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Abstract: Ship engine misfire faults not only pose a serious threat to the safe operation of ships but
may also cause major safety accidents or even lead to ship paralysis, which brings huge economic
losses. Most traditional fault diagnosis methods rely on manual experience, with limited feature
extraction capability, low diagnostic accuracy, and poor adaptability, which make it difficult to
meet the demand for high-precision diagnosis. To this end, a fusion intelligent diagnostic model—
ResNet–BiLSTM—is proposed based on a residual neural network (ResNet) and a bidirectional long
short-term memory network (BiLSTM). Firstly, a multi-scale decomposition of the instantaneous
rotational speed signal of a ship’s engine is carried out by using the continuous wavelet transform
(CWT), and features containing misfire fault information are extracted. Subsequently, the extracted
features are fed into the ResNet–BiLSTM model for learning. Finally, the intelligent diagnosis of
ship dual-fuel engine misfire faults is realized by the classifier. The model combines the advantages
of ResNet18 in image feature extraction and the capability of BiLSTM in temporal information
processing, which can efficiently capture the time-frequency features and dynamic changes in the
fault signal. Through comparison experiments with fusion models AlexNet–BiLSTM, VGG–BiLSTM,
and the existing AlexNet–LSTM and VGG–LSTM models, the results show that the ResNet–BiLSTM
model outperforms the other models in terms of diagnostic accuracy, robustness, and generalization
ability. This model provides an effective new method for intelligent diagnosis of ship dual-fuel engine
misfire faults to solve the traditional diagnostic methods’ limitations.

Keywords: ship dual-fuel engine; internal combustion engines (ICEs); instantaneous rotational speed;
misfire fault diagnosis; anomaly detection; machine learning; deep learning; ResNet; BiLSTM

1. Introduction

As the foundation of global logistics, the shipping industry is responsible for the
majority of international trade transportation. Ensuring the safe and efficient operation
of ships is of paramount importance [1–3]. Ship engines, as the primary source of power
for maritime vessels, are responsible for propelling ships forward. The performance and
operational status of these engines directly impact the safety, economy, and reliability of
ships [4–6]. In particular, in modernized, large-scale ocean-going vessels, the engine is
subjected to high loads and a complex operational environment over extended periods.
Any fault may result in the disruption of the ship’s operations or even lead to significant
safety incidents. Among the numerous types of engine faults, misfire faults are particularly
prevalent and hazardous [7,8].

A misfire fault is typically observed when a cylinder within an engine fails to ignite
the fuel mixture at the designated point in the combustion cycle. Cylinder misfire results in
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inadequate power output and diminished fuel efficiency and may even precipitate a series
of chain reactions, including increased engine vibration and elevated emissions [9]. In the
event that such faults are not identified and rectified in a timely manner, they may result in
additional wear or damage to engine components and potentially even lead to more severe
safety incidents [10]. For instance, a power system fault resulting from an engine misfire
during an ocean voyage may result in the loss of propulsion and control, thereby placing
the vessel in a perilous situation. Furthermore, a misfire fault increases the operating cost
of a ship, as it not only elevates fuel consumption but may also necessitate a broader range
of equipment maintenance and repair.

In light of the aforementioned considerations, the diagnosis of malfunctions in marine
propulsion systems, with a particular emphasis on the early identification and characteriza-
tion of misfire issues, assumes paramount importance. The early detection and treatment
of misfire faults can prevent the development of minor issues into significant accidents,
assist ship operators in reducing operational risks, minimize unnecessary economic losses,
and ensure the safety of the ship and its personnel [11,12]. Fault diagnosis technology is a
method of extracting fault characteristics and determining the type and location of fault
occurrence through the analysis of equipment operation data. In industrial equipment
and mechanical systems, fault diagnosis technology has been widely utilized in wind
turbines, aviation engines, railroad locomotives, and other fields, with the fault diagno-
sis of ship engines representing a significant area of interest within this field. With the
advancement of marine engine technology, particularly in the context of the increased
complexity of electronic control and fuel injection systems, traditional diagnostic methods
have proven inadequate in addressing the increasingly complex fault modes and signal
characteristics [13].

