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Abstract: Lazy wave risers (LWRs) are designed with equidistant buoyancy blocks attached in the
lower half of the riser, allowing the riser to take on an arch shape under the buoyancy forces provided
by buoyancy blocks. This arch configuration can provide flexibility to the LWR arrangement and
effectively isolate the dynamic responses between the offshore floating structure and the riser’s
touchdown zone (TDZ). Its design and application aim to address the issues of dynamic response
and fatigue damage that traditional steel catenary risers (SCRs) face in deep water and complex
marine environments. Given that research on the LWRs in the field of ocean engineering is not
sufficiently abundant, the structural characteristics, hydrodynamic loads, global responses, fatigue
damage assessment, and structural optimization progress of LWRs are systematically reviewed in
this paper to provide references for researchers in related fields. Among these topics, the global
response of LWRs is the main point of this review. This section details the theoretical analysis and
numerical modeling methods employed in the study of LWRs’ global response, explores the research
advancements in the vortex-induced vibration (VIV) related to LWRs, and discusses corresponding
experimental studies. Finally, the installation, transfer, and repair processes of LWRs are investigated.
Additionally, the importance of leveraging advanced technologies from other fields and combining
them with current advanced algorithms is emphasized in efforts to assess fatigue damage and
optimize the structures of LWRs, ultimately achieving complementary advantages.

Keywords: buoyancy block; fatigue damage; global response; LWR; VIV

1. Introduction

Deepwater oil and gas development has been recognized as a core growth area in the
global petroleum industry. To enhance their core competitiveness, major oil companies and
related research institutions in the world are increasingly investing financial and material
resources in the pursuit of breakthroughs in deepwater technology. Therefore, deep-sea
resource exploration and development technologies have become a research hotspot in
international marine engineering [1]. As a crucial approach for transporting offshore oil
and gas resources, subsea risers are employed to facilitate the transportation of oil/gas
from the subsea wellhead to the upper floating structures at sea in actual offshore oil
and gas extraction projects [2,3]. Subsea risers are not only the most complex and critical
components in the subsea production system, but also the most vulnerable and susceptible
marine structures.

When offshore oil and gas exploitation progresses from shallow water areas to deep
water areas, traditional SCRs need to adapt to complex and harsh deep-sea environments.
The SCRs are mainly subjected to high-temperature and high-pressure load inside and
complex marine environmental load, seabed resistance, and severe coupling motions from
the upper floating structure outside. These factors may lead to potential issues such as
strength failure and fatigue damage in the risers [4–6]. Yang et al. point out that the intense
floating production storage and offloading (FPSO) motion induced by harsh environments
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may result in significantly amplified dynamic responses in traditional SCRs [7]. Therefore,
traditional SCRs may not be suitable for the FPSO system in deepwater. To reduce the
failure probability of subsea risers, Petrobras conducted research on various configurations
of steel catenary risers focusing on extreme load conditions, vortex-induced vibrations,
and wave-induced fatigue. They found that the LWR configuration is more suitable for
deepwater applications in terms of structural performance and economic viability. The
concept of LWR configuration was first proposed by Karunakaran et al. [8].

Compared with traditional SCRs, LWRs have better compliance, lower weight, and
lower installation costs, exhibiting significant advantages in the future deepwater oil and
gas exploitation [4,9]. As illustrated in Figure 1, LWRs utilize abundant buoyancy blocks
bundled at equal intervals along the lower half of the riser [10]. The buoyancy provided by
these blocks causes the riser to adopt an arch shape, effectively reducing the top tension
of deepwater riser. This design can alleviate the coupling effects of floating structure
motions on the riser’s TDZ, thereby enhancing the fatigue life of the riser in the TDZ [11].
Buoyancy blocks are usually made from lightweight materials, such as synthetic foam or
thin-walled air tanks, which have lower specific gravities than the seawater. As a result,
the effective gravity of the buoyancy block becomes negative underwater, providing an
upward lifting force.
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On account of the introduction of buoyancy blocks, the mechanical properties of the
riser segment bundled with equispaced buoyancy blocks are very different from those of
the bare riser segment. Consequently, the LWRs are usually divided into three segments
(suspended segment, buoyancy segment, and catenary segment, see Figure 2) for the global
response study [12–17]. Meanwhile, some researchers divided the LWRs into four segments
in order to distinguish the seabed resistance action [18–21]. As shown in Figure 2, there are
four hazardous areas for the LWR: (1) hang-off location; (2) sag bend zone; (3) hog bend
zone; (4) touchdown zone [16]. The hang-off location refers to the point where the riser is
attached to the offshore production facility or platform. For steel lazy wave riser (SLWR),
this connection is implemented by a flexible joint, which is treated as pinned [16,18,22,23].
For flexible LWR, the flexible riser is rigidly fixed to the floating structure with the bend
stiffener constraint [22,24–26]. At this position, the riser is tension-controlled and able to
withstand the significant dynamic loads applied. The hang-off angle should be designed
within the range of 5 to 20 degrees to effectively prevent the risers from colliding with each
other [27].

The sag bend zone refers to the downward bending section of the riser suspended
segment due to the combined action of the riser self-weight, floating structure confinement,
and lifting force of buoyancy segment. The requirements of fluid flow and structural
strength in this zone should be guaranteed to prevent excessive bending stress throughout
the design process. In addition, the sag bend zone should be designed as close to the
seabed as possible, but the lowest point must avoid contact with the seabed [28]. For



J. Mar. Sci. Eng. 2024, 12, 2000 3 of 28

the hog bend zone, it exhibits an arch form in the buoyancy segment with the buoyancy
effect of abundant buoyancy blocks. The capability of the LWR to absorb the dynamic
movements is suggested to be associated with this arch form height [29]. It follows that
the rational distribution of buoyancy blocks on the buoyancy segment is a key factor in
forming the ideal “wave shape” [30,31]. The height difference between the hog bend peak
and sag bend trough should be controlled within certain limits to guarantee the fluid
transport environment in the riser. On this account, Ruan et al. [10] proposed the new
concept of deepwater LWR configuration based on multiple waveform serial arrangement
(i.e., multiple LWR), which can greatly reduce this height difference to improve the fluid
transport environment in the riser.
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As illustrated in Figure 2, the TDZ of the riser is in the critical area where the catenary
riser contacts with the seabed, and the touchdown point (TDP) is the point in the area where
the catenary riser initially contacts with the seabed. Although the axial load of the riser
in the TDZ is relatively small, the interaction between the riser flowline and seabed soil
constantly occurs under the influence of the marine environmental loads and the floating
body motion at the top, which makes this area a hot spot for riser fatigue analysis [32,33].
Ruan et al. [10] pointed out that compared to traditional catenary risers, a deepwater riser
with lazy wave arrangement configuration can greatly attenuate the kinematic coupled
response of the floating structure in the riser first sag bend section and effectively reduce
the normal motion response of the LWR in the TDZ [10], which can effectively optimize the
dynamic bending moment and antifatigue performance of the LWR in the TDZ. The results
show that the maximum dynamic bending moments of the LWR in the TDZ decrease from
103.25 kN m to 64.86 kN m, with a decrease of up to 37.2%.

In recent years, scholars have conducted extensive and profound research on the
global response of offshore risers, achieving remarkable outcomes. However, due to the
complexities of deepwater environments and nonlinear boundary conditions, the analyses
of offshore risers under complex deepwater conditions remain incomplete, particularly
regarding the structural dynamic characteristics and motion responses of different de-
ployment configurations. This study aims to summarize the primary achievements in
the research on the global response of LWRs while identifying the current shortcomings
and challenges. The review systematically organizes relevant research progress and em-
phasizes the contributions of various researchers in this field, to serve as a reference for
future studies. In addition, key limitations in existing research, such as model accuracy,
experimental validation, and multiple environmental factors, are presented. Furthermore,
challenges in nonlinear behavior, fluid–dynamic interactions, and material property anal-
ysis are explored. This not only lays a foundation for a deeper understanding about the
global response of LWRs, but also offers suggestions for subsequent research.
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2. Hydrodynamic

The marine environment is a factor critical to the design and analysis of offshore
risers and can cause multiple failure modes such as tensile failure, compression buckling,
excessive bending, fatigue failure, and on-bottom instability.

