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Abstract: Underwater natural gas pipelines constitute critical infrastructure for energy transportation.
Any damage or leakage in these pipelines poses serious security risks, directly threatening marine
and lake ecosystems, and potentially causing operational issues and economic losses in the energy
supply chain. However, current methods for detecting deterioration and regularly inspecting these
submerged pipelines remain limited, as they rely heavily on divers, which is both costly and inefficient.
Due to these challenges, the use of unmanned underwater vehicles (UUVs) becomes crucial in this
field, offering a more effective and reliable solution for pipeline monitoring and maintenance. In
this study, we conducted an underwater pipeline tracking and damage detection experiment using a
remote-controlled unmanned underwater vehicle (UUV) with autonomous features. The primary
objective of this research is to demonstrate that UUV systems provide a more cost-effective, efficient,
and practical alternative to traditional, more expensive methods for inspecting submerged natural
gas pipelines. The experimental method included vehicle (UUV) setup, pre-test calibration, pipeline
tracking mechanism, 3D navigation control, damage detection, data processing, and analysis. During
the tracking of the underwater pipeline, damages were identified, and their locations were determined.
The navigation information of the underwater vehicle, including orientation in the x, y, and z axes (roll,
pitch, yaw) from a gyroscope integrated with a magnetic compass, speed and position information in
three axes from an accelerometer, and the distance to the water surface from a pressure sensor, was
integrated into the vehicle. Pre-tests determined the necessary pulse width modulation values for
the vehicle’s thrusters, enabling autonomous operation by providing these values as input to the
thruster motors. In this study, 3D movement was achieved by activating the vehicle’s vertical thruster
to maintain a specific depth and applying equal force to the right and left thrusters for forward
movement, while differential force was used to induce deviation angles. In pool experiments, the
unmanned underwater vehicle autonomously tracked the pipeline as intended, identifying damages
on the pipeline using images captured by the vehicle’s camera. The images for damage assessment
were processed using a convolutional neural network (CNN) algorithm, a deep learning method.
The position of the damage relative to the vehicle was estimated from the pixel dimensions of the
identified damage. The location of the damage relative to its starting point was obtained by combining
these two positional pieces of information from the vehicle’s navigation system. The damages in the
underwater pipeline were successfully detected using the CNN algorithm. The training accuracy and
validation accuracy of the CNN algorithm in detecting underwater pipeline damages were 94.4% and
92.87%, respectively. The autonomous underwater vehicle also followed the designated underwater
pipeline route with high precision. The experiments showed that the underwater vehicle followed the
pipeline path with an error of 0.072 m on the x-axis and 0.037 m on the y-axis. Object recognition and
the automation of the unmanned underwater vehicle were implemented in the Python environment.

Keywords: unmanned underwater vehicle; convolution neural network; underwater pipe line
tracking; underwater pipe damage detection; navigation of unmanned underwater vehicle
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1. Introduction
1.1. Motivation

Unmanned underwater observation vehicles are critically important for various mili-
tary and civilian applications. These unmanned vehicles are used in civilian fields such as
underwater mapping, port security, geological geophysics, and fisheries, and in military
areas for mine detection, enemy ship detection, ship safety, coastal security, and human
detection, as well as in underwater cable and pipeline laying operations [1–3]. The highly
variable nature of the underwater environment makes these operations challenging. Using
unmanned underwater vehicles instead of human divers in long-term operations in dark
and deep waters is both safer and more cost-effective due to the potential risks to human
life [4,5]. Divers can only remain submerged for a limited time during any underwater
operation due to the risk of hypothermia from prolonged exposure. For this reason, the
duration of underwater operations tends to be extended. To eliminate the negative aspects
arising in similar underwater operations, unmanned underwater vehicles have started to
be preferred for underwater tasks.

Underwater natural gas pipelines form a critical infrastructure for energy transporta-
tion. Any damage or leakage occurring in these pipelines can create serious security risks.
Proper monitoring and damage detection facilitate the early identification and prevention
of potential hazards. Additionally, underwater natural gas pipelines can pose a direct
threat to marine and lake ecosystems. Any leakage or damage can lead to environmental
pollution and harm aquatic life. Timely damage detection can help minimize environmen-
tal impacts. Damages to underwater natural gas pipelines can also cause interruptions
in the transmission of natural gas, leading to serious operational problems in the energy
supply chain. Continuous monitoring and damage detection are crucial for maintaining
operational continuity. Furthermore, damages, repairs, and interruptions in the pipeline
can lead to significant economic losses for energy companies. Timely damage detection can
reduce costly emergency interventions and increase operational efficiency. There are legal
and regulatory requirements for underwater natural gas pipelines in many systems. These
requirements mandate regular monitoring of the pipelines and the performance of damage
detection.

In this study, damages on an underwater pipeline were detected using an unmanned
underwater vehicle. As important as detecting damages on the pipeline is knowing the
locations of these damages. If the location of the damage is unknown after it has been
detected, finding the locations of the damages would require additional time due to the
extensive length of the pipelines. In this study, autonomous features were added to the
unmanned underwater vehicle, enabling autonomous tracking of the damaged pipeline
underwater, and while tracking the pipeline, the damages were diagnosed using artificial
learning and their locations were determined. This study involves the autonomous tracking
of an underwater pipeline of a certain length by an unmanned underwater vehicle (UUV),
focusing on detecting and localizing damages on the pipeline during this tracking. The key
focus areas and objectives of the study are as follows:

• Autonomous Pipeline Tracking: The remote-controlled UUV autonomously follows
the underwater pipeline using its navigation system.

• Damage Detection: Damages on the pipeline are identified using images captured
by the UUV’s camera, processed through a Convolutional Neural Network (CNN)
algorithm.

• Damage Localization: The location of the detected damage is determined by corre-
lating it with the vehicle’s INS (Inertial Navigastion System) based navigation data,
providing an accurate position.

