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Abstract: In this paper, an experimental study is conducted to investigate the effectiveness of vibration
dampers in suppressing vortex-induced vibration in a long, flexible catenary cable with a low mass
ratio. The dampers, consisting of two small, symmetric, lightweight pipes clamped to the cable, are
sparsely deployed along the cable to shape the vibration characteristics. The experimental results
demonstrate that dampers significantly reduce the vibration amplitude by up to 60% and axial tension
by up to 61% at high flow velocities, effectively suppressing the cable vibration in perpendicular flow.
In addition, it is observed that the in-line and cross-flow vibration frequencies are approximately
equal when the dampers are applied. This behavior contrasts with the conventional undamped
catenary cable, where the in-line vibration frequencies are double those of the cross-flow frequencies.

Keywords: vortex-induced vibration (VIV); vibration damper; VIV suppression; axially varying
tension; flexible catenary cable

1. Introduction

Vortex-induced vibration (VIV) is a common fluid–structure coupling problem af-
fecting high-aspect-ratio subsea structures, such as mooring lines, deep-sea risers, subsea
pipelines, and submarine cables. When subjected to ocean currents, these structures can ex-
perience vortex shedding, which alters the surrounding flow field and generates oscillatory
hydrodynamic forces. If the vortex shedding frequency approaches the structure’s natural
frequency, a lock-in phenomenon may occur, significantly amplifying these forces [1,2].
This can reduce the fatigue life or, in extreme cases, cause structural failure [3,4]. Therefore,
understanding VIV responses and developing effective suppression techniques is critical
for the safety of slender subsea structures.

VIV suppression for high-aspect-ratio subsea structures can be achieved by active or
passive methods. Active methods typically use a control system to introduce external forces
that disrupt vortex shedding, such as cylinder rotational oscillations, suction and injection,
and acoustic excitation [5,6]. In contrast, passive suppression techniques, including helical
strakes, buoyancy modules, and splitter plates, rely on adding components to structures, to
mitigate vortex shedding or axial tension [7–11]. As the passive techniques do not require
additional power and ease of manufacturing and implementation, they are widely adopted
in practical applications [12–15].

To analyze the effectiveness of VIV suppression techniques, common approaches
include experimental observation [16,17], semi-empirical theoretical models [18], and com-
putational fluid dynamics (CFD) simulations [19]. Semi-empirical models often derive em-
pirical parameters from forced vibration tests using rigid smooth cylinders. However, dif-
ferences between experimental conditions and practical situations make the semi-empirical
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model less suitable for studying the VIV phenomena of flexible cables with suppression
devices [19]. In CFD approaches, the interaction between bare cylinder structures and
their suppression devices is not explicitly considered, resulting in noticeable discrepancies
between simulation and experimental results [20,21]. Hence, approaches based on experi-
mental observation remain the preferred methods for studying VIV suppression. Ma et al.
reported that varying axial excitation for a flexible horizontal cylinder could weaken the
VIV suppression efficiency of helical strakes [22]. Guo et al. experimentally investigated the
VIV suppression effectiveness of a sleeve suppression device for a flexible inclined cylinder
and found that the sleeve coverage could affect the VIV suppression effectiveness [23]. Xu
et al. explored the optimal deployment of helical strakes for a flexible inclined riser and
found that the VIV suppression effectiveness of the helical strakes gradually decreases
as the angle between the plane orthogonal to the incoming flow and the cylinder axis
increases [24,25].

This study experimentally investigates a passive vibration suppression method for a
flexible cable using vibration dampers. The damper design features two small, symmetric,
lightweight hollow ends connected by a rigid strand, which increases local added mass
and damping. The dampers are sparsely deployed along the cable to shape the cable
vibration characteristics. As the dampers extend outward from the cable and would be
vulnerable to impact, they are not intended for installation in extremely harsh conditions.
In the experiment, various flow velocities are considered in the experiments while the
cable vibration amplitudes, frequencies, and axial tension are explored. The variation in
axial tension of the cable is an important target of this research, which has not been well
studied so far experimentally, although there has been some research on the mooring lines
by numerical methods [26,27]. In addition, although vibration suppression by additional
dampers, such as the Stockbridge dampers [28,29], has been widely investigated and imple-
mented on overhead power lines [30–35] to reduce the effect of the galloping phenomenon,
its applications to marine cables remain unexplored, to the best of the authors’ knowledge.

