fish net 0.88 1.00 0.94
Wooden deck 0.99 0.83 0.90
PVC traffic cone 0.96 0.88 0.92 0.94
Vinyl sheet 0.89 0.99 0.93
PVC Square 1.00 1.00 1.00

1400 kHz data

Fish net 0.65 0.94 0.77
Wooden deck 0.60 0.42 0.49
PVC traffic cone 0.04 0.02 0.02 0.51
Vinyl sheet 0.33 0.71 0.45
PVC Square 1.00 0.45 0.62

1400 kHz raw CNN model

950 kHz data

Fish net 1.00 0.19 0.32
Wooden deck 0.51 0.31 0.39
PVC traffic cone 0.03 0.00 0.01 0.33
Vinyl sheet 0.49 0.31 0.38
PVC Square 0.25 0.74 0.38

1200 kHz data

Fish net 1.00 0.21 0.34
Wooden deck 0.72 0.45 0.55
PVC traffic cone 0.61 0.52 0.56 0.55
Vinyl sheet 0.42 0.92 0.57
PVC Square 0.58 0.61 0.60

1400 kHz data

Fish net 1.00 0.96 0.98
Wooden deck 1.00 0.98 0.99
PVC traffic cone 0.83 1.00 0.91 0.96
Vinyl sheet 0.97 1.00 0.98
PVC Square 1.00 0.88 0.94
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Table 8. Performance Metrics for CNN Models with different multibeam acoustic frequencies with
the polar acoustic image representation.

Class Precision Recall F1-Score Accuracy

950 kHz polar CNN model

950 kHz data

Fish net 1.00 1.00 1.00
Wooden deck 1.00 0.99 0.99
PVC traffic cone 0.93 1.00 0.96 0.98
Vinyl sheet 0.97 1.00 0.99
PVC Square 1.00 0.95 0.97

1200 kHz data

Fish net 0.85 0.83 0.84
Wooden deck 0.92 0.76 0.83
PVC traffic cone 1.00 0.42 0.59 0.65
Vinyl sheet 0.36 1.00 0.53
PVC Square 0.96 0.41 0.57

1400 kHz data

Fish net 0.57 0.71 0.63
Wooden deck 0.67 0.62 0.64
PVC traffic cone 0.55 0.47 0.50 0.59
Vinyl sheet 0.49 0.83 0.61
PVC Square 1.00 0.35 0.52

1200 kHz polar CNN model

950 kHz data

Fish net 0.85 0.75 0.85
Wooden deck 0.95 0.66 0.80
PVC traffic cone 0.68 0.84 0.75 0.76
Vinyl sheet 0.86 0.55 0.71
PVC Square 0.61 0.93 0.73

1200 kHz data

Fish net 0.99 1.00 0.99
Wooden deck 1.00 0.83 0.91
PVC traffic cone 0.90 1.00 0.95 0.97
Vinyl sheet 0.97 1.00 1.00
PVC Square 0.98 1.00 0.99

1400 kHz data

Fish net 0.67 0.99 0.80
Wooden deck 0.70 0.37 0.48
PVC traffic cone 0.48 0.98 0.64 0.67
Vinyl sheet 1.00 0.47 0.64
PVC Square 0.82 0.63 0.71

1400 kHz polar CNN model

950 kHz data

Fish net 0.66 0.66 0.66
Wooden deck 0.77 0.55 0.64
PVC traffic cone 0.53 0.82 0.64 0.63
Vinyl sheet 0.64 0.79 0.71
PVC Square 0.62 0.44 0.51
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Table 8. Cont.

Class Precision Recall F1-Score Accuracy

1200 kHz data

Fish net 0.90 0.88 0.89
Wooden deck 0.66 0.18 0.28
PVC traffic cone 0.80 0.75 0.78 0.75
Vinyl sheet 0.51 1.00 0.68
PVC Square 0.97 0.88 0.92

1400 kHz data

Fish net 0.95 1.00 0.98
Wooden deck 0.91 0.91 0.91
PVC traffic cone 0.85 0.98 0.91 0.90
Vinyl sheet 0.84 0.93 0.88
PVC Square 0.91 0.74 0.85

Figure 8. Class Activation Map applied to the CNN with a polar image of a PVC square as an input.

5.2.3. Single Shot Detector (SSD)

A single-shot multiBox detector (SSD) algorithm was implemented to detect objects in
images across different acoustic frequencies. The workflow encompasses data preprocess-
ing, model training, evaluation, and visualisation of the results using bounding boxes.