• Real-World Application: The system is tested and validated for the usability of under-
water pipeline maintenance and monitoring in real-world environments.
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1.2. Related Works

For successful execution of unmanned underwater operations, both a well-defined
underwater environment and accurate knowledge of the underwater vehicle’s position are
necessary [6–8]. Therefore, recognizing underwater objects and navigation of underwater
vehicles are important. Various types of identification algorithms are available to identify
an object. In this study, the convolutional neural network (CNN) training algorithm, a deep
learning method, was used. CNNs are used in various fields including image classification,
object tracking, object recognition, exposure estimation, text detection and recognition,
visual projection detection, action recognition, scene labeling, speech processing, and
natural language processing [9]. Other training models require a large amount of prior
knowledge at the end of training to achieve high accuracy in object recognition. However, in
the CNN model, input data is provided to the model without the need for feature extraction
or creation processes. Since the CNN model trains by altering the depth and width of the
input image, it determines the features of the image and makes accurate assumptions [9,10].
CNN training requires significant computational resources, but several methods have been
developed to address this issue [11–27]. The most important of these developments is the
development of a CNN model trained using the ImageNet dataset in 2012. This model
produced more accurate image classifications than previous methods [9]. He and Zhang
in 2018 suggested predicting movements from an image with CNN [28]. Pertusa and
Gallego in 2018 used CNN for common object identification on smartphones [29]. In 2015,
Li and Shang used the fast region-based CNN (R-CNN) algorithm for underwater fish
detection [30]. In 2017, Gomez Chavez and Mueller predicted body posture using the Long
Short-Term Memory Recurrent Neural Network (LSTM-RNN) method [31]. The CNN
algorithm continues to be used in classification studies today [32–34]. Another current
machine learning algorithm is the Support Vector Machine (SVM). The SVM algorithm
emerged in 1995 [35]. It is a high-performance algorithm frequently chosen for regression
and prediction problems [36]. To date, SVM has been used in various contexts including
battery life prediction, housing price forecasting, and predicting potential inflation [37–42].
Although SVM is more commonly chosen for classification problems, Smola and others
have shown it can also be used for regression problems [43]. The algorithm used for
regression problems is named Support Vector Regression (SVR). SVR has been applied in
various regression problems such as motion prediction [44], electric load forecasting [45],
and enhancing the performance of filters [46–48] . In this study, CNN and SVM were used
in a hybrid manner. CNN served as a feature extractor and SVM as a classifier to identify
the target object.

Various methods are employed in the literature for detecting damage to underwater
pipelines. While image processing and deep learning algorithms (CNN) can detect damages
on pipelines with high accuracy, methods such as sonar and acoustic imaging offer the
advantage of scanning larger areas. Techniques like magnetic flux leakage (MFL) and
ultrasonic testing (UT) detect corrosion and cracks within the internal structure of the pipes,
while fiber optic sensors and vibration-based monitoring methods provide continuous
monitoring and early detection capabilities. However, each method has its advantages
and limitations depending on environmental conditions, pipeline material, and the size
of the damage. While modern image processing techniques such as CNN analyze visual
data, acoustic and magnetic methods like sonar and MFL can scan broader areas regardless
of environmental conditions. The choice of method depends on the characteristics of the
pipeline and environmental factors. Unmanned underwater vehicles (UUVs) are effective
tools for detecting underwater pipeline damage when integrated with various detection
technologies. For visual-based detection, deep learning algorithms such as CNN can offer
higher accuracy compared to traditional methods like sonar and magnetic techniques. The
methods used for underwater pipeline detection and the advantages and limitations of these
methods are presented in the comparison table in Table 1. As seen from the comparison,
the use of both the unmanned underwater vehicle and the CNN algorithm in this study
has significantly enhanced performance. In addition, to facilitate fault detection in subsea
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pipelines, transient test-based techniques were used to generate safe and small overpressure
waves, allowing the detection of anomalies such as leaks and wall deterioration [39,40].

Table 1. Performance comparision of pipeline damage detection methods.

Method Key Strengths Key Limitations Paper
Citation

CNNs
(Optical Image)

High accuracy with image data
Automatic Feature xtraction
Handles compex surface defects
Adaptable and scalable with
large datasets

Require large training datasets
Computationally intensive [14–16]

Acoustic Imaging

Effective in deep or turbid water

Covers large areas

Lower resolution, noisy data
Difficult to detect small defects
like cracks or corrosion
Complex data interpretation
and prone to noise

[17]

Magnetic Flux
Leakage

Good for internal defects and
corrosion
Real time monitoring

Only works for metallic pipelines
Ability to detect external surface damage
like cracks or dents
Limited compared to CNN-based visual inspection

[18]

Ultrasonic Testing High precision for internal defect,
non-invasive

Requires physical contact or close proximity to
the pipeline surface,
which can be difficult in certain underwater conditions.
Doesn’t provide as detailed information on surface defects as
CNNs do with optical imagery

[19]

Fiber Optic Sensing Real-time, continuous monitoring,
detects strain and deformation

Installation is complex and expensive, as it requires
physically embedding
the sensors along the pipeline.
It doesn’t provide detailed visual feedback,
unlike CNN-based methods.

[20]

Vibration based
Monitoring

Sensitive to structural changes,
covers long distances

Influenced by external factors such as sea currents,
environmental noise, or nearby operations,
making data interpretation challenging.
Unlike CNNs, it doesn’t provide a direct visual
assessment of the damage.