The remainder of this paper is organized as follows. The experimental system is
described in Section 2. In Section 3, the experimental results and discussion are presented.
Finally, this study is summarized in Section 4.

2. Experimental System

The marine cable studied in [36–38] is accounted for in this study. The main parameters
are given in Table 1. A 1/10 experimental model is developed for this study, as shown in
Figure 1. The prototype cable is a typical three-phase AC submarine power cable. The
model is made based on the hydro-elastic similarity law. The geometric similarity ratio
is taken as 1:10. To ensure the similarity between the prototype and model, the density
similarity ratio is 1:1 and the similarity ratio of the elastic modulus is equal to the similarity
ratio of the geometry. In the experimental model, a carbon rod with a diameter of 1.5 mm
is used as the central axis of the cable model to imitate the bending and axial stiffness.
Aluminum lumps and plastic lumps with a diameter of 20 mm and a length of 10 mm are
installed along the carbon rod. In the center of each aluminum lump and plastic lump, a
hole with a diameter of 1.5 mm is machined for the assembly. Small washers are placed
between the lumps to prevent the lumps from bumping in cable bending. In order to make
the surface of cable model smooth, the cable model is covered by a plastic membrane.
Additionally, twelve red markers, spaced 10 cm apart, are placed on the cable model for
cable motion tracking. To measure the axial tension, two load cells are assembled at the
ends of the cable, as shown in Figure 1a. The cable model’s total length is 1.38 m, the
horizontal distance between cable ends is 1.3 m, and the vertical height between cable ends
is 0.4 m. The diagram of the experimental model is shown in Figure 2, and the set-up of the
experimental model is shown in Figure 3.
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Table 1. Main properties of cable model.

Parameter
Value

UnitPrototype Model

Cable diameter, D 0.2 0.02 m
Cable mass per unit length 72 0.65 kg/m

Mass ratio * 2.236 2.0253 —
Bending stiffness, EI 10,000 0.08 Nm2

Axial stiffness, EA 700 × 106 500,000 N
Minimum Bend Radius 2 2.176 m

Damping ratio, ξ 0.08 —
Natural frequency, fn 3.1 Hz

top tension 8.34 N
top angle 32.4 ◦

* Mass ratio is the ratio of the cable to the mass of the displaced water.
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Figure 3. Experimental overall framework in (left) and outside (right) the water tank.

In this study, cable response in perpendicular flow is studied. The coordinate frame is
defined at the lower end of the cable model, with its Y-axis pointing upwards and Z-axis
aligning with the incoming flow direction, as shown in Figure 2. The X-axis is determined
by the right-hand rule. Initially in calm water, the cable sags in the X–Y plane, and its
profile forms a classical hyperbolic curve. The top end of the cable model is hinged to an
external fixed structure and the bottom end is hinged to an aluminum rod fixed at the base
of the water tank. Two video cameras (model: WTW-WA320H) are employed to capture
the in-line and cross-flow motion of the cable, as shown in Figure 3.

The vibration damper proposed for this study is depicted in Figure 1b. It consists of
two small elliptical cylinders at the two ends and a rigid strand in the middle. A clamp,
composed of two semicircular laminates that can be assembled by bolts, is applied to tie
the damper to the cable. The elliptical cylinders are designed to be hollow but filled with
surrounding water to increase the oscillating mass. The damper is made of resin by a 3D
printer. The length of the major and minor axes of the elliptical cylinder is 10 mm and
5 mm, respectively, and each elliptical cylinder is 20 mm length. The strand’s length and
diameter are 30 mm and 3.5 mm. The damper mass and its wet mass are 4 g and 0.5 g,
respectively. This lightweight design of the damper can help the cable keep its catenary
profile in calm water while improving the added mass and damping during vibration. As
shown in Figure 4, four dampers are symmetrically installed on the cable, located at 0.22 m,
0.44 m, 0.95 m, and 1.19 m.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 4 of 13 
 

 

  

Figure 3. Experimental overall framework in (left) and outside (right) the water tank. 

