A Review on the Recent Process of Lazy Wave Risers
Abstract
:1. Introduction
2. Hydrodynamic
2.1. Classification of Hydrodynamic Loads
2.2. Solution of Hydrodynamic Loads
2.2.1. Wave Theory
2.2.2. Current Theory
2.2.3. Hydrodynamic Load Calculation
3. Global Response of LWRs
3.1. Mathematical Model and Software Tools
3.1.1. Two-Dimensional Model of LWRs
3.1.2. Three-Dimensional Model of LWRs
3.2. Vortex-Induced Vibration
3.2.1. VIV Due to Vessel Motion
- Rigid model (staggered buoyancy arrangement) test in oscillatory flow;
- Computational fluid mechanics simulations to investigate 3D effects;
- Experimental techniques to measure the displacement responses;
- Higher-order components included in the time-domain model;
- The consideration of in-line forces.
3.2.2. VIV Due to Current
3.3. Experiment
3.4. Abandonment and Recovery
4. Fatigue Damage of LWRs
5. Structural Optimization of LWRs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, X.; Fan, N.; Liu, Y.; Liu, X.; Wang, Z.; Xie, X.; Jia, Y. Deep seabed mining: Frontiers in engineering geology and environment. Int. J. Coal Sci. Technol. 2023, 10, 23. [Google Scholar] [CrossRef]
- Bai, Q.; Bai, Y. 1—Introduction. In Subsea Pipeline Design, Analysis, and Installation; Bai, Q., Bai, Y., Eds.; Gulf Professional Publishing: Oxford, UK, 2014; pp. 3–21. [Google Scholar] [CrossRef]
- Ruan, W.; Nie, Q.; Han, X.; Li, J.; Bai, Y.; Fu, X. Accurate modeling and safety evaluation of dented pipeline with internal pressure based on reverse modeling technique. Ships Offshore Struct. 2024, 1–11. [Google Scholar] [CrossRef]
- Yue, B.; Campbell, M.; Walters, D.; Thompson, H.; Raghavan, K. Improved SCR Design for Dynamic Vessel Applications. In Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 6–11 June 2010; pp. 495–504. [Google Scholar] [CrossRef]
- Orimolade, A.P.; Karunakaran, D.; Meling, T.S. Steel Lazy Wave Risers From Turret Moored FPSO for Deepwater Harsh Environment. In Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, Newfoundland, Canada, 31 May–5 June 2015. [Google Scholar] [CrossRef]
- Jhingran, V.; Zhang, H.; Lie, H.; Braaten, H.; Vandiver, J.K. Buoyancy Spacing Implications for Fatigue Damage due to Vortex-Induced Vibrations on a Steel Lazy Wave Riser (SLWR). In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2012. [Google Scholar] [CrossRef]
- Yang, H.; Li, H. Sensitivity analysis of fatigue life prediction for deepwater steel lazy wave catenary risers. Sci. China Technol. Sci. 2011, 54, 1881–1887. [Google Scholar] [CrossRef]
- Karunakaran, D.; Nordsve, N.; Olufsen, A. An Efficient Metal Riser Configuration for Ship and Semi Based Production Systems. In Proceedings of the Sixth International Offshore and Polar Engineering, Los Angeles, CA, USA, 26–31 May 1996; pp. 156–162. [Google Scholar]
- Hu, B.; Wang, Z.; Du, H.; Carriveau, R.; Ting, D.S.K.; Xiong, W. Response characteristics of flexible risers in offshore compressed air energy storage systems. J. Marine. Sci. Appl. 2019, 18, 353–365. [Google Scholar] [CrossRef]
- Ruan, W.; Shi, J.; Sun, B.; Qi, K. Study on fatigue damage optimization mechanism of deepwater lazy wave risers based on multiple waveform serial arrangement. Ocean Eng. 2021, 228, 108926. [Google Scholar] [CrossRef]
- Wu, M.; Huang, K. The comparison of various SCR configurations for bow turret moored FPSO in West Africa. In Proceedings of the 17th International Offshore and Polar Engineering Conference (ISOPE 2007), Lisbon, Portugal, 1–6 July 2007; Available online: https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE07/All-ISOPE07/ISOPE-I-07-054/11041 (accessed on 24 August 2024).