[21]

Visual Inspection Using
Underwater Vehicle

Real-time inspection
High-resolution data
Can reach inaccessible areas
Lower cost
Continuous monitoring
Long-term stability

High cost
Limited battery life [22–26]

Another important factor for the successful execution of unmanned underwater oper-
ations, such as underwater pipeline tracking and underwater pipeline damage detection, is
the localization of the underwater vehicle [49]. Due to the attenuation/damping of elec-
tromagnetic waves underwater, high-accuracy global positioning systems cannot be used.
With inertial measurement systems, linear and angular position information is derived
from the measured acceleration and angular velocity of the underwater vehicle [50]. Some
studies use integrated navigation systems for high accuracy and continuous data trans-
mission. If an INS-GPS integration system is to be used, a surface platform synchronized
with the underwater vehicle is essential [51]. In this study, the navigation information of
the underwater vehicle was obtained from integrated gyroscopes, magnetic compasses,
accelerometers, and pressure sensors.

Despite extensive work on aerial and terrestrial object tracking, there is much less
research on underwater object tracking. This is due to the various challenges of working
underwater and the degradation of underwater visual data quality, which varies depending
on light refraction, water depth, color, and nature. In 2013, Min Li and colleagues presented
a method for underwater object identification and tracking based on multi-beam sonar
imaging [52]. In 2016, Filip Mandic and colleagues combined sonar and USBL (Ultra
Short Baseline) measurements to develop an autonomous surface vehicle and perform
underwater object tracking [53]. They developed a filter that combines USBL and sonar
image measurements to obtain reliable object tracking predictions even when sonar or USBL
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measurements are unavailable or erroneous. In addition to object tracking, they focused
on adapting only the desired region within the sonar image using the tracking filter’s
covariance transformation to improve object identification and filter out erroneous sonar
measurements. In 2016, Xianbo Xiang and colleagues proposed a method using magnetic
sensing to autonomously track underwater buried cables with a three degrees of freedom
(3-DOF) autonomous underwater vehicle [54]. They used feedback linearization technique
to design a simplified cable tracking controller based on the geometric relationship between
the vehicle and the cable by creating a specialized magnetic line of sight guide. In 2020,
Caterina Bigoni and Jan S. Hesthaven suggested a simulation-based decision strategy with
machine learning techniques for anomaly detection and damage localization [55]. In 2021,
Kakani Katija and colleagues proposed using an underwater vehicle for the visual tracking
of deep-sea animals controlled by machine learning [56]. In their study, they presented an
integrated tracking algorithm using machine learning that includes multi-class detectors
and 3D stereo imaging to track underwater animals over extended periods. There are
many studies like these focused on underwater object tracking, and the research continues.
Studies such as continuous autonomous tracking and imaging of great white sharks with an
autonomous underwater vehicle, and performance analysis of existing underwater object
tracking algorithms and dataset creation are available [57,58].

1.3. Contribution

In this study, an autonomous system was developed to monitor underwater pipelines
using an unmanned underwater vehicle (UUV). Damages to underwater pipelines were
detected with high accuracy through the CNN algorithm. The precise location of the
detected damage was determined using the UUV’s navigation data, ensuring precise
positioning. The system’s usability for the maintenance and monitoring of underwater
pipelines was tested and validated. There is no experimental study in the literature that
autonomously tracks underwater pipelines with a UUV while simultaneously detecting
pipeline damage using deep learning algorithms and pinpointing the damage’s location.
The research gap, contribution, and innovation of this study can be summarized in the
following key points:

• Underwater Damage Detection with Deep Learning: Autonomous systems for detect-
ing damages in underwater pipelines are limited in the literature, and the use of deep
learning algorithms such as CNN in this area is rare. This study aims to automatically
detect damages in underwater pipelines using deep learning algorithms, offering a
faster and more accurate approach compared to manual methods.

• Autonomous Damage Detection and Navigation Relationship: The ability to correlate
the damage location with the vehicle’s INS-based navigation data is an innovation in
terms of damage detection and accurate positioning of underwater vehicles. There is
no example in the literature where these two capabilities are combined in real-time
and autonomously.

• Experimental Application: Another strength of this study is the experimental applica-
tion of the CNN algorithm. Unlike simulation or theoretical studies, this experimental
part, which demonstrates real-world applicability, distinguishes this research from
others in the literature.

• Potential for Industrial Application: This technology could be used for the monitoring
and maintenance of underwater infrastructures, such as oil, gas, and other underwater
pipelines, with the potential to improve the management of these infrastructures.

In conclusion, this study aims to address the gap in the literature by offering an
innovative approach to real-time and reliable underwater pipeline damage detection using
autonomous underwater vehicles and deep learning algorithms.

1.4. Organization

The paper is organized as follows. The unmanned underwater vehicle used in our
underwater experiments is introduced in Section 2. The method used for the underwater
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pipe damage detection experiment, involving a convolution neural network, and the
experimental results of the damage diagnosis are explained in Section 3. The experiment
on underwater autonomous pipe tracking and damage location detection is detailed in
Section 4. In Section 4, the unmanned underwater vehicle navigation, autopilot, underwater
damage location detection, and experimental results are also presented sequentially. In
final, the paper is concluded in Section 5.

2. Unmanned Underwater Vehicle Used in Experiments

In this study, the remotely operated underwater vehicle (ROV) that will be endowed
with autonomous features consists of a user computer, an operator console, and cable
section. The unmanned underwater vehicle is equipped with two forward thrusters, one
on the left and one on the right, a vertical thruster, and a camera that can rotate 180 degrees.
The forward thrusters provide forward movement and yaw orientation, while the vertical
thruster provides diving movement. The operator console is used for controlling the vehicle
and transferring the data obtained from the vehicle to the computer. The cable ensures
data and power transmission between the underwater vehicle and the operator console.
In this study, the experimental equipment used in the pool experiment is presented in
Figure 1 [59].

The unmanned underwater vehicle used in this study measures 42 cm in length, 33 cm
in width, and 27 cm in height, with a total mass of 10 kg. The vehicle is designed to
operate at depths of up to 200 m. Its moments of inertia are 0.223 kg/m2 along the x-axis,
0.225 kg/m2 along the y-axis, and 0.06 kg/m2 along the z-axis. The maximum surge speed
of the vehicle is 1.5 m per second. The vehicle’s sensor suite includes an Inertial Navigation
System (INS) from the MPU-6000 series, featuring accelerometers, gyroscopes, and a depth
sensor (MS5837-30BA), as well as a camera.