In this study, cable response in perpendicular flow is studied. The coordinate frame 
is defined at the lower end of the cable model, with its Y-axis pointing upwards and Z-
axis aligning with the incoming flow direction, as shown in Figure 2. The X-axis is deter-
mined by the right-hand rule. Initially in calm water, the cable sags in the X–Y plane, and 
its profile forms a classical hyperbolic curve. The top end of the cable model is hinged to 
an external fixed structure and the bottom end is hinged to an aluminum rod fixed at the 
base of the water tank. Two video cameras (model: WTW-WA320H) are employed to cap-
ture the in-line and cross-flow motion of the cable, as shown in Figure 3. 

The vibration damper proposed for this study is depicted in Figure 1b. It consists of 
two small elliptical cylinders at the two ends and a rigid strand in the middle. A clamp, 
composed of two semicircular laminates that can be assembled by bolts, is applied to tie 
the damper to the cable. The elliptical cylinders are designed to be hollow but filled with 
surrounding water to increase the oscillating mass. The damper is made of resin by a 3D 
printer. The length of the major and minor axes of the elliptical cylinder is 10 mm and 5 
mm, respectively, and each elliptical cylinder is 20 mm length. The strand’s length and 
diameter are 30 mm and 3.5 mm. The damper mass and its wet mass are 4 g and 0.5 g, 
respectively. This lightweight design of the damper can help the cable keep its catenary 
profile in calm water while improving the added mass and damping during vibration. As 
shown in Figure 4, four dampers are symmetrically installed on the cable, located at 0.22 
m, 0.44 m, 0.95 m, and 1.19 m. 

 
Figure 4. Diagram of the cable model with the vibration dampers. 

The experiments are performed in the circulating water tank at the Research Institute 
for Applied Mechanics (RIAM) of Kyushu University. The water tank features a 5 m long, 
1.5 m wide, and 2 m deep test section. A free-decay test is initially carried out in still water 
to measure the cable model’s natural frequency [39]. In experiments, the cables with and 
without vibration dampers are studied. The incoming flow velocities range from 0.2 m/s 

Figure 4. Diagram of the cable model with the vibration dampers.

The experiments are performed in the circulating water tank at the Research Institute
for Applied Mechanics (RIAM) of Kyushu University. The water tank features a 5 m long,
1.5 m wide, and 2 m deep test section. A free-decay test is initially carried out in still water
to measure the cable model’s natural frequency [39]. In experiments, the cables with and
without vibration dampers are studied. The incoming flow velocities range from 0.2 m/s to
0.6 m/s, increasing in 0.04 m/s increments, corresponding to a Reynolds number between
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4000 and 12,000 based on the cable model diameter. Each test is carried out twice to increase
the reliability of the measurements. The cable motion is captured and analyzed using an
open-source video processing software Tracker [40].

3. Results

In this section, the experimental results for the cable with and without vibration
dampers are analyzed. Since the vibration damper has a very light wet weight (approxi-
mately 0.5 g), the initial static profile and local inclination angle of the cable with vibration
dampers remain nearly identical to those of the cable without vibration dampers. In data
processing, the averaged offset of the cable from its initial position is removed to ensure
consistency in the comparison. For ease of explanation, the displacements in the X, Y, and
Z directions are denoted by u, v, and w.

3.1. Response of Vibration

The maximum displacements under various flow velocities are compared, as shown
in Figure 5. It is noteworthy that the vibration frequencies in the Z-axis exceed the Nyquist
sampling frequency, the vibration amplitude of the cable under U0 = 0.60 m/s is not
plotted in Figure 5a.
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The maximum displacements show a different tendency between the cables with and
without vibration dampers. As shown in Figure 5a, the maximum displacements of the
cable with vibration dampers are always smaller under all the flow velocities in the in-line
w direction, and the maximum displacements can be reduced by 87% under U0 = 0.2 m/s.
In cross-flow directions under 0.36 m/s < U0 ≤ 0.6 m/s, as shown in Figure 5b,c, the
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maximum displacements can be significantly reduced, though the values are slightly
enlarged under U0 ≤ 0.36 m/s. In the cross-flow direction under U0 = 0.56 m/s, the
maximum displacements decrease by 75% and 60% in the X- and Y-directions, respectively.