- Ruan, W.; Liu, S.; Li, Y.; Bei, Y.; Yuan, S. Nonlinear Dynamic Analysis of Deepwater Steel Lazy Wave Riser Subjected to Imposed Top-End Excitations. In Proceedings of the 35th ASME International Conference on Ocean, Offshore and Arctic Engineering, Busan, Republic of Korea, 19–24 June 2016. [Google Scholar] [CrossRef]
- Ruan, W.; Bai, Y.; Cheng, P. Static analysis of deepwater lazy-wave umbilical on elastic seabed. Ocean Eng. 2014, 91, 73–83. [Google Scholar] [CrossRef]
- Ruan, W.; Shang, Z.; Wu, J. Effective static stress range estimation for deepwater steel lazy-wave riser with vessel slow drift motion. Ships Offshore Struct. 2019, 14, 899–909. [Google Scholar] [CrossRef]
- Kim, S.; Kim, M.H. Dynamic behaviors of conventional SCR and lazy-wave SCR for FPSOs in deepwater. Ocean Eng. 2015, 106, 396–414. [Google Scholar] [CrossRef]
- Felisita, A.; Gudmestad, O.T.; Karunakaran, D.; Martinsen, L.O. Review of Steel lazy wave riser concepts for the North Sea. J. Offshore Mech. Arct. Eng. Trans. ASME 2017, 139, 15. [Google Scholar] [CrossRef]
- Ai, S.M.; Xu, Y.; Kang, Z.; Yan, F. Performance comparison of stress-objective and fatigue-objective optimisation for steel lazy wave risers. Ships Offshore Struct. 2019, 14, 534–544. [Google Scholar] [CrossRef]
- Wang, J.; Duan, M.; He, T.; Jing, C. Numerical solutions for nonlinear large deformation behaviour of deepwater steel lazy-wave riser. Ships Offshore Struct. 2014, 9, 655–668. [Google Scholar] [CrossRef]
- Wang, J.; Duan, M. A nonlinear model for deepwater steel lazy-wave riser configuration with ocean current and internal flow. Ocean Eng. 2015, 94, 155–162. [Google Scholar] [CrossRef]
- Yang, Z.; Yan, J.; Sævik, S.; Zhen, L.; Ye, N.; Chen, J.; Yue, Q. Multi-Objective Optimization Design of Flexible Risers Based on Bi-Scale Response Surface Models. In Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. Volume 5: Pipelines, Risers, and Subsea Systems, Madrid, Spain, 17–22 June 2018. [Google Scholar] [CrossRef]
- Cheng, Y.; Tang, L.Y.; Fan, T.H. Dynamic analysis of deepwater steel lazy wave riser with internal flow and seabed interaction using a nonlinear finite element method. Ocean Eng. 2020, 209, 107498. [Google Scholar] [CrossRef]
- Ruan, W.; Nie, Q.L.; Lu, Y.T.; Chen, M.Y.; Liu, D.H.; Sun, B. A global-local approach for dynamic stress evaluation of lazy wave flexible risers subjected to random wave and vessel motion. Ships Offshore Struct. 2023, 18, 810–826. [Google Scholar] [CrossRef]
- Oh, J.; Jung, D.; Kim, H.; Min, C.; Cho, S. A study on the simulation-based installation shape design method of steel lazy wave riser (SLWR) in ultra deepwater depth. Ocean Eng. 2020, 197, 106902. [Google Scholar] [CrossRef]
- Ruan, W.; Bai, Y.; Yuan, S. Dynamic analysis of unbonded flexible pipe with bend stiffener constraint and bending hysteretic behavior. Ocean Eng. 2017, 130, 583–596. [Google Scholar] [CrossRef]
- de Sousa, J.R.M.; Sousa, F.J.M.; Siqueira, M.Q.; Sagrilo, L.V.S.; de Lemos, C.A.D. A theoretical approach to predict the fatigue life of flexible pipes. J. Appl. Math. 2012, 8, 983819. [Google Scholar] [CrossRef]
- Zhao, B. Fatigue Analysis of Flexible Riser-Effect of Mean Stress Correction Procedures. Master’s Thesis, Institutt for Marin Teknikk, Trondheim, Norway, 2013. Available online: https://api.semanticscholar.org/CorpusID:107448295 (accessed on 24 August 2024).
