Acoustic Signal Reconstruction Across Water–Air Interface Through Millimeter-Wave Radar Micro-Vibration Detection
Abstract
:1. Introduction
2. Signal Reconstruction Model Across the Water–Air Interface
2.1. Acoustically Induced Water Surface Microwaves
2.2. Detection of Surface Acoustic Wave by Radar
2.3. ECUAV Evaluation Model
3. Experimental Setup
4. Experiment for Cross-Medium Information Transmission
4.1. Surface Perturbations Assessment by ECUAV Model
4.2. Low Frequency Signal Detection and Reconstruction
4.3. BFSK-Encoded Signal Transmission Across Water–Air Media
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Y.; Zhang, Q.; Wang, H. 6G: Ubiquitously Extending to the Vast Underwater World of the Oceans. Engineering 2022, 8, 12–17. [Google Scholar] [CrossRef]
- Khan, M.A.; Alzahrani, B.A.; Barnawi, A.; Al-Barakati, A.; Irshad, A.; Chaudhry, S.A. A resource friendly authentication scheme for space-air-ground-sea integrated Maritime Communication Network. Ocean. Eng. 2022, 250, 110894. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Pompili, D.; Melodia, T. Underwater acoustic sensor networks: Research challenges. Ad Hoc Netw. 2005, 3, 257–279. [Google Scholar] [CrossRef]
- Chen, H.; Chen, H.; Zhang, Y.; Xu, W. Decentralized estimation of ocean current field using underwater acoustic sensor networks. Acoust. Soc. Am. 2021, 149, 3106–3121. [Google Scholar] [CrossRef]
- Luo, H.; Wang, J.; Bu, F.; Ruby, R.; Wu, K.; Guo, Z. Recent Progress of Air/Water Cross-Boundary Communications for Underwater Sensor Networks: A Review. IEEE Sens. J. 2022, 22, 8360–8382. [Google Scholar] [CrossRef]
- Schirripa Spagnolo, G.; Cozzella, L.; Leccese, F. Underwater Optical Wireless Communications: Overview. Sensors 2020, 20, 2261. [Google Scholar] [CrossRef]
- Han, S.; Noh, Y.; Liang, R.; Chen, R.; Cheng, Y.-J.; Gerla, M. Evaluation of Underwater Optical-Acoustic Hybrid Network. China Commun. 2014, 11, 49–59. [Google Scholar]
- Lv, Z.; He, G.; Yang, H.; Chen, R. The Investigation of Underwater Wireless Optical Communication Links Using the Total Reflection at the Air-Water Interface in the Presence of Waves. Photonics 2022, 9, 525. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, X.; Liu, X.; Zhang, G.; Tian, P. Recent progress in and perspectives of underwater wireless optical communication. Prog. Quantum Electron. 2020, 73, 100274. [Google Scholar] [CrossRef]
- Junejo, N.U.R.; Sattar, M.; Adnan, S.; Sun, H.; Adam, A.B.M.; Hassan, A.; Esmaiel, H. A Survey on Physical Layer Techniques and Challenges in Underwater Communication Systems. J. Mar. Sci. Eng. 2023, 11, 885. [Google Scholar] [CrossRef]
- Jamali, M.V.; Mirani, A.; Parsay, A.; Abolhassani, B.; Nabavi, P.; Chizari, A.; Khorramshahi, P.; Abdollahramezani, S.; Salehi, J.A. Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations. IEEE Trans. Commun. 2018, 66, 4706–4723. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, K.; Yang, K.; Ma, Y. Electromagnetic Field in Air Produced by a Horizontal Magnetic Dipole Immersed in Sea: Theoretical Analysis and Experimental Results. IEEE Trans. Antennas Propag. 2014, 62, 4647–4655. [Google Scholar] [CrossRef]
- Wang, H.; Ren, Y. EM wave propagation through the seawater-air interface in dynamic marine environment. In Proceedings of the Conference on Global Oceans: Singapore–U.S. Gulf Coast, Biloxi, MS, USA, 5–30 October 2020; pp. 809–812. [Google Scholar]
- Dai, Z.; Sun, J.; Sui, P. Theoretical Study on the Water Surface Transversal Mini-wave due to the Underwater Sound Field. J. Natl. Univ. Def. Technol. 2004, 26, 95–98. [Google Scholar]
- Dautta, M.; Hasan, M.I. Underwater Vehicle Communication Using Electromagnetic Fields in Shallow Seas. In Proceedings of the International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 16–18 February 2017; pp. 38–43. [Google Scholar]
- Song, A.; Stojanovic, M.; Chitre, M. Editorial Underwater Acoustic Communications: Where We Stand and What Is Next? IEEE J. Ocean. Eng. 2019, 44, 1–6. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, H.; Yang, Z.; Wang, H. Underwater Target Detection by Measuring Water-Surface Vibration With Millimeter-Wave Radar. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2260–2264. [Google Scholar] [CrossRef]