Figure 1. Unmanned underwater vehicle used in the experiment.

The experimental data related to underwater object detection was obtained from a
camera integrated into the remotely operated underwater vehicle shown in Figure 1. The
camera, with vertical and horizontal fields of view of 128 and 96 degrees respectively and a
resolution of 700 TVL, is placed in a waterproof compartment at the front of the vehicle. This
vehicle can reach depths of 200 m to perform tasks such as underwater observation, real-
time high-resolution video and photo capture, data collection, and underwater mapping.



J. Mar. Sci. Eng. 2024, 12, 2002 7 of 23

3. Underwater Pipeline Damage Detection Using Convolutional Neural Networks

In this study, damage assessment on the pipeline was conducted using pool images
taken from a camera integrated into the unmanned underwater vehicle. The camera, placed
in a waterproof compartment at the front of the vehicle, has a vertical field of view of
128 degrees, a horizontal field of view of 96 degrees, and a resolution of 700 TVL [51]. The
damage assessment study was carried out in a pool environment based on experimental
data. The video footage from the vehicle’s camera was transmitted via fiber optic cable to
the operator console and then to a computer via Ethernet cable. To diagnose the damage, the
images were processed using a deep learning method, the Convolutional Neural Network
(CNN) algorithm. The all study was conducted in a Python environment. The pipes and
damages used for the pipeline damage assessment experiment are presented in Figure 2.

In our study, the type of pipe used is polyvinyl chloride pipes, which are commonly
used in water transportation systems. These pipes are frequently preferred due to their
strength and resistance to corrosion. In this study, polyvinyl chloride pipes were used
for testing purposes. In real-world aquatic environments, biofouling, mineral deposits,
wear, scratches, and UV light cause damage that manifests as color changes on the surface
of underwater pipes. In marine environments, the accumulation of algae, bacteria, shell-
fish, and certain minerals (especially iron) results in biofouling, creating reddish-brown
discolorations on the pipe surface. This buildup can damage the pipe’s outer surface
and negatively affect the functionality of the pipeline. Underwater PVC pipes may also
experience surface scratches and abrasions due to the friction of particles carried by the
water flow. These physical deformations lead to color changes and reduced performance.
Additionally, chemicals present in seawater or maintenance chemicals used around the
pipe can cause discoloration, impacting the material’s long-term durability [60]. In this
study, as seen in Figure 2, the damages identified are associated with these types of color
changes observed on pipe surfaces in real-world marine environments. Specifically, dam-
age types such as surface scratches, dents, abrasions and color changes were identified,
and a Convolutional Neural Network (CNN) algorithm was trained using this visual data.
The pipe deformations shown in Figures 2 and 3 focus on how our developed algorithm
detects these types of damages. The damage types addressed in our study include physical
deterioration that could have potential negative effects on the structural integrity and safety
of the pipes.

In this study, the Faster R-CNN Inception v.2 object detection algorithm, widely used
in various object detection tasks, was utilized as the object detection algorithm [61,62].
The hybrid use of the CNN model with SVM was addressed similarly to the technique
mentioned in the article "A hybrid CNN–SVM classifier for weed recognition in winter
rape field." In this study, the Inception v.2 part of the model was responsible for extracting
feature vectors from the images. These features were then used to train the SVM classifier,
yielding good results. The hardware specifications used for the training are: Windows 10
operating system, Nvidia GTX 1060 GPU, Core i5-7700 CPU, Python 3.6.5, and 16 GB RAM.
With these specifications, the training process took approximately 16 h.
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Figure 2. Damaged pipe used in the experiment (red-colored region is defined as “damage”).
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Figure 3. Damaged pipe used in the experiment (red-colored region is defined as “damage”).

3.1. Convolutional Neural Network
3.1.1. Input Layer

The size of the data provided to this layer is crucial for the success of the model. If the
amount of data is too large, the training can yield very successful results but will take a
long time. Conversely, if the amount of data is too small, the success rate of the training
will significantly decrease. While data size in the input layer plays an important role, it is
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not sufficient on its own for the overall performance of the model. The number of filters,
layer depth, activation functions, data variety, data preprocessing, and similar factors also
play significant roles in all layers of the model and affect the model’s overall performance.

3.1.2. Convolutional Layer

This layer is the first layer that extracts features from the input data. Different filters
are applied to the input data. The applied filters are passed over the entire image to produce
an output. The output after applying the filter is known as a feature map [63].

3.1.3. Rectified Linear Unit Layer

The Rectified Linear Unit (ReLU) is a commonly used activation function in CNN [64].
ReLU is defined as follows:

g(y) = max(0, y) (1)

Here, g(y) is a function corresponding to the input y. ReLU sets the negative values of
the data applied to its input to zero. This reduces the computational load and training time.

3.1.4. Pooling Layer

The pooling layer is used between successive convolutional layers. The primary
purpose of using this layer is to reduce the computational intensity in subsequent layers.
There are various pooling methods; one commonly used method is max pooling [65]. In
max pooling, the maximum values from the values corresponding to the filter are selected,
and the filter moves two steps after each application area. The method used in this study is
the max pooling method.

3.1.5. Fully Connected Layer

A fully connected layer connects to all nodes in all layers before and after it. The
fully connected layer adds weights to the data to enable accurate classification of the
data received from previous layers. After this process, the network provides predictions.
Predictions are obtained by calculating probabilities between feature classes detected in
previous layers. If the weighting is incorrect before producing a prediction, the predictions
are incorrect and a cost function is calculated. The cost function serves as a guide to
optimize our model. The cost function between the actual and predicted networks has
been minimized using the backpropagation algorithm [66]. Additionally, overfitting is an
undesirable condition in CNNs. The dropout method has been developed in this layer to
prevent overfitting [9].