The data were loaded and pre-processed using annotations in COCO format. The
data were divided into training and validation sets, ensuring the data distribution was
maintained across sets. Annotations and images were processed to create TFRecord files
to use the TensorFlow 2 Object Detection API. This step involved reading image files,
encoding them, and normalising the bounding box coordinates. The annotations included
bounding box coordinates and class labels.

The model architecture included a pre-trained backbone, RetinaNet50, followed by
multiple convolutional layers to predict bounding boxes and class probabilities. The
training involved optimising a multi-task loss function, a weighted sum of localisation
loss and confidence loss. The Adam optimiser was used to minimise this loss function,
facilitating efficient convergence.

The SSD model was loaded, and inference was performed on test images. The infer-
ence process involved passing images through the model and extracting bounding box
predictions, class labels, and confidence scores. The COCO evaluation toolkit was inte-
grated to compare the predicted bounding boxes with ground truth annotations, facilitating
a detailed performance analysis. The results are summarised in Table 9.

It is noticeable from the results that the average precision (AP) for the intersection
over union (IoU) for both thresholds is higher when the models that were trained with a
specific acoustic frequency detect targets within images from the same frequency. The same
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goes for all the other metrics collected and showcased in Table 9. The results are visualised
using bounding boxes drawn on the images, as illustrated in Figure 9, with scores above
the 0.5 thresholds considered as valid detections. Cross-frequency detection seems unlikely
for detection models.

Table 9. Performance Metrics for SSD Models with different multibeam acoustic frequencies with the
polar acoustic image representation.

Class Precision Recall mAP AP for IoU AP for IoU
Threshold at 0.6 Threshold at 0.75

950 kHz SSD model

950 kHz data

PVC traffic cone 0.8657 0.8712 0.8680 0.9693 0.8680
PVC Square 0.8440 0.8489 0.8494 0.5347 0.8494
Fish net 0.7104 0.7222 0.7186 0.7123 0.7186
Wooden deck 0.9704 0.9769 0.9780 0.9802 0.9780
Vinyl sheet 0.9831 0.9900 0.9872 0.958 0.9872

1200 kHz data

PVC traffic cone 0.1725 0.3354 0.2843 0.3248 0.2843
PVC Square 0.0012 0.0039 0.0012 0.0 0.0012
Fish net 0.2353 0.3518 0.2631 0.0 0.2631
Wooden deck 0.0 0.0 0.0 0.0 0.0
Vinyl sheet 0.0245 0.0820 0.0295 0.6505 0.0295

1400 kHz data

PVC traffic cone 0.0016 0.0047 0.0195 0.0297 0.0195
PVC Square 0.0 0.0 0.0 0.0 0.0
Fish net 0.0 0.0 0.0 0.0 0.0
Wooden deck 0.0049 0.0126 0.0172 0.0713 0.0172
Vinyl sheet 0.0209 0.0323 0.0295 0.0 0.0295

1200 kHz SSD model

950 kHz data

PVC traffic cone 0.2799 0.3509 0.2889 0.5049 0.2889
PVC Square 0.0042 0.0076 0.0270 0.0000 0.0270
Fish net 0.3153 0.4266 0.3528 0.0 0.3528
Wooden deck 0.0000 0.0000 0.0000 0.0000 0.0000
Vinyl sheet 0.0000 0.0000 0.0000 0.0000 0.0000

1200 kHz data

Fish net 0.9501 0.9832 0.9720 -1.0 0.9720
PVC traffic cone 0.9716 0.9801 0.9789 0.9822 0.9789
PVC Square 0.7256 0.7423 0.7332 0.5743 0.7332
Wooden deck 0.8730 0.8810 0.8812 1.0000 0.8812
Vinyl sheet 0.9633 0.9900 0.9762 0.0000 0.9762

1400 kHz data

Fish net 0.0 0.0 0.0 0.0 0.0
PVC traffic cone 0.0 0.0 0.0 0.0 0.0
PVC Square 0.0004 0.0008 0.0143 0.0218 0.0143
Wooden deck 0.0023 0.0029 0.0456 0.0000 0.0456
Vinyl sheet 0.1963 0.2766 0.2695 0.0000 0.2695
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Table 9. Cont.