In practice, traditional methods for diagnosing marine engine misfire faults typically
rely on the experience and intuition of the operator or the detection of simple engine control
system alarms. These methods are clearly inadequate. First, manual diagnosis depends
on the expertise of the operator, which may prove challenging in complex navigational
conditions, potentially leading to delays in identifying the root cause of the fault. Secondly,
the alarm system of the engine control system is typically only capable of detecting signifi-
cant faults that have already occurred. It lacks the necessary sensitivity and early warning
capability to detect early faults, which makes it challenging to identify potential issues in a
timely manner. Furthermore, traditional methods often prove inadequate for diagnosing
elusive or subtle misfire faults. The growing complexity and nonlinear characteristics
of ship engine signals have rendered traditional signal processing methods, which rely
on rules and statistical analysis, insufficient for modern ships that require efficient and
accurate fault diagnosis [14–16]. For example, Han [17] proposed the AGap slope as a novel
approach to misfire detection. By comparing the inter-cylinder slope difference between the
teeth of the same cylinder in two adjacent cycles, the AGap slope can effectively eliminate
the inter-cylinder slope error. Experimental results demonstrate that the method exhibits
an average misfire detection rate of 90.2% across a range of test conditions. Furthermore,
the detection rate can reach 93% to 98% within the 1500 to 4000 rpm range. However, the
detection rate is reduced when the engine load is close to neutral or the speed exceeds
4000 rpm. Wang et al. [18] proposed a diagnostic strategy with an adaptive threshold algo-
rithm. This algorithm is based on an angular domain identification method that determines
the misfire-sensitive region in real time through relative scatter analysis. The time unit
is then computed based on this analysis. The time unit change value of each operational
cylinder is employed to compute a weighted average, thereby constructing a misfire feature
signal as an analytical object. The results of real-vehicle validation demonstrate that the
novel strategy is capable of adjusting the diagnostic threshold in real-time, enhancing the
real-time diagnosis of a misfire (89% improvement), and increasing the feature signal ampli-
tude by over 25% following cylinder filtering in the continuous misfire mode. Moreover, the
method is capable of detecting various misfire types across the full spectrum of operating
conditions, obviating the necessity to establish discrete thresholds for different vehicle
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driving states and operational scenarios. This reduces the calibration workload and the
impact of vehicle dispersion. Sharib et al. [19] proposed the use of RedLeo Pro V8 software
to simulate input data for the purpose of monitoring and controlling the engine system.
This method has been demonstrated to be effective in distinguishing between normal and
abnormal signals, with the signals being designed through an adaptive system with the ob-
jective of reducing noise and improving diagnostic accuracy. The final results demonstrate
the efficacy of the proposed method in feature extraction and selection, rendering it an
effective approach for engine troubleshooting. Syta et al. [20] analyzed the vibration signals
of the Rotax 912 ULS aircraft engine to detect misfires in individual cylinders. A linear
metric was developed to describe the vibration level based on power amplitude spectral
values at two selected frequencies. In addition, a nonlinear metric was calculated from the
periodicity of engine operation. The results demonstrate that both methods are effective in
detecting misfires in diverse cylinder configurations and that their combination enables the
identification of faulty cylinders. Jafari et al. [21] employed an acoustic emission sensor to
detect misfires in a multi-cylinder diesel engine. The angular periodic modulation (cyclic
bursts) in the signal power was highlighted by squared envelope spectral processing of the
acoustic emission signal. This study demonstrates the effectiveness of combining sensor
technology with signal processing for misfire detection in a six-cylinder diesel engine.
Kang et al. [22] proposed an efficient method for detecting and monitoring engine misfires,
focusing on small speed changes on the crankshaft, simulating five engine states (one
normal ignition and four misfires) in the experiment. The results show that the composition
of 6f is the largest under normal conditions, but with the occurrence of fire, the composition
of f increases gradually. 3D FFT modes with ratios of f, 2f and 3f, 6f show a greater distance
between the misfire state and the normal state. However, it should be noted that all these
methods have certain limitations.

In order to overcome the limitations of traditional signal processing methods, machine
learning techniques have been introduced into the field of fault diagnosis of ship engines
in a gradual and progressive manner [23]. In contrast to conventional methodologies,
machine learning enables the automatic discovery of features through a data-driven ap-
proach, eliminating the necessity for manually designed feature extraction techniques. This
significantly enhances the automation and precision of fault diagnosis [24,25]. For instance,
Syta et al. [26] put forth a methodology for the detection and identification of misfires in
aviation internal combustion engines through the analysis of vibration time series. This
approach employs a machine learning classification model to discern the operational states
of the engine. The findings indicated that the utilization of nonlinear metrics facilitated a
high degree of accuracy. The classification accuracy was demonstrated with a reduced num-
ber of samples. Singh [27] put forth a novel approach to identifying misfires through the
assessment of radiated sound quality metrics in the vicinity of the cylinder block or exhaust
pipe. This method has been subjected to rigorous testing on a four-stroke, four-cylinder
engine across a range of load and speed conditions. Sound quality metrics, including noise,
roughness, and fluctuation intensity, were predicted by a support vector machine classifier
with an accuracy of 94%. In comparison, conventional methods for vibration signals and
sound pressure levels exhibited a prediction accuracy of 82% and 85%, respectively. This
suggests that misfire detection based on sound quality is more accurate and independent
of engine speed and torque. In contrast to conventional methods, the new method does
not necessitate direct contact with engine components, is computationally rapid, has a
broad range of applicability, and can be readily implemented under the hood or in close
proximity to the exhaust pipe via acoustic sensors. Mulay et al. [28] employed piezoelectric
accelerometers to obtain cylinder vibration signals for the purpose of detecting misfires and
analyzing the specific vibration modes that occur at the time of misfire. Twelve statistical
features were extracted, and useful features were filtered by the J48 decision tree algorithm
and classified using regression classification and IBk classification. Subsequently, the per-
formance of the classifiers was compared, and an effective misfire detection algorithm
was proposed by integrating the classifiers through voting. While the aforementioned
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machine learning techniques exhibit commendable classification capabilities in certain
marine engine fault diagnosis scenarios, they are susceptible to the challenge of excessive
computational complexity when confronted with voluminous data or intricate signals.