It is worth noting that the maximum displacements of the cable with vibration dampers
rapidly decrease in all cases under U0 = 0.44 m/s, as depicted in Figure 5. In addition,
the maximum responses in the Y-direction consistently exhibit the largest displacements
under all flow velocities. For the cable without dampers, the maximum displacements
in the lock-in region under 0.36 m/s ≤ U0 < 0.6 m/s are greater than those outside the
region. In contrast, the maximum displacements for the cable with dampers are smaller
than those outside this region.

The maximum root-mean-squared (RMS) displacements are compared in Figure 6.
The maximum RMS displacements vary similarly with the maximum displacements. The
responses in the Y-direction consistently exhibit the largest displacements under all flow
velocities. In the cross-flow direction under U0 = 0.56 m/s, the maximum RMS displace-
ments is reduced by 64.4% and 46.4%, respectively, in the X- and Y-directions. The vibration
amplitudes decrease by 68% in the in-line w direction under U0 = 0.2 m/s.
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The time-averaged in-line displacements of the experimental results are shown in
Figure 7. As the flow velocity increases, the time-averaged equilibrium profiles progres-
sively deviate from the initial position (Y-axis). It is worth noting that at low flow velocities
U0 ≤ 0.24 m/s, the time-averaged in-line displacements of the cable with dampers are
larger. As U0 increases, the results are reversed. It is worth noting that the time-averaged
equilibrium profiles are almost constant under U0 ≥ 0.56 m/s for the cable without vibra-
tion dampers, and the in-line displacements reach their maximum value.
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The cable’s oscillating frequencies are compared in Figures 8 and 9. As shown in
Figure 8, the oscillating frequencies in the X- and Y-directions are consistently equal under
all flow velocities. The ratio of cross-flow oscillation frequency to the natural frequency ( fn)
approaches 1 under U0 = 0.36 m/s, indicating that the cable enters the lock-in region. At
low flow velocities U0 ≤ 0.40 m/s, the cross-flow oscillation frequencies of the cables with
and without vibration dampers are almost equal. As U0 increases, the cross-flow oscillation
frequencies of the cable with vibration dampers increase rapidly and become greater than
those of the cable without dampers.

As shown in Figure 9, the in-line oscillation frequencies are roughly double the cross-
flow oscillation frequencies for the cable without vibration dampers. On the other hand, the
in-line and cross-flow oscillation frequencies are nearly the same for the cable with vibration
dampers. Therefore, it is observed that the vibration dampers significantly influence the
resonance frequency ratio between the in-line and cross-flow oscillations.
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3.2. Response of Tensions

In the experiment, the tension at both ends of the cable under U0 = 0.56 m/s and
the associated results in the frequency domain are presented in Figures 10 and 11 for the
cable without and with vibration dampers, respectively. In order to reduce the effects
caused by sensor drift, the measurements are reset before each experiment. As shown in
Figures 10 and 11, the tension at both ends of the cable oscillates in-phase, with nearly
identical frequencies. Additionally, the tension at the upper end of the cable is slightly
larger than that at the lower side. It is obvious that the time-history tensions in the cable
without vibration dampers are much larger than those in the cable with vibration dampers.
In the cable without vibration dampers, the second frequency of tension is the dominant
frequency. In contrast, the first frequency of tension is the dominant frequency for the cable
with vibration dampers. The tension oscillating frequencies of the cable with vibration
dampers is slightly greater than those of the cable without dampers. These are consistent
with the vibration frequencies in Figures 8 and 9. Therefore, the vibration dampers can
reduce the tension amplitude and change the vibration characteristics.
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Figure 10. Tension at the ends of the cable without vibration dampers at U0 = 0.56 m/s: (a) Time-
history results and (b) Frequency-domain results.
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Figure 11. Tension at the ends of the cable with vibration dampers at U0 = 0.56 m/s: (a) Time-history
results and (b) Frequency-domain results.