2.1. Classification of Hydrodynamic Loads

The hydrodynamic loads caused by a marine environment can be divided into the
following categories: (1) wave loads; (2) current loads. Waves are one of the most funda-
mental and significant hydrodynamic phenomena in the ocean. Wave loads include linear
wave load, nonlinear wave load, and random wave load. Waves exert forces (such as drag
force, inertial force, and buoyancy variations) on structures through the periodic motion of
water particles. These forces have a significant impact on the motion and loading state of
offshore riser systems. When calculating the wave forces on offshore risers, both inertial
and viscous forces are important, which are often calculated by Morison equation [34].
Many experimental studies have provided the drag and inertia coefficients adopted in the
Morison equation [35,36].

Currents are the steady water movement in the ocean and can be broadly categorized
as tidal currents, wind-driven currents, ocean circulation, boundary currents including loop
and eddy currents, and currents caused by internal waves and solitons. Currents are closely
related to the density distribution and the flow into or out of an area, which is a function of
the local topography and oceanography [34] (Figure 3a). For shallow water, since currents
are frequently driven by tides, velocity–depth profiles can provide an adequate description;
for deep water, both the velocity and direction of the currents change with the water depth,
and are very complex to accurately describe (Figure 3b). The effects of currents on offshore
riser systems are primarily manifested as constant drag forces and potential additional mass
forces [6,29,37,38]. In addition, when ocean currents pass over offshore risers, a periodic
vortex will be generated in the wake of the riser, and the periodic fluid force generated by
the vortex falling off will stimulate the in-line flow (IF) and cross-flow (CF), and offshore
risers will vibrate at the same time. This phenomenon is called vortex-induced vibration
(VIV) due to ocean currents [6,29,37–39].
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Additionally, the waves and currents interaction (WCI) will further increase the com-
plexity of the dynamic response of offshore riser systems [29,34]. Unlike the aforementioned,
Yin et al. [27] divides the hydrodynamic loads acting on the LWRs into wave frequency
loads, vortex-induced vibration due to currents, vortex-induced vibration due to vessel
motion, loads due to internal flow, and low-frequency loads. The wave frequency loads
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can further be divided into wave loads acting on the riser and wave frequency vessel
motion-induced vibration according to the position of wave action. For the latter, when the
LWR is subjected to vessel motion (such as heave motion), the sag bend and hog bend will
move relative to the surrounding water. Consequently, the relative motion and velocity
may cause the riser to experience vibrations similar to the VIV in oscillating flows.

2.2. Solution of Hydrodynamic Loads
2.2.1. Wave Theory

In a marine environment, fluid behaves with viscous characteristics, and at the same
time, there is surface tension on the fluid surface. These factors have a certain impact on
the wave movement. Because the effects of fluid viscosity and surface tension are related to
wave frequency, these effects are negligible in the wave frequency bands that are generally
important for offshore engineering. Therefore, it is assumed that the fluid is an ideal fluid,
and only the influence of gravity is considered, i.e., the fluid motion is irrotational [40]. Any
wave can be determined by wave height (or wave amplitude), wavelength (or wave period),
and water depth, and the movement of water particles can be determined according to
different wave theories. The velocity potential Φ(x, y, z, t) for an ideal fluid should satisfy
Laplace equation [41]:

∇2Φ(x, y, z, t) =
∂2Φ

∂x2 +
∂2Φ

∂y2 +
∂2Φ

∂z2 = 0 (1)

where x, y, and z denote the coordinates of any point in space; t is the time. In order to
solve the ideal fluid velocity potential expression, the following boundary conditions can
be determined:

(1) Wave surface condition (z = ξ): the free surface pressure must be equal to the
atmospheric pressure (regardless of the surface tension). By applying the Bayesian equation
to the free surface of the wave, it can be obtained:

∂Φ

∂t
+

1
2

[(
∂Φ

∂x

)2
+

(
∂Φ

∂y

)2
+

(
∂Φ

∂z

)2
]2

+ gξ

∣∣∣∣∣∣
z=ξ

= 0 (2)

where g is the acceleration of gravity. Meanwhile, the kinematic boundary conditions are
satisfied, that is, the water particles on the free surface always remain on the free surface:

∂ξ

∂t
+

∂Φ

∂x
∂ξ

∂x
+

∂Φ

∂y
∂ξ

∂y
− ∂Φ

∂z

∣∣∣∣
z=ξ

= 0 (3)

(2) Bottom boundary conditions (z = −d): the vertical velocity is zero at the horizontal
seabed:

∂Φ

∂z

∣∣∣∣
z=−d

= 0 (4)

Since water particles cannot pass through the seabed boundary, they can only move
along the tangential direction of the seabed boundary, that is, the normal velocity of water
particle perpendicular to the seabed boundary is zero.

∂Φ

∂n

∣∣∣∣
z=−d

= 0 (5)

(3) Condition at infinity: Φ(x, y, z, t) and ξ(x, y, z, t) remain bounded, sometimes even
requiring that both Φ and ξ and their derivatives approach zero.
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2.2.2. Current Theory

Since the periodicity of ocean currents is in the order of several months, relative to the
water particle velocity induced by waves, it is relatively slow to change over time. Hence,
it can be considered that the velocity and direction of ocean currents remain unchanged
over time in a given sea state, that is, a current is regarded as a steady flow. Of course, the
velocity and direction of ocean currents change at different depths. In practical engineering
design, engineers generally adopt “current profile” once in a decade and in a hundred
years to carry out engineering design for offshore risers [42,43]. If a detailed profile of the
current velocity is lacking, the power function rule can be employed to simulate the current
velocity vc at the depth z [44]:

vc = vb + (vs − vb) · [(z − zb)/(zs − zb)]
1/n (6)

where vs and vb represent the surface velocity and seabed velocity, respectively; zb and zs
donate the surface vertical coordinate and seabed vertical coordinate, respectively, and
n is the exponential coefficient. The influence of ocean currents on offshore structures,
especially deepwater structures, is very large and its analysis will be more complicated.

2.2.3. Hydrodynamic Load Calculation

Since the diameter of the offshore riser is much less than the incident wavelength,
the structure itself has little influence on the wave motion, and the wave effect on the
offshore riser mainly contains viscous effect and added mass effect. The Morrison equation
proposed by Morison et al. [45] is generally adopted to calculate the wave loads. Morison
et al. [45] pointed out that the wave loads acting on the offshore riser per unit length in
water can be regarded as the linear superposition of two kinds of hydrodynamic loads:
(1) drag force, caused by the water particle velocity when the seawater flows through
the cylinder; (2) inertial force, caused by the water particle acceleration. Because ocean
currents are generally treated to be steady currents, the hydrodynamic load caused by
ocean currents is mainly manifested as drag force. It is necessary to linearly superposition
the water particle velocity caused by the wave and current first, and then to calculate the
total drag force acting on the offshore riser.

Because of the catenary configuration of the LWR, the calculation of hydrodynamic
loads on the inclined cylinder should be considered, which is similar to the calculation of
hydrodynamic loads on the vertical cylinder. Considering that the water particle velocity
and acceleration of the inclined cylinder are generally not in the same spatial plane, the
corresponding water particle velocity and acceleration are generally described in vector
form, so as to calculate the hydrodynamic loads acting on the inclined cylinder. The
expression of Morison equation in vector form for the LWR is as follows [46]:

f = ρw
πD2

4
.
v + Caρw

πD2

4
( .
vn −

..
rn
)
+

1
2

CdρwD
(
vn −

.
rn
)∣∣vn −

.
rn
∣∣+ Ca tρw

πD2

4
( .
vt −

..
rt
)
+

1
2

πCd tρwD
(
vt −

.
rt
)∣∣vt −

.
rt
∣∣ (7)

where ρw and D represent the sea density and riser’s external diameter, respectively;
.
r

and
..
r are the riser moving velocity and acceleration vectors, where the subscripts “n” and

“t” represent the riser’s normal direction and tangential direction, respectively; v and
.
v

denote the water particle velocity and acceleration vectors, where the meaning for the
subscripts “n” and “t” are the same with riser velocity and acceleration vectors; Cd and Ca
are the normal drag coefficient and added mass coefficient, meanwhile Cdt and Cat are the
tangential drag coefficient and added mass coefficient.