3.1.6. DropOut Layer

In CNNs, excessive training can lead to overfitting—memorization, which reduces the
training error at each step during the training of the CNN model, but the test error may
not decrease in the same direction. The reliability of a training with overfitting is low, and
a training model that starts memorizing is formed. A training model that has overfitted
will perform poorly when presented with an image outside of the training dataset. Large
datasets like ImageNet have labeled data samples to prevent overfitting [9]. In this study,
since the dataset created is not as large as ImageNet, dropout has been used to prevent
overfitting.

3.1.7. Classifier Layer

The output value of the classification layer should be equal to the number of objects
to be classified. For instance, if five classifications are to be made, the output of the layer
should be five. Model predictions are assigned as values in the range of 0–1. A classification
can be added to the CNN architecture or created as a separate model. There are different
classifier models. In this study, CNN and SVM were used as a hybrid. CNN is a feature
extractor, and SVM has been used as a classifier to recognize the object being sought [11].



J. Mar. Sci. Eng. 2024, 12, 2002 11 of 23

SVMs choose from an infinite number of decision boundaries that minimize error with
the greatest distance between two classes [67]. SVM uses the output of CNN as input
and determines the classes by extracting features obtained by CNN. Thus, classification is
achieved.

3.2. Convolutional Neural Network Training

To train the CNN architecture, a dataset was created using deep learning and image
augmentation methods from photographs of damage taken on the pipeline. For the damage
diagnosis study, the dataset from damages on the underwater pipeline was created through
data augmentation without altering the characteristic features of the images. The data
augmentation methods used for this study include rotating the image horizontally and
vertically, rotating the image at specific angles, shifting the image horizontally and vertically,
zooming, darkening, lightening, and changing the color. In CNN, each photo collected with
the LabelImg program was individually labeled. The labeling process generated files with
a .xml extension. After completing the labeling process, the photos were divided into two
separate folders to run the training algorithm. These folders are the training and testing
folders. Eighty percent of the photos of the object to be detected were placed in the training
folder, and twenty percent were placed in the testing folder, and the training of the CNN
was initiated. A total of 2000 data were collected, with 1500 used for training and 500 for
testing purposes. Each image in the training set contains at least one damage label.

3.3. Underwater Damage Detection Performance of the CNN Algorithm

Using the CNN algorithm, damages on the underwater pipeline in a pool environment
were diagnosed online using an unmanned underwater vehicle. The damage diagnosis
results are presented in Figure 4. Although the damaged section on the underwater pipeline
is very small, it was successfully detected using the CNN algorithm. The accuracy of detec-
tion in the pool environment can vary depending on lighting conditions, light refraction,
reflections, and glare. In the pool, light usually comes from artificial sources and provides
more homogeneous illumination. The reflections created by artificial lights on the water
surface or direct entry of light into the water can cause glare or shadows in the image, mak-
ing it difficult for the CNN algorithm to accurately recognize objects. Due to light refraction,
objects may appear different from their actual form, further complicating the algorithm’s
ability to identify them correctly. As seen from in the Figure 4, the unmanned underwater
vehicle has been endowed with the ability to detect objects through the underwater damage
detection test.

Figure 4. Pipeline damage detection experiment results.
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In Figure 5, the accuracy and loss curves of the CNN training are visible. The ESA
training for damage diagnosis was carried out over 50 Epochs. An epoch means that the
model sees each data in the dataset once. As seen in Figure 5, both the training loss and the
validation/consistency loss have been observed to decrease, which is a desired outcome.

Figure 5. CNN training consistency and loss curves.

Light refraction in water, especially at different water depths, can cause image distor-
tion. This issue can be minimized by positioning the cameras on the vehicle at appropriate
angles and using multiple sensors. Additionally, adjusting the artificial light sources used
in the underwater environment to the correct spectrum can also improve image quality. As
depth increases, the amount of light decreases, making detection more difficult. Therefore,
in deep waters, especially in deep-sea environments, more sensitive camera systems and
lighting devices should be used. By using deep learning algorithms and image enhance-
ment techniques, the quality of images obtained in low-light conditions can be improved
through pre-processing. The depth and clarity of the water can cause changes in colors,
making it difficult to detect real damage or anomalies in the image. To mitigate this issue,
color balancing algorithms can be used. Furthermore, multi-spectral camera systems are
less affected by color changes underwater, and the use of such systems can improve image
quality. As in this study, deep learning-based image enhancement algorithms can make
distorted underwater images clearer.

4. Autonomous Pipeline Tracking and Damage Localization with an Unmanned
Underwater Vehicle

In this study, autonomous features were endowed to a remotely operated underwater
vehicle, which was then used for underwater pipeline tracking in a pool environment, and
damage detection on the pipe as well as the location of this damage were achieved. In the
experiment, a schematic representation of the scenario created for the underwater pipeline
and images from the pool experiment are given in Figures 6 and 7. As seen in Figure 6,
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during the experiment, an underwater pipeline was created inside the pool using one 3-m
and two 2-m pipes.

Figure 6. Pipeline tracking experiment scenario schematic representation.

Figure 7. Pipeline tracking pool experiment.

Preliminary tests were conducted in a pool environment to enable the unmanned
underwater vehicle to autonomously follow the desired pipeline. In these tests, the PWM
values that need to be applied to the vehicle’s thrusters were determined to enable the
vehicle to autonomously perform the following movements: moving forward 3 m, turning
right, moving 2 m, turning right, and then moving another 2 m in a linear and angular
motions.
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In these tests, the vehicle’s speed information corresponding to the PWM values of the
thruster motors was obtained by remotely controlling the vehicle to move along different
routes. The speed information corresponding to these PWM values and, consequently, the
distance information obtained were observed. The necessary PWM values for the vehicle to
follow a pipeline of known length, which will be used in the experiment, were determined
as a result of these tests and sent to the vehicle’s thruster motors as input information.
Consequently, an object tracking algorithm was developed using the data obtained from
these preliminary tests to enable the vehicle to autonomously follow the desired object.