As data size and model complexity have increased, artificial neural networks (ANNs)
have emerged as a prominent area of research in the field of fault diagnosis. ANNs emulate
the intricate workings of neurons in the human brain, forming intricate multilayer networks
that can automatically extract high-dimensional features from data and perform complex
nonlinear mapping. Compared to traditional machine learning, ANNs offer enhanced
flexibility in fault diagnosis and the ability to handle more complex signal features. For
example, Liu et al. [29] proposed a novel misfire detection model for turbocharged diesel
engines using artificial neural networks (ANNs). The model was implemented in the
MATLAB/Neural Network Toolbox environment and experimentally investigated on a V6
turbocharged diesel engine. The preliminary results demonstrated that the model success-
fully detected misfires in the majority of cases, although some misdetections were observed,
and the mean-square error was relatively high. However, by incorporating the engine
speed variations within the cycle into the training data, the model ultimately achieved
fully accurate detection, thereby providing a new method for accurately detecting misfires
in turbocharged diesel engines. Jafarian et al. [30] investigated misfire faults in internal
combustion engines, with a particular focus on the analysis of signal variations captured
using different sensors. The engine faults were subjected to experimental analysis, and it
was proposed that a Fast Fourier Transform (FFT) be employed for signal transformation
and feature extraction, with the utilization of artificial neural networks (ANNs) in the fault
classification stage. By measuring the performance metrics of the ANNs and comparing
them with the results of similar studies in the related literature, the results demonstrate
the efficacy of incorporating vibration signals into the analysis of internal combustion
engine faults. However, traditional shallow neural networks are susceptible to converging
on local optimal solutions due to their shallow network structure, exhibiting suboptimal
training efficiency and poor generalization ability when confronted with voluminous and
complex datasets.

To address these challenges, deep learning methodologies have been extensively
employed, particularly with the advent of convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), along with their enhanced long short-term memory
(LSTM) networks and bidirectional long short-term memory (BiLSTM) networks. These
developments have considerably elevated the sophistication of diagnostic techniques for
ship engine faults [31,32]. For instance, Zhang et al. [33] investigated a misfire detection
methodology based on convolutional neural networks (CNNs), utilizing experimental
data from a six-cylinder inline diesel engine for network training and testing to identify
misfire patterns in one and two cylinders. The results demonstrate that the convolutional
neural network (CNN) is capable of accurately detecting complete misfires in one or
two cylinders under steady-state conditions, with a detection accuracy exceeding 96% in
the case of partial misfires in one cylinder when fuel injection is reduced to half of the
normal amount. Furthermore, under non-steady-state conditions, such as acceleration or
deceleration, the CNN demonstrates satisfactory performance within a limited acceleration
range. However, the network’s efficacy declines when the absolute acceleration of the
engine speed surpasses 100 r/min/s. Venkatesh et al. [34] put forth a methodology for
identifying misfires in internal combustion engines through the application of transfer
learning techniques. Initially, vibration signals are gathered from the upper portion of the
engine and then presented as input to the deep learning algorithm. In order to identify
misfire states, pre-trained networks (e.g., AlexNet, VGG-16, GoogLeNet, and ResNet-
50) are employed. Furthermore, the effects of hyper-parameters (e.g., batch size, solver,
learning rate, and training-to-test ratio) are investigated. Xu et al. [35] proposed a domain-
adversarial wide-kernel convolutional neural network (DAWDCNN) for diesel engine
misfire fault diagnosis. This was done with the aim of addressing the impact of diesel
engine noise variations and stochasticity on the performance of existing diagnostic methods.
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The DAWDCNN demonstrates superior generalization performance in 11 noisy domain
adaptation tasks relative to the conventional staged domain adversarial training approach.
The experimental outcomes indicate that the mean accuracy of the DAWDCNN on the four
datasets surpasses that of random forests, long- and short-term memory networks, and
other comparable techniques. Wang et al. [36] proposed a novel approach based on long
short-term memory recurrent neural networks (LSTM RNNs) for the detection of diesel
engine misfires. The findings indicate that the LSTM RNN-based algorithm is capable of
overcoming the inherent limitations of traditional methods. The network structure, which
inputs a fixed segment of raw rotational speed signals and utilizes misfire or no-fault labels
as outputs, has demonstrated a notable accuracy in diagnosing misfires.

However, convolutional neural networks (CNNs) are designed for the extraction of
static image features, particularly those related to spatial dimensions. They are less effec-
tive when processing time-series information due to their limited processing time [37,38].
Recurrent neural networks (RNNs) and their enhanced variants, such as long short-term
memory (LSTM) and bidirectional LSTM (BiLSTM), are optimized for time-series data
analysis. They excel in capturing temporal dependencies but are less adept at feature
extraction from images [39,40].

In order to address the deficiencies of convolutional neural networks (CNNs) in
capturing time series dependencies and the limitations of recurrent neural networks (RNNs)
in extracting spatial features of images, a novel intelligent diagnostic model for marine
dual-fuel engine misfire with ResNet18 in combination with BiLSTM is proposed, aiming to
improve accuracy and real-time diagnosis of faults. In contrast to traditional fault diagnosis
techniques, this approach employs the continuous wavelet transform (CWT) to transform
the one-dimensional instantaneous rotational speed signal into a two-dimensional time-
frequency image, thereby preserving the time-frequency characteristics of the signal. The
two-dimensional image data are fed into a network to extract high-dimensional feature
representations through a deep convolutional layer. These are then passed to a bidirectional
long short-term memory (BiLSTM) network for temporal processing, which enables the
capture of the dynamically changing characteristics of the signal. This method not only
extracts the deep features of fault signals from the images but also processes the time-
dependent information in the signals through the BiLSTM network, thereby achieving
more accurate fault identification.