Class Precision Recall mAP AP for IoU AP for IoU
Threshold at 0.6 Threshold at 0.75

1400 kHz SSD model

950 kHz data

PVC traffic cone 0.0009 0.0017 0.0138 0.0049 0.0138
PVC Square 0.2227 0.3113 0.3111 0.0000 0.3111
Wooden deck 0.0021 0.0064 0.0384 0.0000 0.0384
Fish net 0.0029 0.0048 0.0159 0.0178 0.0159
Vinyl sheet 0.0005 0.0014 0.0242 0.0000 0.0242

1200 kHz data

PVC traffic cone 0.0003 0.0003 0.0160 0.0198 0.0160
PVC Square 0.0129 0.0355 0.1301 0.3307 0.1301
Wooden deck 0.0067 0.0070 0.1225 0.0000 0.1225
Fish net 0.0391 0.0472 0.1714 0.1772 0.1714
Vinyl sheet 0.5067 0.6278 0.5426 0.8000 0.5426

1400 kHz data

Fish net 0.9847 0.9901 0.9930 0.9871 0.9930
PVC traffic cone 0.9791 0.9900 0.9862 0.9851 0.9862
PVC Square 0.9425 0.9501 0.9479 0.8752 0.9479
Wooden deck 0.8700 0.8713 0.8739 0.4950 0.8739
Vinyl sheet 0.8896 0.9092 0.9017 0.9000 0.9017

Figure 9. SSD model inference in two polar acoustic images with multiple targets with the target
detection confidence.

5.2.4. You Only Look Once 8 (YOLOv8)

The YOLOv8 model, pre-trained using the Supervisely platform, is loaded from a
checkpoint file containing weights for the previously labelled dataset. This model is
configured to detect objects in images with a confidence threshold of 0.5 to filter predictions.
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Inference begins by loading and iterating through a set of photos from a predefined
directory. The YOLOv8 model processes each image to detect objects, producing bounding
boxes and c for each detected object. The detection results are saved as images with
highlighted objects, and the bounding boxes are extracted and stored for further analysis.
The YOLOv8 model’s performance is evaluated using metrics such as precision, recall, and
F1 score metrics to assess accuracy and reliability.

During training, the YOLOv8 model was fine-tuned for 100 epochs with a patience
of 50 epochs and a batch size of 16. The input image size was 640 pixels. The AdamW
optimiser was used with an initial learning rate of 0.01, a final learning rate of 0.01, a
momentum of 0.937, and a weight decay of 0.0005. The training utilised automatic mixed
precision (AMP). Data augmentations included HSV-Hue augmentation (0.015), HSV-
Saturation augmentation (0.7), and HSV-Value augmentation (0.4). Eight worker threads
were used for data loading to ensure efficient training.

The results are summarised in Table 10.

Table 10. Performance Metrics for YOLOv8 Models with different multibeam acoustic frequencies
with the polar acoustic image representation.

Class Precision Recall F1 mAP Fitness

950 kHz YOLOv8 model

950 kHz data

Fish net 1.00 1.00 1.00 0.9921
PVC traffic cone 0.9303 0.9966 0.9623 0.9186
Wooden deck 0.9925 1.00 0.9962 0.9757 0.9603
Vinyl sheet 0.9915 1.00 0.9957 0.9911
PVC Square 0.9925 0.9213 0.9556 0.9100

1200 kHz data

Fish net 0.7490 0.6316 0.6853 0.2702
PVC traffic cone 0.0157 0.0120 0.0136 0.0031
Wooden deck 0.1016 0.1000 0.1008 0.0260 0.0695
Vinyl sheet 0.00 0.00 0.00 0.00
PVC Square 0.00 0.00 0.00 0.00

1400 kHz data

Fish net 0.0134 0.9630 0.0264 0.0119
PVC traffic cone 0.0025 0.50 0.0050 0.0012
Wooden deck 0.00 0.00 0.00 0.00 0.0031
Vinyl sheet 0.00 0.00 0.00 0.00
PVC Square 0.0015 0.0714 0.0030 0.0002

1200 kHz YOLOv8 model

950 kHz data

Fish net 0.9333 1.00 0.9655 0.6900
PVC traffic cone 0.0268 0.9545 0.0520 0.0488
Wooden deck 0.0238 0.9565 0.0464 0.0133 0.1599
Vinyl sheet 0.0097 0.9259 0.0193 0.0010
PVC Square 0.0 0.0 0.0 0.0

1200 kHz data

Fish net 0.9906 1.00 0.9953 0.9950
PVC traffic cone 1.00 0.9958 0.9979 0.9279
Wooden deck 0.9943 1.00 0.9971 0.9831 0.9789
Vinyl sheet 0.9980 1.00 0.9990 0.9905
PVC Square 0.9945 1.00 0.9972 0.9887
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Table 10. Cont.