3. Global Response of LWRs

Most researchers tend to carry out theoretical research and numerical simulation on
the global response of LWRs because it is too time-consuming and costly to carry out
experimental research on LWRs. The introduction of buoyancy blocks results in significant
nonlinearity in the lazy wave configuration, and this configuration is notably affected by
changes in the buoyancy blocks. Therefore, most scholars prefer to conduct large deforma-
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tion nonlinear analyses and studies on the global response of LWRs [21,47,48]. OrcaFlex
(version 11.4) is a widely applied dynamic simulation software in marine engineering and
ship design, particularly for analyzing the dynamic behavior of marine structures, such as
subsea pipelines, floating platforms, and offshore risers.

Based on the lumped mass method (LMM), this software allows for the setting of
different boundary conditions, environmental conditions, and loading scenarios to adapt to
various practical applications [9,13,49]. It also possesses powerful modeling capabilities that
enable engineers to highly customize models based on specific requirements. Hu et al. [9]
established OrcaFlex numerical models for the catenary riser and LWR to investigate how
the response characteristics of offshore risers impact the stability and safety of the entire
Offshore Compressed Air Energy Storage (OCAES) system (Figure 4). The results indicated
that the structure of the LWR is more complex than the catenary riser; nevertheless, the
former presents better response performance.
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3.1. Mathematical Model and Software Tools

The modeling of LWRs initially focused on two-dimensional (2D) models. With
the improvement of computer computing power, there has been a gradual transition to
three-dimensional (3D) models.

3.1.1. Two-Dimensional Model of LWRs

Early simulation software and insufficient computational power of computers hin-
dered the ability to simulate 3D models of a LWR, leading to a significant computational
burden. As a result, researchers primarily focused on developing 2D models for LWRs,
accompanied by a series of simplifications and assumptions. For instance, the axial defor-
mation and twisting behavior of the riser are often neglected [14,18,19]. Additionally, for
the convenience of numerical modeling and mechanical analysis, the buoyancy segment
of the LWR is simplified into a uniform pipe structure with constant inner and outer di-
ameters based on the equivalence principles of hydrodynamic loads and buoyancy loads.
Furthermore, during the global response analysis of the LWRs, it is usually necessary to
consider the pipe–soil interaction. Therefore, the seabed in contact with the riser is generally
assumed to be horizontal [15,17–19]. A such, most studies have treated the seabed as a hor-
izontal and elastic foundation [13,14,18,50], typically modeled by the Winkler foundation
model to simulate the normal seabed resistance loads.

In consideration of the boundary layer effects in the riser’s TDZ and the buoyancy
effects of the buoyancy segment, the LWR can be divided into several segments to carry
out the analyses for 2D planar LWR models [13,14,18]. Compared to traditional small
deformation beam theory or catenary theory, nonlinear large deformation beam theory has
significant advantages in simulating rapid changes in the angle of the riser, making it more
suitable for the mechanical analysis of deepwater risers with large deformations [51,52].
Wang et al. [18] employed nonlinear large deformation beam theory and small deformation
beam theory to model the suspended segment (including the lower section, buoyancy
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section, and upper section) and the flowline segment, respectively (Figure 5). The effects of
the pipe–soil interaction, the bending stiffness of the riser, and the large deformation charac-
teristics of the suspended segment were accounted for in this model. Under given boundary
conditions, the governing equations were derived according to the finite difference method,
and the numerical solution was obtained. Equation (8) presents the governing equation for
the flowline segment based on small deformation beam theory, while Equations (9) and (10)
represent the governing equations for the suspended segment based on nonlinear large
deformation beam theory.

EIr
d4y2

dx4 − T2
d2y2

dx2 + µy2 + wr = 0 (8)

EIr
d3θ

ds3 − T
dθ

ds
+ wrcosθ = 0 (9)

dT
ds

= wrsinθ (10)

where EIr denotes the bending stiffness of the bare riser; T is the riser’s axial tension;
T2 represents the unknown constant axial tension at the TDP; w is the riser’s apparent
weight in the water per unit length. More detailed information about symbols can be
seen in [18]. When calculating the mechanical analyses for the buoyancy section with
Equations (9) and (10), the corresponding bending stiffness and apparent weight should
be updated.
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Figure 5. SLWR configuration [14].

However, this numerical model has a limitation issue, i.e., the length of the lower
section is set as a known condition, which is hard to acquire through on-site measure-
ments in actual engineering. Since the hang-off angle of the LWR can be obtained, some
researchers took it as a known condition, instead of the length for the lower section. Then,
Ruan et al. [14] proposed an efficient method to predict the accurate static stress range
of deepwater SLWRs under the coupling effects of vessel slow drift motion and currents.
The boundary layer effect in the riser’s TDZ was well considered in this study, setting
the riser segment close to the seabed as the individual boundary layer segment (Figure 5)
and performing mechanical analysis according to small deformation beam theory. In con-
trast, catenary theory was adopted to calculate other sections of the suspended segment
(including the hang-off section, buoyancy section, and decline section). This approach can
effectively guarantee the continuity of the bending moment and shear force at the riser’s
TDP. It can be observed that the maximum axial stress range of the SCR occurs in the TDZ,
reaching up to 112 MPa, which is 26% larger than that of the SLWR.

Unlike the solution of segmenting the LWR, Trapper [32] proposed a feasible numerical
method for the LWR static configuration analysis. This method treated the entire riser as a
continuous segment and modeled it according to nonlinear large deformation beam theory
(Figure 6). Since the entire riser was considered as a continuous segment to conduct analysis,
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the need to solve the governing equations for each segment separately was eliminated,
and the boundary continuity between each segment also did not need to be considered.
The model can accommodate additional loads, constraints, or boundary conditions flexibly.
Compared to segmenting the model, the continuous riser model can significantly reduce
the complexity of the governing equations. Based on the principle of minimum potential
energy, the configuration equation for the LWR in equilibrium is as follows:

Utot =
1
2

∫
L

EIκ(s)2ds +
1
2

∫
Ls

kse(s)2ds −
∫

L
wgy(s)ds −

∫
Lb

wby(s)ds −
∫

L
fxx(s)ds −

∫
L

fyy(s)ds − P0x(L) (11)

where E and I represent the riser’s Young’s modulus and cross-sectional inertia moment,
respectively; κ and e(s) denote the riser’s curvature and embedment into the seabed,
respectively; Ls and Lb are the section length in contact with soil and buoyancy section
length, respectively. The right terms in Equation (11) represent the bending elastic energy
stored in a deformed riser, the elastic energy stored in the deformation of elastic seabed,
the potential energy of the riser’s submerged self-weight, and the potential energy of
submerged self-weight for buoyancy blocks averaged over the section length, respectively.
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When investigating the global response of LWRs, the effect of the internal flow in the
riser was generally ignored in numerical models. However, the internal flow can reduce
the structural stiffness provided by the negative damping [53] and induce additional large
riser displacements [54]. Therefore, Ruan et al. [12] established a dynamic model for the
global response of LWRs under imposed top-end excitations and internal flow according to
the elastic slender rod theory. The research found that the relative position and length of
the buoyancy section can significantly impact the maximum bending moments in the sag
bend zone, hog bend zone and TDZ, and the top tension at the hang-off point. However,
this study did not specifically focus on the effects of the internal flow on the global dynamic
response of the LWR. The elastic rod theory primarily contains a motion governing equation
and a stretching constraint equation. By applying Galerkin’s method for discretization and
the tensor summation algorithm, a set of nonlinear ordinary differential equations in the
time domain can be obtained:

γikm Mnjm
..
ukj − 2ρi AiUζik

.
ukn + αikmEImukn + βikmλmukn = µimqmn + fin (12)

1
2

βikmuinukn −
1
2

τm − ηmn
λn − (pon Ao − pin Ai) + ρi AiU2

EAn
= 0 (13)

where i and k run from 1 to 4; j, m, and n run from 1 to 3. Detailed information about tensor
expressions can be seen in [12].