- Erzheng, F.; Zongru, L. Water surface capillary wave detection method based on optical devices. J. Harbin Eng. Univ. 2024, 45, 332–338. [Google Scholar]
- Liu, X.; Wang, Y.; Liu, F.; Zhang, Y. Investigation on the Utilization of Millimeter-Wave Radars for OceanWave Monitoring. Remote Sens. 2023, 15, 5606. [Google Scholar] [CrossRef]
- Luo, J.; Liang, X.; Guo, Q.; Zhang, L.; Bu, X. Combined Improved CEEMDAN and Wavelet Transform Sea Wave Interference Suppression. Remote Sens. 2023, 15, 2007. [Google Scholar] [CrossRef]
- Lee, M.S.; Bourgeois, B.S.; Hsieh, S.T.; Martinez, A.B. A Laser Sensing Scheme for Detection of Underwater Acoustic Signals. In Proceedings of the IEEE Conf. Southeastcon, Knoxville, TN, USA, 10–13 April 1988; pp. 253–257. [Google Scholar]
- Blackmon, F.A.; Antonelli, L.T. Experimental detection and reception performance for uplink underwater acoustic communication using a remote, in-air, acousto-optic sensor. IEEE J. Ocean. Eng. 2006, 31, 179–187. [Google Scholar] [CrossRef]
- Zhang, L. Research on Oprical Heterodyne Detection Technology for Acoustically Induced Water Surface Capillary Waves. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2017. [Google Scholar]
- Tonolini, F.; Adib, F. Networking across Boundaries: Enabling Wireless Communication through the Water-Air Interface. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 20–25 August 2018; pp. 117–131. [Google Scholar]
- Qu, F.; Qian, J.; Wang, J.; Lu, X.; Zhang, M.; Bai, X.; Ran, Z.; Tu, X.; Liu, Z.; Wei, Y. Cross-Medium Communication Combining Acoustic Wave and Millimeter Wave: Theoretical Channel Model and Experiments. IEEE J. Ocean. Eng. 2022, 47, 483–492. [Google Scholar] [CrossRef]
- Qian, J.; Qu, F.; Su, J.; Wei, Y.; Cheng, M.; Guo, H.; Zhu, J.; Wang, J. Theoretical Model and Experiments of Focused Phased Array for Cross-Medium Communication in Misaligned Transmitter/Receiver Scenarios. IEEE J. Ocean. Eng. 2023, 48, 1–14. [Google Scholar] [CrossRef]
- Deng, B.; Li, T.; Yang, B.; Yi, J.; Wang, H.; Yang, Q. Feature Detection of Acoustically Induced Sea Surface Micro-motions with Terahertz Radar. J. Radars 2023, 12, 817–831. [Google Scholar]
- Lurton, X. An Introduction to Underwater Acoustic: Principles and Applications; Springer Science & Business Media: Berlin, Germany, 2002. [Google Scholar]
- Ma, D. Modern Acoustics Theory Foundations; Science Press: Beijing, China, 2004. [Google Scholar]
Parameters | Value |
---|---|
Millimeter-radar frequency band | 77~81 GHz |
Single-chirp ADC samples | 128 |
Total FMCW frames | 4096 |
Radar aerial height | 0.35 m |
Tank size | 1.2 m length, 0.8 m width, 0.5 m height. |
Performance | Value |
---|---|
Bit error rate | 0 |
Actual transmission rate | 3 bps |
Signal duration | 4.09 s |
Signal-to-noise ratio | −8 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Cao, X.; Yang, Y.; Zhang, T.; Yuan, J.; Cui, T.; Yao, J. Acoustic Signal Reconstruction Across Water–Air Interface Through Millimeter-Wave Radar Micro-Vibration Detection. J. Mar. Sci. Eng. 2024, 12, 1989. https://doi.org/10.3390/jmse12111989
Du Y, Cao X, Yang Y, Zhang T, Yuan J, Cui T, Yao J. Acoustic Signal Reconstruction Across Water–Air Interface Through Millimeter-Wave Radar Micro-Vibration Detection. Journal of Marine Science and Engineering. 2024; 12(11):1989. https://doi.org/10.3390/jmse12111989
Chicago/Turabian StyleDu, Yuchen, Xiaolong Cao, Yiguang Yang, Tongchang Zhang, Jiaqi Yuan, Tengyuan Cui, and Jianquan Yao. 2024. "Acoustic Signal Reconstruction Across Water–Air Interface Through Millimeter-Wave Radar Micro-Vibration Detection" Journal of Marine Science and Engineering 12, no. 11: 1989. https://doi.org/10.3390/jmse12111989
APA StyleDu, Y., Cao, X., Yang, Y., Zhang, T., Yuan, J., Cui, T., & Yao, J. (2024). Acoustic Signal Reconstruction Across Water–Air Interface Through Millimeter-Wave Radar Micro-Vibration Detection. Journal of Marine Science and Engineering, 12(11), 1989. https://doi.org/10.3390/jmse12111989