The principal findings of the study can be classified into three main aspects.
(1) An intelligent diagnostic framework combining continuous wavelet transform

(CWT) and deep learning models is proposed. This framework utilizes the continuous
wavelet transform (CWT) to convert the instantaneous rotational speed signal of a ship’s
engine from a one-dimensional time series to a two-dimensional time-frequency image.
Additionally, it captures the time-frequency features of the misfire fault signal through
multiscale decomposition. This framework effectively addresses the limitations of tra-
ditional signal processing methods in capturing non-smooth signals, providing a more
comprehensive input for subsequent deep learning models.

(2) An intelligent diagnostic model (ResNet–BiLSTM) is constructed by fusing ResNet18
and BiLSTM. The ResNet18 model serves as a feature extractor, enabling comprehensive
mining of local spatial features in the time-frequency image. The BiLSTM network, on
the other hand, is capable of capturing temporal dependencies in the signal. The fusion
model enables the dual learning of time-frequency features and timing information, thereby
markedly enhancing the detection capability for misfire faults.

(3) A series of comparative experiments were conducted to evaluate the performance of
the proposed ResNet–BiLSTM model in comparison with fusion models (AlexNet–BiLSTM,
VGG11–BiLSTM) and existing methods (AlexNet–LSTM, VGG–LSTM). The results demon-
strated that the ResNet–BiLSTM model exhibited superior comprehensive performance,
outperforming the other models.

The remaining sections are organized as follows: Section 2 introduces the fundamental
principles of the relevant theories. Section 3 describes the implementation process of
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the intelligent fault diagnosis method based on the improved ResNet–BiLSTM fusion
model. Section 4 provides a comprehensive account of the data collection process and
the construction of the dataset. Section 5 presents a comparative analysis of the different
models and their respective outcomes. Section 6 offers a summary of the conclusions and
suggests directions for future research.

2. Basic Theory
2.1. Continuous Wavelet Transform

The continuous wavelet transform (CWT) is a powerful tool for analyzing signals
at multiple scales. It provides a joint representation of a signal in time and frequency by
convolving the signal with a set of wavelet functions with different scales and positions [41].
This method is particularly effective in analyzing non-stationary signals and transient
phenomena and is applicable to a variety of engineering and scientific fields, including the
fault diagnosis of instantaneous rotational speed signals from ship dual-fuel engines.

The core of the CWT lies in the selection of wavelet functions. In contrast to the
Fourier transform, the wavelet transform employs basis functions that are localized, finitely
supported waveforms—namely, wavelets—that can be adjusted in both time and frequency.
The CWT can be expressed as follows [42]:

W(a, b) =
1√
|a|

∫ +∞

−∞
f (t) · ψ∗(

t − b
a

)dt (1)

In the equation, f (t) represents the original input signal, ψ(t) is the wavelet basis
function (mother wavelet), ψ∗(t) denotes the complex conjugate of the wavelet function,
a is the scale factor (controlling the width of the wavelet), b refers to the time translation
factor (controlling the position of the mother wavelet), and 1√

|a|
is a normalization factor

ensuring that the transformation maintains the same energy across different scales.
In this study, the Morse wavelet is employed as the mother wavelet function, and the

Fourier transform of the generalized Morse wavelet is:

Ψβ,γ(ω) = U(ω) · aβ,γ · ωβ · e−ωγ
(2)

In this context, U(ω) represents the unit step, aβ,γ is a normalizing constant, ω is
the frequency parameter that controls the frequency of the wavelet function, β is viewed
as a decay or compactness parameter, and γ characterizes the symmetry of the Morse
wavelet, respectively.

2.2. Structure of the ResNet Network Model

The ResNet (residual network) is a deep convolutional neural network (CNN) archi-
tecture, initially proposed by Kaiming He and colleagues [43]. The fundamental innovation
of ResNet can be attributed to the introduction of the concept of residual learning, which
markedly enhances the training efficacy and performance of deep networks.

In the context of intelligent fault diagnosis for engine misfires, ResNet demonstrates
the capacity to process complex time-series data and high-dimensional feature data. The
deep convolutional operations effectively extract key features from the data, thereby im-
proving diagnostic accuracy. Moreover, engine fault samples are frequently scarce in
comparison to normal samples, and ResNet’s residual learning mechanism is particularly
adept at addressing class imbalance issues, enabling the model to effectively learn features
from the limited fault samples. The residual block represents the fundamental unit of
ResNet. It comprises two principal components: one or more convolutional layers and a
shortcut connection.

The fundamental configuration of a residual block is illustrated in Figure 1. As
illustrated in the diagram, the sole distinction between the two types of residual blocks
pertains to the manner of implementing the shortcut connection. In one instance, the
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shortcut connection is implemented through a convolutional layer to adjust the number of
channels (as illustrated by the dashed line on the right side of Figure 1b). In contrast, in
the other instance, it is directly connected without adjusting the number of channels (as
illustrated by the solid line on the right side of Figure 1a).
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2.3. Structure of the BiLSTM Network Model

LSTM (long short-term memory) network was developed to address the “vanishing
gradient” and “exploding gradient” issues that are commonly encountered in traditional
recurrent neural networks (RNNs). This is achieved through the introduction of specialized
memory cells and three gate structures: the forget gate, the input gate, and the output
gate, which regulate the flow of long short-term information. LSTM effectively selects
which time-step information to retain or discard, thereby overcoming the limitations of
traditional RNNs in capturing long-term dependencies [44]. The overall framework of the
LSTM model is illustrated in Figure 2.
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The operation of the LSTM can be described as a process of filtering information
within the cell state. The network discards superfluous, dated data and incorporates novel
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information based on the present input and the hidden state from the preceding time step.
This process enables the network to retain pertinent data for subsequent time steps. Initially,
the forget gate determines which components of the cell state should be discarded based on
the preceding hidden state and the present input. Subsequently, the input gate determines
which novel information will be incorporated into the cell state. In conclusion, the output
gate regulates which data from the present cell state will be utilized for the final output
and updates the hidden state. The coordinated operation of these gates enables LSTM to
efficiently retain, update, and output information at each time step, thereby ensuring that
its hidden state reflects long-term dependencies.