Subsequently, Wang et al. [47] considered the effects of currents and internal flow and
proposed a 2D nonlinear dynamic model for deepwater LWRs under normal and tangential
top excitations based on Euler–Bernoulli beam theory and Keller Box finite difference
approach. Through parameter analysis, it was found that the floating structure motion,
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internal fluid, and ocean current loads significantly affect the mechanical properties of
LWRs. Jeong et al. [55] established a dynamic response analysis program for the LWRs
accounting for environmental loads and slug flow. The dynamic responses of the LWRs
under critical conditions with and without slug flow were analyzed and compared to
provide a quantitative comparison of the effects of slug flow on the LWRs. As displayed in
Figure 7, Cabrera-Miranda and Paik [56] modeled the LWR as an Euler–Bernoulli beam
to investigate the nonlinear planar vibrations of LWRs excited by slug flow, in which the
internal fluid was treated as a plug flow with time-space-varying mass in the form of a
rectangular pulse train. The partial differential governing equations for the LWR planar
motion in this model are as follows:

m
∂u
∂t

− (m + M)
∂ϕ

∂t
v +

MU
1 + e

(
∂U
∂s

− Ω3v) =
∂Te

∂s
− SnΩ3 − (w0 + Mg) sin ϕ − 1

2
πρD0Cdtu|u|

√
1 + e (14)

(m + ma + M)
∂v
∂t

+ m
∂ϕ

∂t
u +

MU
1 + e

(
∂v
∂s

+ Ω3U) =
∂Sn

∂s
+ Ω3Te − (w0 + Mg) cos ϕ − 1

2
ρD0Cdv|v|

√
1 + e (15)

1
EAp

− ∂Te

∂t
=

∂u
∂s

− Ω3v (16)

(1 + e)
∂ϕ

∂t
=

∂v
∂s

+ Ω3v (17)

EI
∂Ω3

∂s
+ Sn(1 + e)3 = 0 (18)

∂ϕ

∂s
− Ω3 = 0 (19)

where s denotes the local curvilinear Lagrangian coordinate related to the unstretched riser
of length L; M represents the fluid mass in the riser. More detailed symbol explanations can
be seen in [56].
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ory, resulting in a mature theoretical system. Meanwhile, some researchers are still ex-
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system in other fields has been applied to the field of ocean engineering, and some 
achievements have been achieved, such as the absolute nodal coordinate formulation 
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Figure 7. Riser subjected to two-phase flow-induced vibrations [56]. (a) sketch of steel lazy wave
riser, (b) in-plane balance of forces and moments acting on a pipe conveying fluid after elongation
and (c) internal fluid with time-space-varying mass in the form of a rectangular pulse train.

The global response analysis method for the LWRs has evolved from the initial small
deformation beam theory and catenary theory to nonlinear large deformation beam theory,
resulting in a mature theoretical system. Meanwhile, some researchers are still exploring
new theoretical frameworks and progressively developing them. The theoretical system in
other fields has been applied to the field of ocean engineering, and some achievements have
been achieved, such as the absolute nodal coordinate formulation (ANCF) method [57].
The ANCF method is a dynamic analysis approach widely used in mechanical engineering,
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multi-body dynamics, and aerospace engineering in recent years, which can solve the
problem of flexible bodies with large deformation and large rotation.

Furthermore, ANCF can alleviate inherent numerical problems associated with non-
linear dynamic analysis, such as non-physical oscillations and peak values. Therefore, the
ANCF method is regarded as a promising theoretical approach for the dynamics analysis
of flexible structures like risers and cables in offshore operations. Based on the ANCF
and continuum mechanics theory, Zhang et al. [57] utilized the finite element method to
establish a mechanical analysis model to investigate the static and dynamic responses
of LWRs, extending the ANCF method to the field of marine engineering. The results
obtained from the ANCF approach were larger than those by the LMM, and the maximum
error reached about 6.65%. Wang et al. [58] applied the ANCF method to the simulation of
flexible structures in marine operation and developed internal code MiNos using MATLAB
program. Compared to OrcaFlex software, MiNos demonstrated a reduction in significant
bending moment peaks due to the superior continuity of the ANCF elements.

3.1.2. Three-Dimensional Model of LWRs

Compared to 2D models of LWRs, 3D models can more accurately represent the
shape and structure response of a riser, including its configuration, inclination angles, and
connection points, thus providing a more comprehensive reflection of its actual design.
Additionally, 3D models can account for loads from different directions, such as waves
and currents, allowing for better simulation and analysis of a riser’s dynamic response in a
complex marine environment. Li et al. [48] employed the vector form intrinsic finite element
(VFIFE) method to establish a physical model of the LWR and analyze its nonlinear behavior
in 3D space. Differently from traditional mathematical models, the VFIFE method, based
on vector mechanics theory and numerical computation, does not require the integrated
stiffness matrix and the iterative solution for the governing equations, so it can effectively
solve structural problems flexibly. As depicted in Figure 8, the initial riser is assumed
to be an oblique straight line meshed into N segments by N + 1 particles. Meanwhile,
the gravity, buoyancy forces, and hydrodynamic loads are loaded on the riser with ramp
function to eliminate transient response and reduce the time to obtain steady-state response.
Considering the effect of the structural damping, the governing equations for the particle
can be expressed:

mj
d2

dt2

xj
yj
zj

 =

 f exi
jx

f exi
jy

f exi
jz

+

 f int
jx

f int
jy

f int
jz

+


f dmp
jx

f dmp
jy

f dmp
jz

 (20)

Ixx 0 0
0 Iyy 0
0 0 Izz

 d2

dt2

θjx
θjy
θjz

 =

mexi
jx

mexi
jy

mexi
jz

+

mint
jx

mint
jy

mint
jz

+


mdmp

jx

mdmp
jy

mdmp
jz

 (21)

where mj denotes the mass of the particle j; the position vector Xj (xj, yj, zj) in the particle
motion formula and the direction vector θj for the particle j are described by the global
coordinates. More detailed symbol explanations can be seen in [48].

The above research adopts the uncoupled method to investigate the dynamic response
of the riser system, which decouples the riser from the vessel movement and can reduce
the dynamic top tension, TDZ stress, and fatigue damage [59–62]. This decoupled method
does not consume excessive computational resources and is time-efficient. However, this
method has certain limitations in the analysis of floating offshore systems: it separates the
analysis of vessel motion from the load effects of mooring lines and risers into two steps,
ignoring the interactions between them [63,64].
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To comprehensively consider the interactions among various components in the
system and improve the accuracy and reliability of structural analyses, coupled methods
were developed. Ormberg and Larsen [63] conducted numerical simulations using both
uncoupled and coupled methods, and they pointed out that the consistency of the model
verification results with the coupled method was higher compared to the decoupled method.
Then, Kim and Kim [15] developed the time-domain hull/mooring/riser fully coupled
dynamic simulation program CHARM3D to carry out coupled numerical analyses. The
transmitted forces from the mooring lines and risers to the platform are given as follows:

F̃P = K̃(T̃ũP − ũI) + C̃(T̃
.
ũP −

.
ũI) (22)

Then, the hull response equation can be added into the riser/mooring equations in
the time domain:(

M̃ + M̃a(∞)
) ..

ũp +
∫ ∞

0
R̃(t − τ)

.
ũpdτ + K̃H ũp = F̃D + F̃(1) + F̃(2) + F̃p + F̃w + F̃c + F̃WD (23)

where K̃ and C̃ are the stiffness and damping matrices for mooring lines at the connection
point; M̃ and M̃a are the mass and added mass matrix; R̃ denotes the retardation function
matrix. More detailed symbol explanations can be seen in [15].