Class Precision Recall F1 mAP Fitness

1400 kHz data

Fish net 1.00 0.00 0.00 0.00
PVC traffic cone 1.00 0.00 0.00 0.00
Wooden deck 0.00 0.00 0.00 0.0751 0.1024
Vinyl sheet 0.7445 0.9048 0.8169 0.3754
PVC Square 0.00 0.00 0.00 0.00

1400 kHz YOLOv8 model

950 kHz data

Fish net 0.00 0.00 0.00 0.0047
PVC traffic cone 1.00 0.00 0.00 0.00
Wooden deck 0.00 0.00 0.00 0.00 0.1109
Vinyl sheet 0.00 0.00 0.00 0.00
PVC Square 0.9494 0.9130 0.9309 0.5055

1200 kHz data

Fish net 1.00 0.00 0.00 0.00
PVC traffic cone 1.00 0.00 0.00 0.04
Wooden deck 1.00 0.00 0.00 0.00 0.0891
Vinyl sheet 0.9108 0.9167 0.9137 0.3401
PVC Square 1.00 0.00 0.00 0.00

1400 kHz data

Fish net 0.7756 1.00 0.8736 0.8568
PVC traffic cone 0.8707 0.7921 0.8295 0.5482
Wooden deck 0.9857 1.00 0.9928 0.8250 0.7822
Vinyl sheet 0.7938 0.9529 0.8661 0.7661
PVC Square 1.00 0.8476 0.9175 0.8106

Bounding boxes were drawn on the images, as illustrated in Figure 10, with scores
above the 0.5 thresholds considered valid detections. As with the SSD models, it is no-
ticeable that the mean average precision (mAP) and the fitness metric are higher when
the models trained with a specific acoustic frequency detect targets within images from
the same frequency, as with the other metrics. The results are visualised using bounding
boxes drawn on the images, as illustrated in Figure 10, with scores above the 0.5 thresholds
considered valid detections.

5.3. Results Discussion

The original dataset from [15] consisted of targets captured directly in front of the
sonar head at multiple frequencies. However, the dataset lacked variation in fields of view
and ranges relative to the sonar head. As a result, most models overfitted when tested on
acoustic images using the same frequency as the training set, particularly in classification
tasks, where results of 1.0 were observed. To mitigate overfitting and improve model
generalisation, additional data were collected in the test tank using the same three acoustic
frequencies, incorporating new data for all object classes, including the addition of a smaller
PVC square. This process involved acquiring data at two additional distances and from
three fields of view (FOV) relative to the sonar head, with targets arranged in different
ways to create varied footprints in the sonar images. The ranges were selected to ensure an
equal number of occurrences for each frequency, considering the minimum field of view
(FOV) of the multibeam echosounder (MBES). Varying the range altered the appearance
of targets across the water column, allowing assessment of whether the models could still
detect and classify the targets accurately. Due to the test tank’s physical constraits, such
as its walls, bottom, and surface reflections, more distances could not be tested. While the
expanded dataset reduced overfitting in most models, SVM models continued to struggle
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with generalisation and required significantly longer training times compared to other
models, even if there were changes in the cross-frequency test results.

Figure 10. YOLO8 model inference in polar acoustic images with multiple targets with the target
detection confidence.

CNN models demonstrated that the polar representation of the acoustic images out-
performed the raw image representation, showing better generalisation. However, despite
the mostly balanced test tank dataset, the lack of environmental and range variability still
led to overfitting, even with simple data augmentation and early stopping techniques in
place. These issues were primarily due to test tank limitations. Class activation maps
revealed that the CNN models focused on pixels and features linked to the backscatter
from marine debris targets. CNN models also trained faster than SVM models.

The SSD model produced good results with acoustic images at the same frequency as
the training set, outperforming the YOLOv8 model in this respect. However, SSD models
required more time and resources for training and were only effective for detecting objects
at the same acoustic frequency they were trained on.

The YOLOv8 models, while not as effective as SSD models in same-frequency tests,
performed better in cross-frequency tests. The training was faster and more optimised.
YOLOv8 might yield better results with more exhaustive hyperparameter tuning.