During the vehicle’s tracking of the pipeline, the damages on the pipe were detected
using the CNN method detailed above. The damage location detection information has
been supported with the vehicle navigation and autopilot described in the next section.

4.1. Navigation of Unmanned Underwater Vehicle

The navigation information of unmanned underwater vehicle comes from IMU, depth
sensor. IMU with MPU-6000 series used in the experiment combines 3-axis gyroscopes
integrated with magnetic compass, 3-axis accelerometer. The depth sensor used in the
experiment is the measurement specialties MS5837-30BA, which can measure up to 30 bar
(300 m/1000 ft depth). In the pool experiments, the speed and orientation information
of the unmanned underwater vehicle was obtained from the Inertial Measurement Unit
(IMU) sensor integrated into the vehicle. The linear speed of the vehicle used in the pool
experiments was obtained by integrating the acceleration. Linear position information was
obtained by taking the double integral of the measurement from the accelerometer sensor.
The yaw angle (rotation around the z-axis) information was obtained by taking the integral
of the gyroscope measurement data once. The depth information of the vehicle from the
pool surface was obtained from the pressure sensor integrated into the vehicle [68]. The
equations for the vehicle’s linear motion along the x and y axes and angular motion around
the z-axis are given in (2)–(4) [69].

�
x = ur ∗ cosφ − vr ∗ sinφ +

�
x c (2)

�
y = ur ∗ sinφ + vr ∗ cosφ +

�
y c (3)

�
φ = r (4)

In this study, since the vehicle used only has forward speed, the relative velocity, vr
has been neglected, and external disturbances were disregarded in the pool experiments.
Thus, the relationship between the vehicle speed and the absolute speed is reduced as in (5)
and (6) [69].

�
x = ur ∗ cosφ (5)

�
y = ur ∗ sinφ (6)

4.2. Autopilot of Unmanned Underwater Vehicle

In this study, the Pixhawk control board was used for the autopilot of the unmanned
underwater vehicle as seen Figure 8. Pixhawk is frequently used as a control board for
unmanned aerial vehicles, surface, and underwater vehicles due to its low cost and high-
performance advantages. In this study, communication between the user computer and
the unmanned underwater vehicle, as well as sending inputs to the vehicle via Python
software, (3.9.4 version) were carried out using the MAVLink protocol. The pymavlink
library was used to establish the connection between the vehicle and Python.
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Figure 8. Vehicle’s pixhawk and thrusters used in the experiment.

In the experiment, to automate the pipeline tracking, a series of preliminary pool
tests were initially conducted to observe the vehicle’s responses to PWM (pulse-width
modulation) signals sent to the motors by the Pixhawk. Subsequently, the necessary input
value of each thrusters’ values to be sent to the motors for the created pipeline tracking
scenarios were determined. Before the experiment for the established pipeline scenario,
the Speed-PWM and Depth-PWM relationships were observed, and the necessary PWM
information to enable the vehicle to follow the pipeline was sent to the vehicle.

The vehicle has successfully followed the designated route. The reference and mea-
sured forward speed information, yaw angle, and depth information while the vehicle was
following the designated pipeline route are shown sequentially in Figures 9–11.

Figure 9 shows the necessary reference forward speed information for following the
specified pipeline, along with the forward speed information obtained from the accelerome-
ter during the pipeline tracking. Figure 10 presents the necessary yaw angle for the vehicle
to follow the specified pipeline in the experiment, along with the yaw angle measured from
the gyroscope during the experiment.

It can be seen from Figures 9–11 that the vehicle successfully followed the necessary ref-
erence forward speed, reference depth, and reference yaw angle required for autonomously
tracking the specified pipeline.
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Figure 9. Reference surge speed (blue line) and measured (red line) surge speed.

Figure 10. Reference yaw angle (blue line) and measured yaw angle (red line).
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Figure 11. Reference depth value (blue line) and measured depth value (red line).

4.3. Damage Localization Using Navigation Data and Image Processing

In the pool experiment, while the unmanned underwater vehicle autonomously fol-
lowed the pipeline as desired, damages on the pipeline were diagnosed using images
obtained from the vehicle’s camera. The position of the diagnosed damage relative to the
vehicle was identified using pixel data obtained from images captured by the underwater
vehicle’s camera, and the real-world position was estimated based on the pixel dimensions.
A dataset was created by calculating pixel values from images of damages taken from
different distances. With this dataset, a support vector machine (SVM) was trained to
estimate the distance corresponding to the pixel sizes, and consequently, a model was
developed to predict the position of the damage. Additionally, the vehicle’s position at
the moment the damage was diagnosed was determined by taking the double integral of
the accelerometer data, and the yaw angle was known from gyroscope measurements. By
combining these two pieces of location information, the position of the damage relative to
the starting point was determined.

The underwater vehicle is equipped with a specialized cable that provides both power
and data transmission. This cable allows the collected data to be transmitted to a computer.
The image data received by the computer is processed in the Python environment and
passed through a pre-trained deep learning model. Since the pipeline tracking experiment
was conducted in a pool environment, which is smaller compared to real-world scenarios,
data transmission delays were neglected.

EXPERIMENT RESULTS
For this experiment, one 3-m and two 2-m pipes were placed in the pool at 45-degree

angles to each other. Prior to the experiment, three separate points on the pipeline po-
sitioned in the pool were damaged. These damage images were provided in Section 1,
Figure 2. The results of the damage diagnosis with CNN for the pool experiment and the
location of this damage are given in Figures 12–14.
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Figure 12. Location 1 of pipe line damage detection.

Figure 13. Location 2 of pipe line damage detection.