By comparing the dynamic characteristics of the SCR and SLWR near TDZ, Kim and
Kim [15] pointed out that the local dynamic buckling of the SCR near the TDZ will ex-
acerbate the bending moment and bending stress responses in that area; in contrast, the
LWR can effectively avoid local dynamic buckling near the TDZ due to its additional sag
and hog bends, which can absorb the dynamic motion energy. In addition, the slender
rod theory was employed in the CHARM3D program to carry out the static and dynamic
analysis of mooring lines and risers. This theory was initially proposed by Nordgren [65]
and Garrett [66]. Its major advantage lies in the fact that the motion governing equations
are formulated directly in the global coordinate system and include all geometric nonlinear-
ities, which can eliminate the cumbersome coordinate transformations between different
coordinate systems and improve computing efficiency. Consequently, it has been widely
applied in studies of static/dynamic response of marine slender rod structures [13,67–69].
Based on the initial slender rod theory, Paulling and Webster [70] improved and proposed
a slender rod theory model with the assumption of small tensile deformations. To date,
Texas A&M University has conducted extensive and systematic research on the slender rod
theory and developed the fully coupled computation program CABLE 3D in Fortran to
study the global coupled dynamic responses of floating production systems, anchor lines,
and offshore risers [71–75].

Taking the effects of internal flow and seabed resistance into account, Cheng et al. [21]
utilized 3D slender rod theory to investigate the dynamic performance of a LWR under
vessel offsets and wave-current loads. This research indicated that when the LWR is
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subjected only to wave and current loads, internal flow parameters such as density, velocity,
and top pressure have a significant impact on the LWR dynamic behavior. Based on a
3D modified slender rod theory, Li et al. [76] and Ruan et al. [77] employed an extended
Korteweg-de Vries equation to simulate internal solitary waves (ISW) to study the nonlinear
dynamic response of a LWR subjected to vessel motions, surface waves, ocean currents,
and ISW. They discovered that ISW can induce significant oscillatory displacements in both
the horizontal and vertical directions of the LWR, which notably increases the possibility
of riser collision and shear damage. Yu et al. [78] established a self-developed program
to describe the dynamic behavior of the coupled platform-mooring-riser system. The
configurations of two types of risers (SCR and LWR) under the combined excitation of ISW
and random waves were well compared. The results demonstrated that compared to SCRs,
LWRs consistently exhibit greater motion responses with time differences due to complex
configurations.

In addition, Yu et al. [78] established a fully coupled analysis model of floating
platform-mooring-risers (SCRs and SLWRs) under the effects of ISWs and random waves.
Rigid body dynamics theory and LMM were adopted to simulate the responses of the float-
ing platform and riser/mooring lines, respectively, achieving the coupling effect between
them through semi-coupled analysis. As shown in Figure 9, the LMM was employed to
simulate the riser/mooring line configuration:

Rk =
3

∑
i=1

ri,kni, k = 1, 2, . . . , n (24)

Sk+1/2 = Rk+1 − Rk =
3

∑
i=1

(ri,k+1 − ri,k)ni, k = 1, 2, . . . , n − 1 (25)

lk+1/2 = |Rk+1 − Rk| =

√√√√ 3

∑
i=1

(ri,k+1 − ri,k)
2, k = 1, 2, . . . , n − 1 (26)

tk+(1/2) =
Sk+(1/2)

lk+(1/2)
=

3
∑

i=1
(ri,k+1 − ri,k)ni√
3
∑

i=1
(ri,k+1 − ri,k)

2

, k = 1, 2, · · · , n − 1 (27)

qk =
Rk+1 − Rk−1

|Rk+1 − Rk−1|
=

3
∑

i=1
(ri,k+1 − ri,k−1)ni√
3
∑

i=1
(ri,k+1 − ri,k−1)

2

, k = 2, 3, · · · , n − 1 (28)

where Rk denotes the position vector of the kth lumped mass point; the segment vector
pointing from Rk to Rk+1 is denoted as Sk+1/2, with its length defined as lk+1/2; the tangent
direction qk at each node is approximated as the direction pointing between two adjacent
nodes to calculate the hydrodynamic loads. More detailed symbol explanations can be seen
in [78].

In summary, research on the global response of LWRs has gradually shifted from
initial static response analyses to dynamic response analyses. Due to the complex dynamic
loads (including wave loads, structural stiffness, and hydraulic resistance) acting on the
LWRs, dynamic simulations are more effective and accurate compared to static simulations
in reflecting real-world conditions. For this reason, design and validation techniques based
on dynamic simulations have been actively researched in marine operations, which aligns
with current and future research trends.
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3.2. Vortex-Induced Vibration

VIV could lead to the rapid accumulation of fatigue damage in risers and amplify the
drag effects acting on the riser, which is induced by ocean currents and vessel motions.
The occurrence and characteristics of the VIV are closely related to the Reynolds number.
As the Reynolds number increases, the frequency and patterns of vortex shedding will
change, which will affect the intensity and nature of the VIV. With low Reynolds numbers,
vortex shedding usually presents a regular Karman vortex street pattern; however, with
high Reynolds numbers, vortex shedding may become irregular, resulting in increased
complexity and unpredictability of the VIV. Figure 10A showcases 3D vortex structures in
the wake of a circular cylinder under different Reynolds number conditions [79]. These
vortex structures include vortex loops and streamwise vortex pairs. With the increasing the
Reynolds number, the vortex structures in the wake become more complex and unstable,
exhibiting pronounced 3D characteristics [80]. Additionally, the flow field near the sep-
aration point on the cylinder varies across different Reynolds number regimes [81]. The
period of vortex shedding is illustrated in Figure 10B. In this Figure, only the separatrices
are shown, i.e., streamlines that leave or terminate at a saddle point.
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In most cases, the time-varying and spatially varying ocean currents acting on the
LWRs can be simplified to the steady current through a circular cross-section. When steady
currents pass over offshore risers, periodic vortex will be generated in the wake of the
riser, and offshore risers will vibrate at the same time, which is called VIV due to ocean
currents [6,29,37–39]. However, rapidly time-varying currents and relative oscillations
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caused by vessel motions may lead to oscillatory currents. Under the action of vessel
motions, the LWRs will be subjected to time-varying oscillatory currents, which may
generate vorticity and periodic vortex-induced force, and finally cause the vibration of
offshore risers. This fluid–structure interaction is called VIV due to vessel motion [82,83].

Research on the riser VIV primarily involves the application of computational fluid
dynamics (CFD) for numerical simulations of the cylinder by both domestic and foreign
scholars. However, studies on the VIV response for the combined structures with the riser
and staggered buoyancy blocks are still relatively scarce. Jang and Kim [84] employed CFD
simulation to numerically model the VIV response of the SLWR combined structure with
staggered buoyancy blocks and riser and solved the structural equations of motion through
modal analysis. As illustrated in Figure 11, Constantinides and Zhang [85] adopted a
combination of CFD technology and semi-empirical software analysis to investigate the
global response of a deepwater LWR with staggered buoyancy blocks.
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3.2.1. VIV Due to Vessel Motion

Due to the influence of vessel motion, the VIV response of the riser may become more
complex. The vessel’s roll and pitch motions would affect the formation and shedding
patterns of vortices, subsequently altering the riser vibration characteristics [86]. Based on
time-domain analysis method and the SIMA software workbench, Yin [82,83] simulated the
VIV response of a full-scale LWR under the effect of vessel motion. This study constructed
the total hydrodynamic loads in the CF direction:

Fhydro,y =
1
2

ρDCν|vn|(j3 × vn) cos ϕexc︸ ︷︷ ︸
vortex shedding

+
1
2

ρDCD|vn|vn︸ ︷︷ ︸
drag

+
1
4

ρπCMD2 .
un︸ ︷︷ ︸

water particle

−1
4

ρπ(CM − 1)D2...
xn︸ ︷︷ ︸

cylinder added mass

(29)

where the first term on the right side of Equation (29) represents the oscillating lift force
due to vortex shedding, and the three last terms make up the Morison equation. More
detailed symbol explanations can be seen in [82,83].