The detailed computation process of LSTM is illustrated in Figure 3, where (a), (b), (c),
and (d), respectively, show the computation processes for the forget gate ft, input gate it,
current cell state Ct, and output gate ot.
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The computation formula for the forget gate is given by

ft = σ(W f · [ht−1, xt] + b f ) (3)
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The input gate is calculated as

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)
(4)

The formula for the cell state at the current moment is

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (5)

The output gate is given by

ot = σ(Wo · [ht−1, xt] + bo)
ht = ot ⊙ tanh(Ct)

(6)

In Equations (3)–(6), σ represents the sigmoid activation function, while W f , WC, and
Wo correspond to the weight matrices for the forget gate, input gate, and output gate,
respectively. The bias terms b f , bi, and bo correspond to the forget gate, input gate, and
output gate, respectively. The symbol [ht−1, xt] denotes the concatenation of two vectors
into a longer vector, while the symbol ⊙ represents multiplication by element. Through
these computational processes, the output and state updates of each layer of the LSTM can
be obtained.

Bidirectional long short-term memory (BiLSTM) networks represent a variant of the
LSTM. A limitation of the traditional LSTM is its inability to process time-series information
in a bidirectional manner, from past to future or vice versa. In contrast, a bidirectional long
short-term memory (BiLSTM) network incorporates a backward long short-term memory
(LSTM) layer, enabling the simultaneous extraction of information from both the past and
future directions of the time series. The dual-direction capability of BiLSTM renders it more
effective at capturing long-term dependency information, thereby making it particularly
suitable for tasks with strong temporal dependencies.

In the context of fault diagnosis for engine misfires in ships, the instantaneous ro-
tational speed signal of the engine represents a typical time-series dataset that contains
dynamically changing fault patterns. The bidirectional structure of BiLSTM enables the
capture of changing trends in the signal both before and after, thereby enhancing sensitivity
to fault features and improving diagnostic accuracy.

Figure 4 depicts the architecture of the bidirectional long short-term memory (BiLSTM)
model. In contrast to the traditional unidirectional LSTM, the BiLSTM is constituted of two
LSTM networks. One LSTM (the upper part) processes the input sequence in a forward
direction (from time step t0 to t2), while the other LSTM (the lower part) processes the
input sequence in a reverse direction (from time step t2 to t0).

As illustrated, the input vector at each time step (e.g., Vector 1, Vector 2, Vector 3) is fed
simultaneously into both the forward and backward LSTMs. The forward LSTM generates
the hidden states, designated as hL0, hL1, and hL2, while the backward LSTM generates
the hidden states, designated as hR0, hR1, and hR2. At each time step, the outputs from the
forward and backward LSTMs are concatenated (e.g., h0, h1, h2) to form a complete output
vector for that time step.

This structure enables BiLSTM to simultaneously utilize both past and future infor-
mation in the sequence, thereby allowing it to capture complex temporal dependencies
within time-series data. In the case of complex signals with time dependencies, such as the
instantaneous rotational speed of a ship’s dual-fuel engine, the BiLSTM model is better
able to learn the dynamic variation features in the signal, thereby improving the accuracy
of fault diagnosis. The combination of forward and backward LSTMs allows the model
to focus on the changes in fault signals prior to the current moment while also incorporat-
ing information from future time steps, thereby facilitating more accurate fault detection
and identification.
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3. Intelligent Fault Diagnosis Model for Engine Misfire

In the field of engine fault diagnosis, engine misfire represents a common and critical
fault mode. To enhance the precision and efficacy of diagnosing this fault, this paper pro-
poses an intelligent diagnostic model, ResNet–BiLSTM, which integrates sensor data with
the strengths of deep learning models, specifically ResNet and BiLSTM. The deep resid-
ual learning mechanism inherent to ResNet enables the effective extraction of high-level
spatial features from sensor data while simultaneously addressing the vanishing gradient
problem that is commonly observed in traditional deep learning models. Concurrently, the
bidirectional long short-term memory network structure of BiLSTM enables the capture
of both forward and backward information from time-series data, thereby enhancing the
model’s capacity to represent temporal dependencies and improving the accuracy of fault
detection. Subsequent to the extraction of spatial features by ResNet, BiLSTM processes
these features further by capturing temporal correlations, thus augmenting the model’s
diagnostic capability for detecting engine misfire faults.