Overall, the classification and detection of different types of marine debris were
achieved, despite some selected marine debris sharing similar shapes. This suggests
that features other than shape were key to distinguishing between the selected materials,
allowing the material’s characterisation with the features available within the dataset.
Data were gathered at different acoustic frequencies to assess whether there was greater
discriminative power for each type of object and material at specific frequencies and to
verify if the objects could be reliably detected at those frequencies. Additionally, a cross-
frequency study was conducted, confirming the expected outcome that models would
underperform when trained and tested across different frequencies. This was a preliminary
investigation into the potential of multi-frequency approaches for target detection.

Across the models, the cross-frequency tests generally yielded better results in those
trained with 1400 kHz data. Higher acoustic frequencies tended to produce better metrics,
such as accuracy, likely due to the improved spatial resolution, which helps distinguish
between targets based on different types of acoustic data. This improvement is primarily



J. Mar. Sci. Eng. 2024, 12, 1984 25 of 28

linked to the reduced distance between beams at higher frequencies. However, these tests
are preliminary and inconclusive, as they do not provide sufficient information to conduct
a comprehensive multi-frequency study, which would require the use of different hardware.
However, a multi-frequency MBES is not yet available for data acquisition, which could
otherwise facilitate techniques similar to those used in hyperspectral imaging systems [12].
Another approach worth exploring involves using multiple single-frequency models to
detect and classify the same target, potentially increasing its detectability. Although this
method does not achieve the same results as a multi-frequency or adaptive-frequency
multibeam echosounder, it presents a feasible line of investigation when the required
hardware is unavailable. It is not possible to conclude if the models can generalise with
the current test tank dataset. To achieve generalisation and enable the application of new
algorithms, a more extensive dataset obtained using the MBES in real-world scenarios
across all frequencies and various ranges and poses relative to placed targets is required.

6. Conclusions and Future Work

Addressing the growing threat of marine litter in the oceans is crucial. This study
obtained acoustic images using a multibeam echosounder setup at various frequencies
to facilitate classification and detection. Data were collected in a test tank scenario with
multiple targets positioned in the water column, enabling their identification through
acoustic imagery.

Supervised machine learning methods were employed for automated target classi-
fication. Two algorithms, CNN and SVM, were implemented, and a model was trained
to categorise different object classes at different acoustic frequencies. Deep learning ap-
proaches based on transfer learning were also trained with new weights, specifically for
SSD and YOLO8 detection models. These methods demonstrated the capability to clas-
sify and detect marine debris targets at different acoustic frequencies from water column
imaging data, distinguishing different debris even if their shape was similar. However,
while mostly balanced, the data lacked sufficient variety for the models to generalise across
multiple scenarios. The test results revealed that models trained on data with the same
acoustic frequency exhibited overfitting, revealing a dataset limitation. Cross-frequency
inference yielded poorer results, particularly in models based on frequencies with better
spatial resolution. It highlights their difficulty in detecting or classifying targets in images
with lower spatial resolution, such as those based on 950 kHz frequency, being more notori-
ous in the detection algorithms. Tests with different algorithms indicated that the polar
representation of acoustic data led to better results than the raw image representation, as
demonstrated in the CNN model study.

The successful characterisation and detection of the proposed targets in a controlled
environment serve as essential groundwork for future real-world experiments that are
already planned.

Future work will focus on acquiring more data in real-world scenarios and placing
various marine debris targets at known locations to develop more generalised models.
Plans include creating a dataset with multiple acoustic frequencies and varying MBES
orientations relative to the targets at different ranges. A data acquisition campaign is
being organised within the scope of the NetTag+ project to gather data from the same
marine debris classes used in this study, along with additional debris types, to expand
the dataset and improve the models’ generalisation capabilities. This dataset will enable
testing of current state-of-the-art networks and support the development of new techniques
for detecting and classifying marine litter. The successful characterisation and detection
proposed by this work laid the foundation for the planned dataset campaign.

Moreover, further experiments with multiple MBES systems will be necessary to
advance marine litter detection and classification. However, this study has already demon-
strated that acoustic data collected at different single frequencies using a MBES can dif-
ferentiate between various objects in the water column in test tank conditions. Future
tests will investigate whether detecting the same target at multiple frequencies, even if
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multi-band information is not available simultaneously, can enhance the discriminative
power of marine debris detection algorithms.
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