Research found that vessel motion will induce a normal relative velocity that varies
along the LWR, with the largest value occurring at the lower part of the upper catenary.
It was also pointed out that the VIV response of the LWR is dominated by the bare riser
section. Additionally, Yin [82,83] highlighted the limitations of the time-domain models:
since these time-domain models are semi-empirical, input parameters need to be obtained
through experiments. Future improvements for the LWR’s VIV due to vessel motion are
needed in the following areas:

1. Rigid model (staggered buoyancy arrangement) test in oscillatory flow;
2. Computational fluid mechanics simulations to investigate 3D effects;
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3. Experimental techniques to measure the displacement responses;
4. Higher-order components included in the time-domain model;
5. The consideration of in-line forces.

3.2.2. VIV Due to Current

Both the bare riser and buoyancy blocks in the LWR may experience the VIV under
the influence of ocean currents. However, when the VIV occurs, the hydrodynamic char-
acteristics of buoyancy blocks and their influence on the hydrodynamics of the bare riser
section still require further investigation. A large number of studies indicated that the
coverage of buoyancy blocks plays a crucial role in the competitive excitation between the
bare riser section and buoyancy regions [37,87,88]. If the flexible cylinders with a staggered
buoyancy system are linear, the frequency components in response will be the same as
those in excitation forces; if the system is nonlinear, excitation frequency components will
include those in the excitation forces and additional frequencies [87]. These additional
frequencies arise from the nonlinear interaction of the cylinder’s response at the excitation
frequency components.

Subsequently, Rao et al. [37] investigated the VIV excitation characteristics of the buoy-
ancy section and bare section of the LWR under five staggered buoyancy configurations.
The research found that under almost all velocity conditions, the excitation response of
the bare region predominates in pipes with a buoyancy block length-to-diameter ratio of 3.
Furthermore, there were generally two excitation frequencies presented in the spectrum of
risers with staggered buoyancy blocks, with the higher frequency related to the bare region
and the lower frequency related to the buoyancy section. However, in addition to these
two excitation frequencies, a third excitation frequency was observed (Figure 12), which
is an unexpected combination of the two excitation frequencies and may arise from the
nonlinear effects of hydrodynamic damping mechanisms.
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To identify and compare the VIV responses in different regions, a frequency component
identification method was proposed by Rao et al. [37]. The VIV excitations associated with
30 mm and 80 mm pipe diameters could be identified through the frequency components.
The corresponding average VIV power can be computed numerically with Equations (30)
and (31):

P30 =
∫

L

1
T

∫ T

0
c30

.
y2

30dtdx (30)

P80 =
∫

L

1
T

∫ T

0
c80

.
y2

80dtdx (31)

The reconstructed displacements y30 and y80, and the damping c30 and c80 represent
the corresponding values at fundamental excitation frequencies associated with 30 mm and
80 mm pipe diameters, respectively.
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The forces induced on the risers by slug flows are intermittent, thus inducing ex-
citations that may cause large oscillations on the suspended risers [89]. This internal
flow-induced vibration can affect the VIV, and the two will interact, potentially causing
resonance [90]. Bordalo and Morooka [89] established subroutines for internal flow forces
to maintain a constant two-way dialog with the dynamic integrator of the pipeline move-
ment simulator for solving the equations of motion for the riser (Figure 13). The research
found that due to the influence of slug mass on the system’s weight and inertia, the LWR
oscillations induced by the VIV were altered in the presence of slugs. In the case of slug
flow, intermittent mass distribution can lead to oscillatory motions in the suspended ris-
ers, thereby affecting the VIV response. Zhu et al. [91] investigated the VIV of a flexible
LWR filled with various fluid media, including water and helium as typical examples
of liquid and light gas, respectively. Similarly to [38], the VIV tests were conducted in
the depth-averaged reduced velocity (Ur) range of 9.32–23.19 using non-intrusive optical
measurement techniques with several high-speed cameras. The results indicated that
when the internal fluid changed, both the excitation patterns and response amplitudes
of the in-plane response were significantly adjusted, while the excitation patterns of the
out-of-plane response showed no notable changes.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 17 of 28 
 

 

2
80 80 800

1 T
LP c y dtdx
T

=     (31)

The reconstructed displacements y30 and y80, and the damping c30 and c80 represent 
the corresponding values at fundamental excitation frequencies associated with 30 mm 
and 80 mm pipe diameters, respectively. 

The forces induced on the risers by slug flows are intermittent, thus inducing excita-
tions that may cause large oscillations on the suspended risers [89]. This internal flow-
induced vibration can affect the VIV, and the two will interact, potentially causing reso-
nance [90]. Bordalo and Morooka [89] established subroutines for internal flow forces to 
maintain a constant two-way dialog with the dynamic integrator of the pipeline move-
ment simulator for solving the equations of motion for the riser (Figure 13). The research 
found that due to the influence of slug mass on the system’s weight and inertia, the LWR 
oscillations induced by the VIV were altered in the presence of slugs. In the case of slug 
flow, intermittent mass distribution can lead to oscillatory motions in the suspended ris-
ers, thereby affecting the VIV response. Zhu et al. [91] investigated the VIV of a flexible 
LWR filled with various fluid media, including water and helium as typical examples of 
liquid and light gas, respectively. Similarly to [38], the VIV tests were conducted in the 
depth-averaged reduced velocity (Ur) range of 9.32–23.19 using non-intrusive optical 
measurement techniques with several high-speed cameras. The results indicated that 
when the internal fluid changed, both the excitation patterns and response amplitudes of 
the in-plane response were significantly adjusted, while the excitation patterns of the out-
of-plane response showed no notable changes. 

 
Figure 13. Interaction flowchart between pipeline simulator and internal flow subroutines [89]. 

3.3. Experiment 
Due to the numerous assumptions commonly employed in numerical calculations, 

the results may be unreliable. To obtain accurate model results, the offshore engineering 
community tends to employ model tests to carry out research [92]. However, the limita-
tions of existing laboratory facilities (such as water depth and flow velocity) make it im-
practical to perform full-scale LWR model testing at reasonable scales. Due to the large 
spatial dimensions of the offshore platform and its riser system, the model obtained by 
using the conventional scale ratio (1/50–1/100) still exceeds the scale range of the current 
testing facilities. At present, both physical model tests and numerical simulation have their 
own advantages and disadvantages, and the hybrid model test method which combines 
the advantages of both is the most widely applied and recognized solution for deepwater 
platform model testing. One of the key considerations in implementing hybrid model test-
ing is to design an equivalent truncated system that matches the characteristics of the full-
scale system, allowing it to serve as a substitute for the full-scale system in existing size 
models [93]. Currently, there are many studies on the global response tests of the SCRs 
[94], but there is little experimental research on the global response of the LWRs. Since 

Figure 13. Interaction flowchart between pipeline simulator and internal flow subroutines [89].

3.3. Experiment

Due to the numerous assumptions commonly employed in numerical calculations,
the results may be unreliable. To obtain accurate model results, the offshore engineering
community tends to employ model tests to carry out research [92]. However, the limitations
of existing laboratory facilities (such as water depth and flow velocity) make it impractical
to perform full-scale LWR model testing at reasonable scales. Due to the large spatial
dimensions of the offshore platform and its riser system, the model obtained by using the
conventional scale ratio (1/50–1/100) still exceeds the scale range of the current testing
facilities. At present, both physical model tests and numerical simulation have their own
advantages and disadvantages, and the hybrid model test method which combines the
advantages of both is the most widely applied and recognized solution for deepwater
platform model testing. One of the key considerations in implementing hybrid model
testing is to design an equivalent truncated system that matches the characteristics of the
full-scale system, allowing it to serve as a substitute for the full-scale system in existing size
models [93]. Currently, there are many studies on the global response tests of the SCRs [94],
but there is little experimental research on the global response of the LWRs. Since fatigue
damage estimations for risers within the industry tend to be conservative, the STREAM
Joint Industry Project (JIP) was the first in the industry to compile and analyze full-scale
field data from five risers (4 SCRs and 1 SLWR) to provide measurement data for modeling
risers and advance fatigue damage research [95].