The averaged tension with the flow velocity U0 is compared in Figure 12. It can be
seen that the averaged tension increases as the flow velocity U0 increases. Meanwhile, the
averaged tension at both ends of the cable with and without vibration dampers is nearly
identical under all the flow velocities, except U0 = 0.52 m/s. This would be caused by
the measurement error. Like the vibration displacement response in Figures 5 and 6, at
low flow velocity (U0 ≤ 0.36 m/s), the time-averaged tension of the cable with vibration
dampers is larger. And at high flow velocity (U0 > 0.36 m/s), the time-averaged tension of
the cable without dampers increases rapidly and becomes larger than that of the cable with
dampers. Under U0 = 0.56m/s, the averaged tension of the cable with vibration dampers
decreases by 34% compared to the case without dampers.

The maximum amplitudes of the tension variation with the flow velocity U0 are
compared in Figure 13. The results show that the maximum amplitudes of the tension
variation of the cable without vibration dampers are much larger than those of the cable
with vibration dampers as the flow velocity increases. For the cable with vibration dampers,
the maximum amplitudes of the tension variation show slight variations as the flow velocity
U0 increases under U0 ≥ 0.40 m/s. In addition, the tension amplitudes at the upper end of
the cable decreases by 61.5% under U0 = 0.56 m/s.
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The tension frequencies at the ends of the cable are compared in Figure 14. The results
indicate that the tension frequencies at the top and bottom ends of the cable are almost the
same at all flow velocities for both ends of the cable with and without vibration dampers.
As the flow velocity increases, the tension frequency increases. Additionally, compared
to Figure 9, it can be seen that the tension frequencies are approximately the same as the
in-line oscillation frequencies.
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4. Conclusions

In this study, an experiment on a submarine cable model was conducted to study
VIV suppression by vibration dampers. The experimental results of the cable with and
without vibration dampers in perpendicular flow are compared for the VIV responses on
maximum displacement, axial tension, and corresponding frequencies. The experimental
results indicate that both the maximum displacement and the cable axial tension can be
remarkably reduced under high flow velocities, though the values are slightly enlarged
under low flow velocities. Additionally, the vibration dampers significantly change the
vibration frequency of the cable.

The key conclusions derived from this study are as follows:
For the experiments with and without vibration dampers, the maximum displace-

ments and maximum RMS displacements show similar tendencies in three (X, Y, and Z)
directions as the flow velocity U0 increases. Due to the vibration dampers, the maximum
displacements in the three (X, Y, and Z) directions can be reduced by up to 75%, 60%, and
87%, respectively. The maximum RMS displacements in the three (X, Y, and Z) directions
can be reduced by up to 64.4%, 46.4%, and 68%, respectively. Under all the flow velocities,
the cross-flow oscillation frequencies in the X direction remain identical to those in the
Y direction. For the cable with vibration dampers, the in-line and cross-flow oscillation
frequencies are approximately the same, while for the cable without vibration dampers, the
in-line oscillation frequencies are about double those of the cross-flow oscillation frequencies.

For the experiments with and without vibration dampers, the tension at both ends
of the cable oscillates in-phase, with nearly identical frequencies. The average, maximum
amplitude, and frequency of tension increase as the flow velocity increases. The frequencies
of tension are the same as the in-line cable oscillation frequencies. The tension time history
of the cable without vibration dampers is much larger than that of the cable with vibration
dampers. With the cable with vibration dampers, the average of tension can be reduced by
up to 34%, and the tension maximum amplitude decreases by 61.5%.

In this preliminary study, the effectiveness of the dampers has been confirmed. It
is anticipated that the geometry of the dampers and their layout along the cable could
significantly influence VIV suppression performance. Optimizing the damper design and
layout will be a focus of future work.
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