Figure 14. Location 3 of pipe line damage detection.
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In Figure 15, the 3D movement of the unmanned underwater vehicle during the
autonomous underwater pipeline tracking experiment are presented, respectively. The
pipeline that was intended to be followed is shown as a blue line as the reference path (the
known pipeline length is the actual data), and the path the vehicle followed during the
experiment is shown as a red line (measured comes from navigation of the vehicle). As can
be seen from Figure 15, the vehicle successfully followed the pipeline placed in the pool
with high performance.

Figure 15. Reference path (blue line) and followed path (red line).

Figure 11 presents the depth information of the vehicle. In this experiment, the pipeline
was placed at a depth of 1.8 m in the pool. To follow the pipeline from above at this depth,
the unmanned underwater vehicle was submerged to a depth of 60 cm in the pool. Figure 10
presents the changes in the yaw angle made by the vehicle while following the pipeline.
Initially, the vehicle followed the 3-m section of the pipeline at a 90-degree deviation angle
in about 22 s (including 6 s of submersion time), the 2-m section at a 45-degree angle in
10 s, and the final 2-m section again at a 90-degree angle in 10 s.

Table 2 presents the root mean square error (RMSE) values for the study of underwater
pipeline tracking with an autonomous unmanned underwater observation vehicle. It is
the difference between the reference position value and the tracked position value. These
RMSE values are known to the user as the path where the pipeline was placed, and were
obtained from the path information recorded by the vehicle after completing the pipeline
tracking.

Table 2. RMSE values between reference and tracked position value.

Position RMSE

x 0.072 m

y 0.037 m

z 0.161 m

yaw 1.9 deg
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5. Conclusions

The remotely controlled unmanned underwater vehicle, equipped with autonomous
capabilities, successfully followed the pipeline placed in the pool. During the tracking
process, damage to the pipeline was identified using a deep learning algorithm, CNN, from
the images taken by the camera integrated into the vehicle. From our pool experiments, it
was observed that factors such as light refraction, reflection, glare negatively affected the
quality of the images obtained from the camera in underwater environments. Although
the detection performance of the CNN algorithm decreased in a pool environment where
light is refracted, reflected and shined environments, its object detection performance
was still observed to be successful in experimentally. After detecting the damages on the
autonomously tracked pipeline in the pool environment with CNN, the location of the
damage was identified by correlating it with the vehicle’s navigation data. The navigation
data of the vehicle comes from the accelerometer, gyroscope, and pressure sensor. When
comparing the actual path (reference path) values of the pipeline, which has a known
length, with the measured position and deviation angle (experimental data) values during
the vehicle’s pipeline tracking, it was observed that the vehicle followed the pipeline with
high accuracy. The results obtained in this study demonstrate that the detection and regular
monitoring of defects in underwater pipelines can be carried out autonomously, safely, and
continuously using unmanned underwater vehicles and deep learning algorithms.

Despite this achievement, the study has some limitations. The system in this study
operates based on the images provided by the camera integrated into the unmanned
underwater vehicle. Since the camera can only focus on the upper and side parts of the
pipeline, it may not be possible to detect damage occurring on the underside of the pipeline.
This is an important limitation, especially in cases where damage such as corrosion or cracks
may occur on the lower surface of the pipeline. To overcome this limitation, multi-angle
camera systems capable of imaging the lower part of the vehicle, or additional sensors
capable of providing a full circular view around the pipeline, could be used. Another
limitation is energy management for long-term underwater operations. Extending the
battery capacity, turning off unused sensors, or processing only critical data could extend
the operational duration of the vehicle. In the future work, autonomous tracking, damage
detection, and damage localization of a pipeline laid in a marine environment will be
tested using additional sensors such as sonar, under different scenarios and for various
pipeline types.
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with lateral shearing digital holographic microscopy. Opt. Lasers Eng. 2022, 151, 106934. . [CrossRef]
11. Niu, X.; Ching, Y.S. A Novel Hybrid CNN-SVM Classifier For Recognizing Handwritten Digits | Pattern Recognition. Pattern

Recognit. 2011, 45, 131825.
12. Russakovsky, O.; Deng, J. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
13. Simonyan, K.; Andrew, Z. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
14. Spahic, R.; Poolla, K. Image-based and Risk-informed Detection of Subsea Pipeline Damage. Discov. Artif. Intell. 2023, 3, 23.

[CrossRef]
15. Bastian, B.; Jaspreeth, N. Visual Inspection and Characterization of External Corrosion in Pipelines Using Deep Neural Network.

NDT E Int. 2019, 107, 102134. [CrossRef]
16. Avci, A.; Karadeniz Kartal, S. Leakage Detection in Underwater Oil and Natural Gas Pipelines Using Convolutional Neural

Networks Int. J. Energy Appl. Technol. 2021, 8, 197–202.
17. Nadimi, N.; Javidan, R. Efficient Detection of Underwater Natural Gas Pipeline Leak Based on Synthetic Aperture Sonar (SAS)

Systems. Mar. Sci. Eng. 2021, 9, 1273. [CrossRef]
18. Shi, Y.; Zhang, C. Theory and Application of Magnetic Flux Leakage Pipeline Detection. Sensors 2015, 15, 31036–31055. [CrossRef]
19. Hong, X.; Huang, L. Shedding Damage Detection of Metal Underwater Pipeline External Anticorrosive Coating by Ultrasonic

Imaging Based on HOG + SVM. Mar. Sci. Eng. 2021, 9, 364. [CrossRef]
20. Bertulessi, M.; Bignami, D. Experimental Investigations of Distributed Fiber Optic Sensors for Water Pipeline Monitoring. Sensors

2023, 23, 6205. [CrossRef]
21. Peng, X.; Hao, H. A Numerıcal Study Of Damage Detectıon Of Underwater Pıpelıne Usıng Vıbratıon-Based Method. Int. J. Struct.