- Yin, D.; Lie, H.; Wu, J. Structural and hydrodynamic aspects of steel lazy wave riser in deepwater. J. Offshore Mech. Arct. Eng. Trans. ASME 2020, 142, 020801. [Google Scholar] [CrossRef]
- Shanharan, R.; Anaturk, A.; Howells, H.; Lopes, M. Feasibility of Steel Lazy Wave Risers in the North Sea. In Proceeding of the MCD Deepwater Development, Addison-Wesley, Amsterdam, Netherlands, 3–5 April 2017; Available online: https://mcedd.com/wp-content/uploads/2017/Proceedings/14/MCEDD%202017%20Feasibility%20of%20Steel%20Lazy%20Wave%20Risers%20in%20the%20North%20Sea%20(Final).pdf (accessed on 24 August 2024).
- Amaechi, C.V.; Wang, F.C.; Ye, J.Q. Investigation on Hydrodynamic Characteristics, Wave-Current Interaction and Sensitivity Analysis of Submarine Hoses Attached to a CALM Buoy. J. Marine Sci. Eng. 2022, 10, 120. [Google Scholar] [CrossRef]
- Tanaka, R.L.; de Arruda Martins, C. A Genetic Algorithm Approach to Steel Riser Optimization. In Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering. Volume 1: Offshore Technology; Offshore Wind Energy; Ocean Research Technology; LNG Specialty Symposium, Hamburg, Germany, 4–9 June 2006; pp. 271–277. [Google Scholar] [CrossRef]
- de Pina, A.A.; Albrecht, C.H.; de Lima, B.S.L.P.; Jacob, B.P. Tailoring the particle swarm optimization algorithm for the design of offshore oil production risers. Optim. Eng. 2011, 12, 215–235. [Google Scholar] [CrossRef]
- Trapper, P.A. Feasible numerical analysis of steel lazy-wave riser. Ocean Eng. 2020, 195, 106643. [Google Scholar] [CrossRef]
- Hou, Z.; Gaudin, C.; Sahdi, F.; Randolph, M. Centrifuge modelling of whole-life pipe-soil interaction in clay with different overconsolidation ratios. Geotechnique 2022, 73, 1056–1070. [Google Scholar] [CrossRef]
- Ertekin, R.C.; Rodenbusch, G. Wave, current and wind loads. In Springer Handbook of Ocean Engineering; Dhanak, M.R., Xiros, N.I., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 787–818. [Google Scholar] [CrossRef]
- Sarpkaya, T.S.; Isaacson, M.; Wehausen, J.V. Mechanics of wave forces on offshore structures. J. Appl. Mech. 1982, 49, 466–467. [Google Scholar] [CrossRef]
- Sarpkaya, T.S. Wave Forces on Offshore Structures. Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Rao, Z.; Vandiver, J.K.; Jhingran, V. Vortex induced vibration excitation competition between bare and buoyant segments of flexible cylinders. Ocean Eng. 2015, 94, 186–198. [Google Scholar] [CrossRef]
- Zhu, H.; Zhao, H.; Srinil, N. Experimental investigation on vortex-induced vibration and solid-structure impact of a near-bottom horizontal flexible pipeline in oblique shear flow. J. Fluids Struct. 2021, 106, 103356. [Google Scholar] [CrossRef]
- El-Reedy, M.A. (Ed.) 4—Offshore structures design. In Marine Structural Design Calculations; Butterworth-Heinemann: Oxford, UK, 2015; pp. 85–187. [Google Scholar] [CrossRef]
- Chanson, H. Applied Hydrodynamics: An Introduction to Ideal and Real Fluid Flowsi, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Papillon, L.; Costello, R.; Ringwood, J.V. Boundary element and integral methods in potential flow theory: A review with a focus on wave energy applications. J. Ocean. Eng. Mar. Energy 2020, 6, 303–337. [Google Scholar] [CrossRef]
- Xu, P.; Gong, S. Pipelay parametric investigation of pipeline dynamic behaviours for deepwater S-lay operation. Ships Offshore Struct. 2020, 15, 1141–1155. [Google Scholar] [CrossRef]
- Xu, P.; Du, Z.; Huang, F.; Javanmardi, A. Numerical simulation of deepwater S-lay and J-lay pipeline using vector form intrinsic finite element method. Ocean Eng. 2021, 234, 109039. [Google Scholar] [CrossRef]
- Orcina. Orcaflex Manual; Version 9.8a; Orcina Ltd.: Ulverton, Cumbria, UK, 2014; Available online: https://www.orcina.com/webhelp/OrcaFlex/Default.htm (accessed on 16 February 2020).