As illustrated in Table 1, the ResNet–BiLSTM model structure delineates the construc-
tion process. The input to the model is a 3 × 224 × 224 continuous wavelet transform
(CWT) image, where “3” represents the number of channels (i.e., the three channels of
an RGB image), and 224 × 224 denotes the image’s height and width. The input data is
initially processed through the ResNet network for the purpose of feature extraction. The
residual learning structure of ResNet enables the effective extraction of multi-level image
features. Following processing through ResNet’s convolutional layers and residual blocks,
the output feature map has a size of 512 × 7 × 7 (where 512 is the number of channels and
7 × 7 is the spatial dimension of the feature map). Subsequently, the model employs a pool-
ing layer to preserve the spatial dimension of the feature map. To facilitate the processing
of these spatial features by a bidirectional long short-term memory (BiLSTM) network, the
feature map is first permuted using the “Permute” method, which reorders the dimensions
of the feature map and is transformed into a shape of 7 × 7 × 512. Subsequently, the
“Reshape” method (which reshapes the feature map) further transforms it into 7 × 3584,
where 3584 is the result of 7 × 512. At this juncture, the features are in a format suitable for
time-series models, where “7” represents the number of time steps and 3584 is the feature
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dimension at each time step. Subsequently, the features are fed into the BiLSTM layer.
The bidirectional long short-term memory (BiLSTM) processes the forward and backward
time-sequence information separately, generating corresponding outputs. In this model,
the final temporal feature output is derived from the hidden state of the BiLSTM at the final
time step, with a size of 1 × 256. This temporal feature represents the extracted features
from the bidirectional LSTM. Subsequently, this temporal feature is passed through a fully
connected layer and classified using the Softmax activation function. The model’s output is
a probability distribution across seven fault categories, representing different types of ship
engine misfire faults.

Table 1. Structural parameters of ResNet–BiLSTM network model.

Network Layer Output Dimension Layer Configuration

Input 3 × 224 × 224 -

Stage 0 64 × 112 × 112
64 × 56 × 56

Conv2d k = 7 s = 2 p = 3
BatchNorm2d ReLu

MaxPool2d k = 3 s = 2 p = 1

Stage 1 64 × 56 × 56 Residual Block × 2

Stage 2 128 × 28 × 28
128 × 28 × 28 Residual Block × 2

Stage 3 256 × 14 × 14
256 × 14 × 14 Residual Block × 2

Stage 4 512 × 7 × 7
512 × 7 × 7 Residual Block × 2

Stage 5 512 × 7 × 7 AdaptiveAvgPool2d

Stage 6
7 × 7 × 512

1 × 3584
1 × 256

Permute
Reshape
BiLSTM

Stage 7 1 × 256 Linear(256,256)
ReLu Dropout(0.5)

Stage 8 1 × 7 Linear(256,7)

Figure 5 depicts the structural and diagnostic process of the ResNet–BiLSTM model.
Initially, the instantaneous rotational speed is recorded via sensors affixed to the ship’s
dual-fuel engine. Then, the collected data is preprocessed. The data is transformed using
a continuous wavelet transform (CWT) to convert the one-dimensional signal into a two-
dimensional time-frequency image, thereby facilitating the extraction of rich time-frequency
features. Subsequently, the generated time-frequency images are fed into the ResNet18
network. The ResNet18 network employs a series of convolutional layers to progressively
extract salient image features, thereby ensuring the retention of critical information. Subse-
quently, the extracted feature maps are conveyed to the BiLSTM network. The bidirectional
long short-term memory structure of the BiLSTM captures both forward and backward
temporal information from the time-series data, thereby enabling a more comprehensive
understanding of temporal dependencies and further optimizing feature representation.
The output from the BiLSTM is passed through a fully connected layer, generating a 1 × 7
vector that represents seven distinct fault categories (including normal operation and six
types of misfire faults). The Softmax activation function is then employed to convert
this vector into a probability distribution, thereby predicting the likelihood of each fault
category. Ultimately, the model utilizes cross-entropy loss to compute the discrepancy
between the predicted output and the actual labels. This error is then reduced through



J. Mar. Sci. Eng. 2024, 12, 2046 12 of 35

backpropagation, enabling the model to iteratively update its parameters and enhance its
performance. Through this process, the model is able to effectively diagnose misfire faults
in the ship’s dual-fuel engine by analyzing the collected rotational speed signals.
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4. Experimental Data Collection and Construction of Datasets
4.1. Collection of Experimental Data

The rotational speed data presented in this study were obtained from a dual-fuel
engine situated within the nacelle of a smart ship, located at a university in Wuhan, China.
The data were collected using a magnetoelectric speed sensor installed on the flywheel end
of the engine, as illustrated in Figure 6. Figure 6a presents a photograph of the engine setup
in a real-world context, Table 2 shows the specific parameters of the engine, while Figure 6b
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depicts the installation location of the rotational speed sensor. The specific parameters of
the dual-fuel engine are shown in the following table.
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Figure 6. The experimental platform. (a) The dual-fuel engine; (b) The rotational speed sensor.

Table 2. Dual-fuel engine parameters.