Research on the global response of LWRs has primarily focused on VIV experi-
mental studies, such as the VIV response under different staggered buoyancy config-
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urations [6,37,87,96]. In 2011, Shell Oil Company ran advanced experiments to investigate
the effects of buoyancy block spacing on the VIV response at the Marintek Ocean Labora-
tory in Norway. The riser VIV model adopted a 38 m long riser (made of glass fiber) with
an outer diameter of 0.03 m and a wall thickness of 1.5 mm, where the buoyancy block is
0.41 m in length and 0.08 m in diameter (Table 1) [6]. In this experiment, the ratio of the
buoyancy diameter to the riser diameter was set as 2.67. This non-integer ratio was set to
prevent the vortex shedding frequency of the bare riser from being a multiple of that of the
buoyancy blocks, which is very critical in the LWR design. If the higher harmonics of the
buoyancy block vortex shedding frequency are equal to the shedding frequency of the bare
riser, this enhances the global VIV response of the LWR.

Table 1. The dimensions of the LWRs.

Organization Outer
Diameter Wall Thickness Buoyancy

Block’s Length
Buoyancy Block’s

Diameter

Shell Oil
Company’s

model
0.03 m 0.0015 m 0.41 m 0.08 m

NDP’s model 0.03 m 0.0015 m 0.15 m 0.15 m

Subsequently, to achieve an optimal design and arrangement of staggered buoyancy
blocks that minimizes the VIV response, the Norwegian Deepwater Program (NDP) per-
formed hydrodynamic testing on SLWR models subjected the VIV in the MARINTEK
offshore basin [96]. The same type of fiberglass riser employed in Shell’s VIV model experi-
ments for the bare riser was selected in this program. A key difference from Shell’s VIV
model experiments was that the buoyancy block diameter was significantly larger than
that of the bare riser. The buoyancy blocks were measured 0.15 m in length and 0.15 m in
diameter in this program (Table 1).

The model was tested by towing the riser with different speeds to simulate uniform
flow (Figure 14). Unlike the use of fins to suppress VIV in previous studies [34], strakes were
utilized in this experiment to mitigate vortex shedding, thereby reducing vortex-induced
vibrations. This program found that a large diameter ratio between the buoyancy blocks
and bare riser may result in a substantially lower shedding frequency for the buoyancy
blocks, potentially exciting much lower structural modes.
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More and more new technologies have been applied in VIV experiments. Based on
experimental models, Zhu et al. [91] conducted a study to investigate the VIV response of
flexible LWRs filled with different fluid media. The experiment employed non-intrusive
optical measurement techniques using a pair of high-speed cameras to simultaneously
capture the IF and CF displacements with a sampling frequency of 100 Hz (Figure 15).
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3.4. Abandonment and Recovery

In actual engineering projects, multiple offshore risers are typically installed on a
floating platform. To improve construction progress and installation efficiency, a pre-lay
approach is commonly adopted for the offshore laying and installation of marine risers. If
the installation of the LWR is completed before the platform arrives, the LWR needs to be
abandoned on the seabed and later recovered and reinstalled when the platform becomes
available [97]. The LWR abandonment and recovery can be realized by controlling the
tension and length of the A&R (Abandonment and Recovery) cable, as well as the position
of the installation vessel. Many researchers have extensively studied the installation process
of the SCRs [98–100], but there are fewer analyses on the installation process for LWRs,
indicating a need for more comprehensive and in-depth research. There are numerous
challenges that must be overcome during the abandonment, recovery, and tow transfer
processes of LWR systems [101], which include determining the abandonment path for
buoyancy blocks, applying tension to balance curve stability, ensuring the stability of the
seabed’s stagnation wave “hump”, and applying stress at flexible joints, etc. Additionally,
the recovery and transfer operations also face challenges related to gap monitoring between
mooring lines and already installed risers.

According to the nonlinear large deformation beam theory, Wang et al. [102] divided
the LWR transfer process into three stages (lowering stage, tension transfer stage, and
recovery stage) to perform numerical analysis of the transfer process during the LWR
installation. It was observed that the changes in the global riser configuration were very
small compared to the local configurations near the pull-head and the TDP. In the same
year, Wang et al. [97] pointed out that the LWR abandonment and recovery operations
experienced a process with moving boundary conditions, making it difficult to determine
the length of the riser suspended segment. Then, three different abandonment methods
are employed for LWR installation operations: (1) maintain a constant top angle at the pull
head during abandonment; (2) maintain a constant top tension at the pull head during
abandonment; (3) maintain a constant configuration of the arch-shaped cross-section after
the upper catenary portion of the SLWR contacts the seabed.

Given that hydrodynamic loads lead to continuous interaction between the riser and
the seabed, the TDZ of the LWR is one of the fatigue hotspots [33]. Based on this, Wang
et al. [50] developed an analytical model for the transfer process of the SLWR from the
installation vessel to the production platform on an elastic seabed. This model facilitates the
identification of an optimal installation path, ensuring the safety of the SLWR during the
transfer process. Based on simulation-based design process, Jaewon et al. [23] utilized multi-
body dynamics simulations to select effective parameters that influence the response and
they leveraged open-source PIDO (Process Integration and Design Optimization) software
to develop a dynamic simulation model to identify the optimal shape of an SLWR during
installation. As depicted in Figure 16, Gu et al. [103] proposed an efficient computational
program based on the principle of minimum potential energy, which was successfully
applied to investigate the static tension effects during the installation process of the SLWR.
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By considering various vessel movement speeds and cable recovery rates to execute the
recovery methods, the recovery operations for an SLWR were assessed.
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4. Fatigue Damage of LWRs

The fatigue life of offshore risers is a critical aspect in the riser design process. Yang
et al. [7] employed the finite element approach to carry out a dynamic stress analysis of the
SLWR in the time domain, and systematically investigated the influence of hydrodynamic
coefficients, structural damping, seabed stiffness, and floating structure motions on the
fatigue damage of deepwater SLWR based on the S-N curve and Miner’s linear cumulative
damage rule. It was found that the motion characteristics of a floating structure have
a significant impact on the fatigue damage of the SLWR. The research also indicated
that increasing seabed stiffness by 15% reduces the minimum fatigue life in the TDZ
from 158 years to 110 years from the base case. Based on Monte Carlo simulation with
importance sampling (MCSIS), da Silva et al. [104] quantified the occurrence probability
of failure modes and proposed a structural reliability fatigue solution to investigate the
possibility of buoyancy length reduction in the LWR under fatigue failure modes (Figure 17).
MCSIS is a numerical technique with variance reduction capability, and it is a method
used to evaluate the probability of failure, requiring a relatively small number of samples
(structural analyses) to obtain stable probability of failure (PF) results. This technique can
be summarized by the following formula:

p f =
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I[G(xj) ≤ 0]

fX(xj)

hX(xj)

}
(32)

where G(X) represents the failure function; fX(x) represents the joint probability density
function of all random variables X; hX(x) denotes the so-called sampling distribution. Based
on the Palmgren–Miner’s summation rule for fatigue damage associated with S–N curves,
the fatigue design criterion can be expressed as follows:
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where KD and m are the design S–N curve parameters; Si denotes the stress cycles ranges
identified in a reference period; ∆ represents the allowable limit of accumulated fatigue
damage; SF is a safety factor. In addition, the mean stress effect can be considered by means
of the Gerber approach [105]. More detailed symbol explanations can be seen in [104].
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Hejazi et al. [106] employed extensive measured and hindcast metocean datasets in the
fatigue design process of offshore risers. This research introduced a novel framework that
leverages an “ANN-based technique” combined with the concept of a “representative (P50)
year”, which can make the direct application of large meteorological and oceanographic
datasets estimate the riser fatigue life. Furthermore, the study proposed an innovative
framework based on Monte Carlo methods to achieve more efficient long-term fatigue
assessments of offshore risers. A fatigue monitoring approach for the SLWR based on a
digital twin model was put forward by Lee et al. [107] to estimate the fatigue life of SLWRs
in real-time. In this research, a machine learning algorithm was employed to estimate the
3D current distribution along the water column, which will be adopted as an additional
load to refine the digital twin model. Based on a dual algorithm (DA), Chung et al. [108]
put forward a novel structural health monitoring methodology for risers to accurately
reproduce the movements and stresses along the whole lengths of the SCR and SLWR, with
an error margin of approximately 5%, regardless of the riser’s shape and material. This
method not only can monitor the riser’s condition, but also can assess the riser accumulated
fatigue damage in real-time.