- Morison, J.R.; Johnson, J.W.; Schaaf, S.A. The force exerted by surface waves on piles. J. Pet. Technol. 1950, 2, 149–154. [Google Scholar] [CrossRef]
- Ruan, W.; Dai, W.; Wu, J. Study on motion transfer rule and extreme dynamic response of SCR’s top-end heave excitation. J. Mar. Eng. Technol. 2021, 20, 186–199. [Google Scholar] [CrossRef]
- Wang, J.; Duan, M.; He, R. A nonlinear dynamic model for 2D deepwater steel lazy-wave riser subjected to top-end imposed excitations. Ships Offshore Struct. 2018, 13, 330–342. [Google Scholar] [CrossRef]
- Li, X.; Guo, X.; Guo, H. Vector form intrinsic finite element method for nonlinear analysis of three-dimensional marine risers. Ocean Eng. 2018, 161, 257–267. [Google Scholar] [CrossRef]
- Hasanvand, E.; Edalat, P. Evaluation of the safe and failure zones of mooring and riser systems in a CALM oil terminal. J. Mar. Sci. Appl. 2021, 20, 751–766. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, M.; Gu, J. Analytical model for transfer process of deepwater steel lazy-wave riser on elastic seabed. J. Mar. Sci. Technol. 2019, 24, 123–133. [Google Scholar] [CrossRef]
- Guarracino, F.; Mallardo, V. A refined analytical analysis of submerged pipelines in seabed laying. Appl. Ocean Res. 1999, 21, 281–293. [Google Scholar] [CrossRef]
- Sparks, C.P. Fundamentals of Marine Riser Mechanics: Basic Principles and Simplified Analyses; Penn Well: Tulsa, OK, USA, 2007; Available online: https://books.google.com.hk/books?id=z0urYVzcFLUC (accessed on 28 August 2024).
- Irani, M.B.; Modi, V.J.; Welt, F. Riser dynamics with internal flow and nutation damping. In Proceedings of the Sixth International Offshore Mechanics and Arctic Engineering Symposium, Houston, TX, USA, 1 March 1987; Volume 3, pp. 119–125. [Google Scholar]
- Chucheepsakul, S.; Huang, T. Influence of Transported Mass On the Equilibrium Configuration of Risers. In Proceedings of the Fourth International Offshore and Polar Engineering Conference, Osaka, Japan, 10 April 1994; ISOPE-I-94-124. Available online: https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE94/All-ISOPE94/26093 (accessed on 28 August 2024).
- Jeong, H.; Jang, B.S.; Kim, J.D.; Park, G.; Choi, J.; Lee, D. A study on effects of slug flow on dynamic response and fatigue damage of risers. Ocean Eng. 2020, 217, 107965. [Google Scholar] [CrossRef]
- Cabrera-Miranda, J.M.; Paik, J.K. Two-phase flow induced vibrations in a marine riser conveying a fluid with rectangular pulse train mass. Ocean Eng. 2019, 174, 71–83. [Google Scholar] [CrossRef]
- Zhang, C.; Kang, Z.; Ma, G.; Xu, X. Mechanical modeling of deepwater flexible structures with large deformation based on absolute nodal coordinate formulation. J. Mar. Sci. Technol. 2019, 24, 1241–1255. [Google Scholar] [CrossRef]
- Wang, C.; Liu, J.; Li, B.; Huang, W. The absolute nodal coordinate formulation in the analysis of offshore floating operations, Part II: Code validation and case study. Ocean Eng. 2023, 281, 114650. [Google Scholar] [CrossRef]
- Jamaludin, F.E.; Koto, J. Catenary offset buoyant riser assembly for Malaysian deepwater. Sci. Eng. 2017, 12, 9–14. Available online: https://isomase.org/JSOse/Vol.12%20Dec%202017/12-2.pdf (accessed on 28 August 2024).