Parameters Contents

Machine type 6ACD320DF

Engine type

four stroke, in-line single action, barrel piston,
main gas manifold electronic control injection,
micro-injection ignition, irreversible Marine

dual fuel (diesel–natgas) engine

Number of cylinders 6

Cylinder diameter × stroke 320 mm × 420 mm

Mean effective pressure (MEP) 1.92 MPa

Maximum burst pressure ≤22 MPa

Specific fuel consumption (SFC)
7423 kJ/kWh (natgas)

185 g/kWh (diesel)

Volume 5769 mm × 2370 mm × 3697 mm

Data of manufacture June 2023

During the experiment, the sensor recorded the engine’s instantaneous rotational
speed at a sampling frequency of 2500 Hz. The sampling frequency satisfies the Nyquist
sampling theorem, thereby ensuring the accuracy of the signal acquisition. The data were
collected under different engine speed conditions, capturing both normal operation and
various misfire fault conditions. This dataset provides a solid foundation for subsequent
fault diagnosis and analysis.
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4.2. Construction of Datasets
4.2.1. Data Preprocessing

In order to augment the training set with a greater number of samples, this study
employs a sliding window technique to enhance the instantaneous rotational speed data
collected by the sensor. As illustrated in Figures 7a and 7b depict the data processing
procedures for both normal and fault conditions, respectively. Specifically, the window
size is set to 512 data points, with a sliding step of 320 points, which helps maintain data
continuity while effectively increasing the sample size. Through this method, the original
time-series data are divided into multiple overlapping subsequences, each containing
512 data points. This approach not only enriches the training set but also captures local
features and temporal relationships in the data, thereby facilitating model training and
generalization. The specific steps are as follows: the data are segmented into subsequences
of 512 points, with a step size of 320 points, generating each subsequence as an independent
sample. Collectively, these subsequences form the augmented training set. The utilization
of the sliding window technique results in a notable increase in the sample size of the
training set, thereby enhancing the model’s accuracy and robustness while effectively
reducing the risk of overfitting.
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In terms of fault classification, this experiment divides faults into two categories:
normal state and misfire fault. The misfire fault is subdivided into six-cylinder faults
because the cylinder blocks of the ship engine work independently, and the misfire of any
cylinder block will have an impact on the overall performance. Therefore, subdividing
cylinder block faults can more accurately locate the source of the problem and provide an
accurate diagnostic basis for repair and maintenance in practical applications.

4.2.2. Data Sample Analysis

Figure 8 depicts the time domain diagram, spectrogram, and CWT image of the engine
operating at an average speed of 650 rpm, encompassing both the normal state and the
misfire state. In this instance, the horizontal and vertical coordinates of the CWT image cor-
respond to time and frequency, respectively. The color and luminance represent the energy
intensity of the signal at the corresponding time and frequency. A bright region (yellow)
indicates a high energy level, while a dark region (blue) indicates a low energy level. A
higher luminance indicates a stronger energy level. The time domain and spectrograms
are plotted based on the original instantaneous rotational speed, whereas the CWT image
represents the result of the original data after data enhancement, where 0 represents the
normal state and 1–6 represent the misfire state of cylinders 1–6 respectively. From the
time domain graphs, it is evident that under normal conditions, the instantaneous rota-
tional speed curve approximates a regular sine wave, indicating smooth engine operation.
However, in the misfire fault states, the speed curves of each cylinder display considerable
irregular fluctuations. To illustrate, when cylinder 1 misfires, the curve demonstrates a
periodic decline, accompanied by an increase in fluctuation amplitude. This suggests that
the interruption in power output has a considerable impact on stability. In the case of
cylinder 2 misfires, the fluctuations become even more irregular, with a pronounced sharp
decline that significantly impacts performance. A misfire in cylinder 3 results in prolonged
decreases in speed and more violent fluctuations. Additionally, cylinder 5 demonstrates
greater randomness in its fluctuations, making it more challenging to predict and indicating
more pronounced instability in power output. From the spectrograms, it can be observed
that under normal conditions, the spectrum exhibits a distinct peak in the low-frequency
range (approximately 30 Hz), with frequency components concentrated and consistent with
stable operational characteristics. In the misfire states, the spectrum gradually becomes
more dispersed, with smaller amplitudes appearing in the high-frequency range (greater
than 100 Hz). The low-frequency primary peak still exists but with reduced amplitude, in-
dicating that the signal’s frequency becomes more complex and energy extends into higher
frequency bands after a misfire. The CWT images demonstrate a smooth and uniform
presentation under normal operating conditions, with the spectrum predominantly concen-
trated in the low-frequency range, indicative of a stable engine operation and relatively
singular frequency characteristics. Conversely, in instances of misfire, the CWT images
demonstrate notable abnormalities, with the emergence of more intricate and pronounced
high-frequency components. The high-frequency components are indicative of the severe
vibrations and instability that are caused by the misfire. To illustrate, in the case of cylinder
1 misfire, the presence of multiple high-frequency signals in the time-frequency image
indicates an uneven power output. Similarly, the other cylinders also display comparable
high-frequency characteristics, although there are subtle differences among their time-
frequency images. For instance, the misfire spectrum of cylinders 2 and 3 is relatively
concentrated, while the spectrum for cylinders 4 and 5 exhibits a broader distribution range,
indicating that the misfire in these cylinders has a more pronounced impact on the overall
vibration of the engine.
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In light of the aforementioned analysis of the engine’s instantaneous rotational speed,
the following conclusions can be drawn.

(1) Firstly, under normal operating conditions, the instantaneous rotational speed
curve of the engine displays a regular sinusoidal waveform, indicating stable operation
with relatively simple vibration characteristics. In contrast, during misfire fault conditions,
the rotational speed signal exhibits clear anomalies, with increased vibration intensity
accompanied by significant fluctuations and abrupt changes. While these anomalous
signals may preliminarily indicate an issue with the engine in the time domain, they are
insufficient for accurately distinguishing between misfire faults in different cylinders.