The buoyancy force provided by the buoyancy blocks makes the riser bulge and
then produce a wave shape, which can effectively reduce the top tension of the riser and
alleviate the coupling effect of the floating structure movement on the riser’s TDZ, thus
increasing the fatigue life of the area. In order to investigate the effect of buoyancy section
number on the fatigue performance in the TDZ of the LWR, Ruan et al. [10] proposed a
new concept of “multiple LWR”, namely, LWR configuration based on multiple waveform
serial arrangement (Figure 18).

Based on the improved slender rod theory, three riser configurations (catenary riser,
LWR, multiple LWR) with different platform heave excitations and ocean currents were
structured, and the corresponding dynamic response characteristics, excitation motion
transfer paths, and fatigue damage hotspots were well compared. By constructing the
lazy wave configuration, deepwater LWRs can attenuate the kinematic coupled response
between the platform movement and riser’s dynamic response in the TDZ, so as to op-
timize its anti-fatigue performance; compared to the LWR, multiple LWRs have some
competitiveness in the anti-fatigue performance in the TDZ. Later, Ruan et al. [21] develop
a systematic solution for the dynamic stress evaluation of flexible LWRs suffering from
random wave and vessel motions, which can provide a good basis for fatigue analysis and
damage assessment of LWRs.
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5. Structural Optimization of LWRs

The introduction of buoyancy blocks will increase the number of design parameters
for the LWRs, making the optimization a pressing challenge. The unique structural form
of LWRs also contributes to the configurational complexity, with different configurations
varying significantly in terms of structural strength, mechanical performance, fatigue
life, and economics. This brings significant uncertainty into the optimization design of
LWRs. Given the numerous and interdependent design parameters, an increasing number
of optimization algorithms have been applied in this field, achieving remarkable success.
Based on genetic algorithm (GA), Tanaka et al. [30] took material and installation costs as the
optimization goal to obtain an optimal LWR static configuration. Based on the given inner
diameters and materials of the riser and buoyancy block, the optimizer was allowed to freely
vary the number of riser segments, as well as the thickness, length, and buoyancy block
diameter of each segment within user-defined ranges. Nevertheless, genetic algorithms
have their limitations in this context. When dynamic and fatigue analyses are included,
each evaluation of the objective function and constraints will take a longer time, potentially
affecting the overall optimization efficiency. Furthermore, the optimized solution may be
overly sensitive to small parameter changes, resulting in unrealistic configurations that
become unfeasible due to manufacturing and installation tolerances and uncertainties.

De Pina et al. [31] employed a particle swarm optimization (PSO) algorithm to optimize
the design of LWRs with the goal of minimizing cost, while considering requirements such
as maximum equivalent stress, maximum total hanging angle, maximum tension, and
minimum tension. This optimization process involved adjusting the length of each riser
segment and the size of buoyancy materials. For specific optimization problems, the
internal parameters in the PSO algorithm can significantly influence the optimization
outcome. Aiming to identify the most cost-effective sizes, quantities, and positions of
buoyancy blocks for lazy wave umbilical cables in installations, Yang et al. [109] proposed
a multi-objective optimization method based on an approximation model for the dynamic
installation of umbilical cables. The research took full account of the dynamic effects of
environmental loads, resulting in safer and more accurate optimized results.

The optimization objective for LWRs is typically to achieve a cost-effective config-
uration while still being able to withstand extreme and fatigue loads, which leads to a
balancing act between cost targets and multi-constraint engineering design problems. How-
ever, quantifying costs can be challenging due to factors such as material, installation,
maintenance, and operation. Therefore, it is more appropriate to take objective functions
based on structural criteria (e.g., strength, buckling, fatigue, and interference) during the de-
sign process. Ai et al. [17] achieved stress-based and fatigue-based objective optimizations
in the distribution design of buoyancy blocks for the LWRs using genetic algorithm. It was
noted that the definition of the objective function is not unique for critical design aspects.
The distribution of buoyancy blocks is optimized to achieve an optimal configuration while
minimizing stress, referred to as the stress objective. Therefore, the optimization problem
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can be defined as finding the solution vector x that minimizes the objective function f(x)
within the given variable limits and constraints:

minimize Damage(x) or Stress(x) x ∈ Rn

xl
i ≤ xi ≤ xu

i , i = 1, . . . , 4
limit α, ZmaxandZmin

(34)

where xi
l and xi

u represent the lower and upper limits of the ith design variable.
Based on index optimization techniques, Ogbeifun et al. [110] came up with a 2D

tabular optimization method for LWRs. This method can simplify the multi-dimensional
problem into a 2D format, which can significantly reduce the computational resources re-
quired. In this approach, design variables are assembled in pairs, and indexes are assigned
to the resulting design points for each combination, finally the optimal design points are
tracked through index matching by data sorting and intersection operation techniques. This
technology is utilized to optimize the LWR hanging length and hang-off tension, buoyancy
section length, buoyancy module thickness, etc. Most studies employ standard GA or
PSO to address problems with continuous design variables. However, discrete variables
are involved in the design process for LWRs, such as the number of buoyancy blocks,
which standard algorithms are not sufficient to handle. Therefore, improved algorithms
are required to effectively deal with both continuous and discrete variables. Yu et al. [111]
setup a self-developed program to calculate steel double LWR dynamics in a fully cou-
pled platform/mooring/riser system, taking each segment length and buoyancy block
parameter as design variables, and adopting the maximum static stress, horizontal motion
range, and maximum dynamic stress standard deviation as optimization objectives. An
improved PSO was proposed to handle both continuous and discrete design variables to
automatically seek out the optimal solution. Furthermore, Feedforward Neural Networks
(FNNs) were embedded into the optimization algorithm to replace time-consuming numer-
ical calculations. The results showed that the FNNs provide high accuracy with an error of
no more than 6.34%, and all determination coefficients are about 0.95.

6. Conclusions

In this paper, the research on LWRs over the past two decades is reviewed, outlining
the unique structure of LWRs, hydrodynamic loads, global responses, fatigue damage, and
the current state of research and achievements in the structural configuration optimization.
In terms of global responses, the global static/dynamic response, vortex-induced vibration,
installation, transfer, repair and other technical means, and research results are introduced
from three aspects: numerical simulation, theoretical method, and model experiment.

The research status and advantages/disadvantages of the 2D mechanical model and
3D mechanical model for the LWRs are systematically summarized and compared. When
conditions permit, 3D modeling should be the goal, and nonlinear large deformation
theory should be employed. When computational resources are sufficient, fully coupled
solutions should be adopted, avoiding uncoupled solutions as they can lead to low accuracy,
especially in deep water scenarios. In model experiments, due to the inability to support
full-scale models, it is essential to ensure that boundary conditions are satisfied when
conducting truncated experiments to improve the accuracy of the results.

In addressing fatigue damage and the structural optimization of the LWRs, it is crucial
to keep up with advancements and effectively utilize various advanced algorithms for
analysis, ultimately achieving complementary advantages. The optimization of LWR
configurations should incorporate target functions based on structural standards (such
as strength, buckling, fatigue, and interference) during the design process. There are few
studies on the LWR global response model test and the hydrodynamic test of the buoyancy
section, so more numerous and deeper studies should be carried out to support the accurate
calculation of the hydrodynamic loads in the buoyancy section of the LWR.
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