- Karunakaran, D.N.; Baarholm, R. COBRA: An Uncoupled Riser System for Ultradeep Water in Harsh Environment. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2013. OTC-23986-MS. [Google Scholar] [CrossRef]
- Karunakaran, D.; Aasen, H.; Baarholm, R. New Un-coupled Deepwater Riser Concept for Harsh Environment–Catenary Offset Buoyant Riser Assembly (COBRA). In Proceedings of the Deepwater Offshore Technology Conference, New Orleans, LA, USA, 1 October 2011; pp. 11–13. [Google Scholar]
- Nurwanto, T.; Karunakaran, D.; Franciss, R. COBRA Riser Concept for Ultra Deepwater Condition. In Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, 9–14 June 2013. V04BT04A030. [Google Scholar] [CrossRef]
- Ormberg, H.; Larsen, K. Coupled analysis of floater motion and mooring dynamics for a turret-moored ship. Appl. Ocean. Res. 1998, 20, 55–67. [Google Scholar] [CrossRef]
- Ormberg, H.; Fylling, I.J.; Larsen, K.; Sødahl, N. Coupled Analysis of Vessel Motions and Mooring and Riser System Dynamics. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Yokohama, Japan, 13–17 April 1997; pp. 91–100. Available online: https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902146948838040#:~:text=Coupled%20an (accessed on 2 September 2024).
- Nordgren, R.P. On Computation of the motion of elastic rods. J. Appl. Mech. 1974, 41, 777–780. [Google Scholar] [CrossRef]
- Garrett, D.L. Dynamic analysis of slender rods. J. Energy Res. Technol. 1982, 104, 302–306. [Google Scholar] [CrossRef]
- Ma, W.; Lee, M.; Zou, J.; Huang, E.W. Deepwater Nonlinear Coupled Analysis Tool. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 1 May 2000. [Google Scholar] [CrossRef]
- Low, Y.M.; Langley, R.S. Time and frequency domain coupled analysis of deepwater floating production systems. Appl. Ocean Res. 2006, 28, 371–385. [Google Scholar] [CrossRef]
- Gu, H.; Guo, H.; Li, X.; Li, F.; Liu, Z.; Cui, P. Three-dimensional dynamic analysis of deep-water steel steep wave riser considering internal solitary wave. J. Mar. Sci. Technolo. 2022, 27, 452–466. [Google Scholar] [CrossRef]
- Paulling, J.R.; Webster, W.C. A Consistent, Large-amplitude Analysis of the Coupled Response of a TLP and Tendon System. In Proceedings of the Fifth International Symposium on Offshore Mechanics and Arctic Engineering, Tokyo, Japan, 13–18 April 1986; American Society of Mechanical Engineers: New York, NY, USA; pp. 126–133. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7963711 (accessed on 2 September 2024).
- Ran, Z.H. Coupled Dynamic Analysis of Floating Structures in Waves and Currents. Ph.D. Dissertation, Texas A&M University, College Station, TX, USA, 2000. Available online: https://www.proquest.com/openview/65c0d6db18d616309960b1ba01b72e1e/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 2 September 2024).
- Kim, Y.B. Dynamic Analysis of Multiple-Body Floating Platforms Coupled with Mooring Lines and Risers. Ph.D. Dissertation, Texas A&M University, College Station, TX, USA, 2003. Available online: https://oaktrust.library.tamu.edu/server/api/core/bitstreams/2efba84c-2509-40bd-8624-97b9eae21ed3/content (accessed on 2 September 2024).