Stab. Dyn. 2012, 12, 1250021. [CrossRef]
22. Shitong, Z.; Yanhui, W. Subsea Pipeline Leak Inspection by Autonomous Underwater Vehicle. Appl. Ocean. Res. 2020, 107, 102321.
23. Khan, A.; Azhar, S. Visual Feedback–based Heading Control of Autonomous Underwater Vehicle for Pipeline Corrosion

Inspection. Int. J. Adv. Robot. Syst. 2017, 14, 1729881416658171. [CrossRef]
24. Foresti, G.L. Visual Inspection of Sea Bottom Structures by an Autonomous Underwater Vehicle. Int. J. Adv. Robot. Syst. 2001, 31,

691–705. [CrossRef] [PubMed]
25. Cang, X.; Jouvencel, B. Coordinated Formation Control of Multiple Autonomous Underwater Vehicle for Pipeline Inspection. Int.

J. Adv. Robot. Syst. 2010, 7, 3.
26. Cang, X.; Jouvencel, B. An Autonomous Underwater Vehicle Simulation With Fuzzy Sensor Fusion for Pipeline Inspection. IEEE

Sensors J. 2023, 23, 8941–8951.
27. Szegedy, C.; Liu, W. Going Deeper With Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp.1–9.
28. He, X.; Wei, Z. Emotion Recognition By Assisted Learning With Convolutional Neural Networks. Neurocomputing 2018, 291,

187–194. [CrossRef]
29. Pertusa, A.; Gallego, A. MirBot: A Collaborative Object Recognition System for Smartphones Using Convolutional Neural

Networks. Neurocomputing 2018, 293, 87–99. [CrossRef]
30. Li, X.; Min, S. Fast Accurate Fish Detection and Recognition Of Underwater İmages with Fast R-CNN. In OCEANS MTS/IEEE
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59. Kartal, S.; Leblebicioğlu, M.K. Experimental test of vision-based navigation and system identification of an unmanned underwater
survey vehicle (SAGA) for the yaw motion. Trans. Inst. Meas. Control 2019, 41, 2160–2170. [CrossRef]

60. Khan, A.; Ali, S.S.A.; Anwer, A.; Adil, S.H.; Mériaudeau, F. Subsea Pipeline Corrosion Estimation by Restoring and Enhancing
Degraded Underwater Images. IEEE Access 2018, 6, 40585–40601. [CrossRef]

61. Hong, S.-J.; Kim, S.-Y. Moth Detection from Pheromone Trap Images Using Deep Learning Object Detectors. Agriculture 2020, 10,
170. [CrossRef]

62. Ning, W.; Yuanyuan, W. Marine vessel detection dataset and benchmark for unmanned surface vehicles. Appl. Ocean. Res. 2024,
142, 103835.

63. He, K.; Xiangyu, Z. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal.
Mach. Intell. 2014, 37, 346–361.

64. Nair, V.; Geoffrey, E.H. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the International
Conference on Machine Learning, ICML10, Omnipress, Haifa, Israel, 21–24 June 2010; Volume 27, pp. 807–814.

65. Albawi, S.; Tareq, A.M. Understanding of a Convolutional Neural Network. In Proceedings of the 2017 International Conference
on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 16–21.

http://dx.doi.org/10.1016/j.ins.2020.11.033
http://dx.doi.org/10.1016/j.microrel.2018.04.007
http://dx.doi.org/10.3390/en10050691
http://dx.doi.org/10.3390/jmse12030374
http://dx.doi.org/10.3390/jmse12030391
http://dx.doi.org/10.25126/jitecs.202051173
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1007/s11071-019-05149-5
http://dx.doi.org/10.3390/en11041009
http://dx.doi.org/10.1016/j.ins.2020.08.090
http://dx.doi.org/10.1016/j.neucom.2020.05.075
http://dx.doi.org/10.3390/jmse12071170
http://dx.doi.org/10.3390/jmse12071178
http://dx.doi.org/10.1155/2016/8070286
http://dx.doi.org/10.3390/s16081335
http://dx.doi.org/10.1016/j.cma.2020.112896
http://dx.doi.org//10.1109/WACV48630.2021.00090
http://dx.doi.org/10.1177/0142331219826524
http://dx.doi.org/10.1109/ACCESS.2018.2855725
http://dx.doi.org/10.3390/agriculture10050170


J. Mar. Sci. Eng. 2024, 12, 2002 23 of 23

66. Albawi, S.; Tareq, A.M. Artificial Convolution Neural Network for Medical Image Pattern Recognition. Neural Netw. 1995, 8,
1201–1214.

67. De Oliveira, D.C.; Wehrmeister, M.A. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in
Aerial Images Captured by Multirotor UAV. Sensors 2018, 18, 2244. [CrossRef] [PubMed]

68. Caccia, M.; Bibuli, R. Basic Navigation, Guidance And Control Of An Unmanned Surface Vehicle. Auton. Robot. 2008, 25, 349–365.
[CrossRef]

69. Fossen, T.I. Guidance and Control of Ocean Vehicles; Wiley: Hoboken, NJ, USA, 1999.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s18072244
http://www.ncbi.nlm.nih.gov/pubmed/30002290
http://dx.doi.org/10.1007/s10514-008-9100-0

	Introduction
	Motivation
	Related Works
	Contribution
	Organization

	Unmanned Underwater Vehicle Used in Experiments
	Underwater Pipeline Damage Detection Using Convolutional Neural Networks
	Convolutional Neural Network
	Input Layer
	Convolutional Layer
	Rectified Linear Unit Layer
	Pooling Layer
	Fully Connected Layer
	DropOut Layer
	Classifier Layer

	Convolutional Neural Network Training
	Underwater Damage Detection Performance of the CNN Algorithm

	Autonomous Pipeline Tracking and Damage Localization with an Unmanned Underwater Vehicle
	Navigation of Unmanned Underwater Vehicle
	Autopilot of Unmanned Underwater Vehicle
	Damage Localization Using Navigation Data and Image Processing

	Conclusions
	References