- Ryu, S. Hull/Mooring/Riser Coupled Motion Simulations of Thruster-Assisted Moored Platforms. Ph.D. Dissertation, Texas A&M University, College Station, TX, USA, 2005. Available online: https://www.proquest.com/openview/b1cb14c54820f776e06256136c6151ea/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 2 September 2024).
- Tahar, A.; Kim, M.H. Hull/mooring/riser coupled dynamic analysis and sensitivity study of a tanker-based FPSO. Appl. Ocean Res. 2003, 25, 367–382. [Google Scholar] [CrossRef]
- Tahar, A.; Kim, M.H. Coupled-dynamic analysis of floating structures with polyester mooring lines. Ocean Eng. 2008, 35, 1676–1685. [Google Scholar] [CrossRef]
- Li, F.; Guo, H.; Gu, H.; Liu, Z.; Li, X. Deformation and stress analysis of the deepwater steel lazy wave riser subjected to internal solitary waves. J. Ocean Univ. China. 2023, 22, 377–392. [Google Scholar] [CrossRef]
- Ruan, W.; Chen, M.; Nie, Q.; Xu, P.; Li, J.; Wang, X. Dynamic response of steel lazy wave riser considering the excitation of internal solitary wave and ocean currents. Ocean Eng. 2024, 294, 116708. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, M.; Li, Z.; Yu, J.; Liu, C.; Xu, L. Comparative dynamic analysis of SCR and LWR in the coupled platform-mooring-riser system under internal solitary wave conditions. Ocean Eng. 2023, 267, 113215. [Google Scholar] [CrossRef]
- Williamson, C.H. Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 1996, 28, 477–539. [Google Scholar] [CrossRef]
- Buresti, G. Vortex shedding from bluff bodies. In Wind Effects on Buildings and Structures; Riera, J.D., Davenport, A.G., Eds.; Balkema Publishers: Rotterdam, The Netherlands, 1998; pp. 61–95. Available online: https://www.researchgate.net/publication/321367112 (accessed on 4 September 2024).
- Perry, A.E.; Chong, M.S.; Lim, T.T. The vortex-shedding process behind two-dimensional bluff bodies. J. Fluid Mech. 1982, 116, 77–90. [Google Scholar] [CrossRef]
- Yin, D. Heave motion induced vortex-induced vibrations of a full-scale steel lazy wave riser. ASME J. Offshore Mech. Arct. Eng. Trans. 2022, 144, 041905. [Google Scholar] [CrossRef]
- Yin, D. On Vessel Motion Induced Vortex-Induced Vibrations of a Steel Lazy Wave Riser. In Proceedings of the ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering; Volume 4: Pipelines, Risers, and Subsea Systems, Online, 21–30 June 2021. [Google Scholar] [CrossRef]
- Jang, H.; Kim, J.W. Numerical Investigation for Vortex-Induced Vibrations of Steel-Lazy-Wave-Risers: Part II—CFD Study on Long Flexible Riser. In Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, Glasgow, Scotland, UK, 9–14 June 2019. [Google Scholar] [CrossRef]
- Constantinides, Y.; Zhang, M. VIV Assessment of Deepwater Lazy-Wave Risers. In Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, CA, USA, 8–13 June 2014. [Google Scholar] [CrossRef]
- Wang, J.; Fu, S.; Baarholm, R.; Wu, J.; Larsen, C.M. Out-of-plane vortex-induced vibration of a steel catenary riser caused by vessel motions. Ocean Eng. 2015, 109, 389–400. [Google Scholar] [CrossRef]
- Rao, Z.; Vandiver, J.K.; Jhingran, V. VIV Excitation Competition Between Bare and Buoyant Segments of Flexible Cylinders. In Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, 9–14 June 2013. [Google Scholar] [CrossRef]
- Li, A.; Wu, B.; Fan, D. Vortex-induced vibration of risers with staggered buoyancy modules of small aspect ratio. Appl. Ocean Res. 2022, 120, 103014. [Google Scholar] [CrossRef]
- Bordalo, S.N.; Morooka, C.K. Slug flow induced oscillations on subsea petroleum pipelines. J. Pet. Sci. Eng. 2018, 165, 535–549. [Google Scholar] [CrossRef]
- Bossio, V.B.M.; Blanco, A.A.J.; Casanova, M.E.L. Numerical modeling of the dynamical interaction between slug flow and vortex induced vibration in horizontal submarine pipelines. J. Offshore Mech. Arct. Eng. 2014, 136, 041803. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, W.; Gao, Y.; Deng, K.R.; Zhou, T.M. Experimental investigation on the vortex-induced vibration response of a lazy-wave flexible riser filled with different fluid media. Phys. Fluids 2024, 36, 037106. [Google Scholar] [CrossRef]
- Guo, L.; Pang, X.; Kuang, J.; Liu, S.; Nie, Y. Experimental study on coupling dynamics of a high dimensional nonlinear riser structure and floating platform by truncated equivalent method. Expe. Tech. 2024, 48, 523–535. [Google Scholar] [CrossRef]
- Kim, M.H.; Koo, B.J.; Mercier, R.M.; Ward, E.G. Vessel/mooring/riser coupled dynamic analysis of a turret-moored FPSO compared with OTRC experiment. Ocean Eng. 2005, 32, 1780–1802. [Google Scholar] [CrossRef]
- Bridge, C.; Howells, H.; Toy, N.; Parke, G.A.R.; Woods, R. Full-scale model tests of a steel catenary riser. WIT Trans. Built Environ. 2003, 71, 107–116. Available online: https://www.witpress.com/Secure/elibrary/papers/FSI03/FSI03011FU.pdf (accessed on 5 September 2024).
- Deka, D.; Chandra, Y.; Campbell, M.; Santala, M.; Constantinides, Y.; Jin, J.; Darilmaz, I.; Nadathur, R.; Yiu, F. STREAM JIP–Insights into Steel Catenary Riser Response Using Measured Data. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2019; Available online: https://onepetro.org/OTCONF/proceedings-abstract/19OTC/2-19OTC/D021S018R005/180663 (accessed on 5 September 2024).
- Wu, J.; Lie, H.; Constantinides, Y.; Baarholm, R.J. NDP Riser VIV Model Test With Staggered Buoyancy Elements. In Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Volume 2: CFD and VIV, Busan, Republic of Korea, 19–24 June 2016. [Google Scholar] [CrossRef]
- Wang, J.; Duan, M.; Luo, J. Mathematical model of steel lazy-wave riser abandonment and recovery in deepwater. Mar. Struct. 2015, 41, 127–153. [Google Scholar] [CrossRef]
- Du, D.; Acevedo, V.A.; Hamadi, R.; Parikh, S. Static and dynamic mechanism of an SCR clamp system in deep water installation. In Proceedings of the 27th International Ocean and Polar Engineering Conference, San Francisco, CA, USA, 25–30 June 2017; Available online: https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE17/All-ISOPE17/ISOPE-I-17-496/18122 (accessed on 5 September 2024).
- Wang, H.; He, N.; Xu, F.; Cheng, Y. The Development and Installation of the SCR Pull-In System for Lingshui 17-2 Project. In Proceedings of the 32nd International Ocean and Polar Engineering Conference, Shanghai, China, 5 June 2022; Available online: https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE22/All-ISOPE22/ISOPE-I-22-187/493786 (accessed on 5 September 2024).
- Wever, R.; Hendriks, P. Deepwater SCR Installation with the HLV Thialf. In Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. Volume 3: Pipeline and Riser Technology, Honolulu, HI, USA, 31 May 2009; pp. 787–795. [Google Scholar] [CrossRef]
- Thomas, B.; Benirschke, A.; Sarkar, T. Parque das Conchas (BC-10) Steel Lazy Wave Riser Installation: Pre-Abandonment, Recovery and Transfer Challenges. In Proceedings of the Offshore Technology Conference 2010, Houston, TX, USA, 3–6 May 2010; p. OTC-20605-MS. [Google Scholar] [CrossRef]
- Wang, J.; Duan, M.; Wang, Y.; Li, X.; Luo, J. A nonlinear mechanical model for deepwater steel lazy-wave riser transfer process during installation. Appl. Ocean Res. 2015, 50, 217–226. [Google Scholar] [CrossRef]
- Gu, J.; Huang, J.; Gao, L.; Chen, L.; Jia, J.; Wang, S. Abandonment and Recovery Operation of Steel Lazy-Wave Riser in Deep-water by Controlled Vessel and Cable Velocity Rate. China Ocean Eng. 2023, 37, 29–41. [Google Scholar] [CrossRef]
- da Silva, V.R.M.; Sagrilo, L.V.S.; Vignoles, M.A. Lazy-wave buoyancy length reduction based on fatigue reliability analysis. ASME J. Offshore Mech. Arct. Eng. Trans. 2018, 140, 031602. [Google Scholar] [CrossRef]
- Almar-Næss, A. Fatigue Handbook: Offshore Steel Structures, 1st ed.; Tapir Academic Press: Trondheim, Norway, 1999. [Google Scholar]
- Hejazi, R.; Grime, A.; Randolph, M.; Efthymiou, M. An efficient probabilistic framework for the long-term fatigue assessment of large diameter steel risers. Appl. Ocean Res. 2022, 118, 102941. [Google Scholar] [CrossRef]
- Lee, Y.; Jin, C.; Kim, M.; Xu, W. Digital twin approach with minimal sensors for Riser’s fatigue-damage estimation. Int. J. Nav. Archit. Ocean Eng. 2024, 16, 100603. [Google Scholar] [CrossRef]
- Chung, W.; Jin, C.; Kim, M. Dual-algorithm hybrid method for riser structural health monitoring using the fewest sensors. J. Mar. Sci. Eng. 2022, 10, 1994. [Google Scholar] [CrossRef]
- Yang, H.; Wang, A.; Li, H. Multi-objective optimization for deepwater dynamic umbilical installation analysis. Sci. China Phys. Mech. Astron. 2012, 55, 1445–1453. [Google Scholar] [CrossRef]
- Ogbeifun, A.; Oterkus, S.; Race, J.; Naik, H.; Moorthy, D.; Bhowmik, S.; Ingram, J. A tabular optimisation technique for steel lazy wave riser. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1052, 012022. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, M.; Zhang, B.; Jin, Z.; Su, Y.; Tian, H.; Pang, H. Configuration design of a steel double lazy wave riser based on metamodel-assisted metaheuristic algorithms. Appl. Ocean Res. 2024, 151, 104159. [Google Scholar] [CrossRef]
Organization | Outer Diameter | Wall Thickness | Buoyancy Block’s Length | Buoyancy Block’s Diameter |
---|---|---|---|---|
Shell Oil Company’s model | 0.03 m | 0.0015 m | 0.41 m | 0.08 m |
NDP’s model | 0.03 m | 0.0015 m | 0.15 m | 0.15 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, W.; Zhou, C.; Yang, H.; Wang, Z.; Sun, B.; Bai, Y. A Review on the Recent Process of Lazy Wave Risers. J. Mar. Sci. Eng. 2024, 12, 2000. https://doi.org/10.3390/jmse12112000
Ruan W, Zhou C, Yang H, Wang Z, Sun B, Bai Y. A Review on the Recent Process of Lazy Wave Risers. Journal of Marine Science and Engineering. 2024; 12(11):2000. https://doi.org/10.3390/jmse12112000
Chicago/Turabian StyleRuan, Weidong, Chengcheng Zhou, Hongyu Yang, Zhi Wang, Bo Sun, and Yong Bai. 2024. "A Review on the Recent Process of Lazy Wave Risers" Journal of Marine Science and Engineering 12, no. 11: 2000. https://doi.org/10.3390/jmse12112000
APA StyleRuan, W., Zhou, C., Yang, H., Wang, Z., Sun, B., & Bai, Y. (2024). A Review on the Recent Process of Lazy Wave Risers. Journal of Marine Science and Engineering, 12(11), 2000. https://doi.org/10.3390/jmse12112000