(2) Secondly, although time domain and frequency domain analyses can observe the
instantaneous rotational speed variations caused by faults, the small differences in signals
generated by misfires in different cylinders make it challenging to effectively differenti-
ate between them based on time domain features. However, the time-frequency images
generated by the continuous wavelet transform (CWT) can decompose the instantaneous
rotational speed signals into different frequency ranges, thereby revealing the complexity
and variation of frequency characteristics under fault conditions. In the misfire state, the
CWT time-frequency images clearly demonstrate the presence of high-frequency com-
ponents and vibration instability caused by misfires in different cylinders. Furthermore,
subtle differences in the corresponding time-frequency images for each cylinder provide
compelling evidence for fault classification.

(3) Consequently, by integrating time domain and time-frequency analyses, particu-
larly through the utilization of CWT images, it is feasible to not only differentiate between
normal and fault states effectively but also to accurately identify misfire fault types in
different engine cylinders. For complex systems like marine dual-fuel engines, this mul-
tidimensional analysis based on instantaneous rotational speed contributes to enhanced
accuracy and robustness in fault diagnosis.

4.2.3. Data Sample Construction

The preceding analysis demonstrates that continuous wavelet transform (CWT) images
can effectively differentiate between various operating states of the engine, including nor-
mal conditions and different types of cylinder misfire faults. In light of the aforementioned
conclusion, this study proceeded to augment the dataset comprising the instantaneous rota-
tional speed signals collected from the engine. This was followed by a CWT time-frequency
transformation, which yielded the corresponding CWT images. As illustrated in Table 3, the
sample size for each state (normal, cylinder 1 misfire, cylinder 2 misfire, cylinder 3 misfire,
cylinder 4 misfire, cylinder 5 misfire, cylinder 6 misfire) was augmented to 4000 samples
per class, resulting in a total of 24,000 samples. Subsequently, the data were partitioned
into training, validation, and test sets in a ratio of 7:2:1, resulting in 2800 samples for the
training set, 800 samples for the validation set, and 400 samples for the test set. The dataset
encompasses three distinct operating speeds. It was further enhanced in terms of diversity
and representativeness by including samples at 550 rpm, 650 rpm, and 750 rpm. This
approach not only ensures a reasonable division of the data but also improves the model’s
training effectiveness and generalization ability. The labels for each fault type were assigned
values from 0 to 6, which facilitated the subsequent fault classification task. By adopting
this data partitioning strategy, the model was able to learn the characteristics of various
faults at different rotational speeds while evaluating Its performance on the validation and
test sets. This ensured that the final model was both accurate and robust under diverse
operating conditions.
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Table 3. Division of dataset.

Fault Type
Sample Number

Label
Train Validation Test

Normal 2800 800 400 0
Misfire 1# 2800 800 400 1
Misfire 2# 2800 800 400 2
Misfire 3# 2800 800 400 3
Misfire 4# 2800 800 400 4
Misfire 5# 2800 800 400 5
Misfire 6# 2800 800 400 6

5. Results and Discussion

To validate the effectiveness of the proposed model, this study, cylinder misfire experi-
ments were conducted by doing cylinder misfire experiments on the dual-fuel engine men-
tioned in Section 4.1 as well as by utilizing the samples constructed in Section 4.2.3 as inputs
to the model and conducting comparative experiments with a variety of models. To com-
prehensively assess the superiority of the combined model, several models were selected
for comparative analysis. These models include both single models and fusion models. The
single models consist of classic CNN architectures (LeNet-5, AlexNet, VGG11, ResNet18)
as well as BiLSTM. The fusion models include AlexNet–BiLSTM, VGG11–BiLSTM, and
existing methods such as AlexNet–LSTM and VGG–LSTM.

The model parameters are set as follows: The batch size is 32, the number of epochs is
100, SGD is selected as the optimizer, cross-entropy is used as the loss function, the learning
rate is set to 0.001, the deep learning framework used is Pytorch (version 2.4.0), and the
programming language is Python. The hardware configurations are as follows: The central
processing unit is a 12th-generation Intel Core i5-12400F, while the graphical processing
unit is a NVIDIA GeForce RTX 3060 Ti, accompanied by 8 GB of RAM.

In particular, SGD is selected as the optimizer for the model for several reasons.
(1) From the convergence stability perspective, SGD provides a more stable conver-

gence path during model training, especially at smaller learning rates. In comparison to
adaptive methods (e.g., Adam, RMSprop), SGD enables the model to gradually approach
the local optimal solution without over-tuning, thus avoiding unnecessary oscillations on
complex datasets.

(2) Regarding the ability to generalize, SGD is often considered to have superior
generalization ability. Adaptive optimizers (e.g., Adam, etc.) dynamically adjust the
learning rate, which may result in the model overfitting the training data. In contrast,
SGD can more effectively control the generalization effect of the model and perform more
robustly on the validation and test sets.

(3) In regard to the efficacy of the training program, SGD combined with a smaller
learning rate (e.g., 0.001) is suitable for long-term training (100 epochs) and can gradually
approach the global optimum in the process of continuous updating. Furthermore, for
image classification tasks, SGD is typically able to effectively utilize the feature extraction
capabilities of deep networks during training, thereby assisting the network in learning
features more effectively at different levels.

(4) In terms of resource requirements, In a given hardware configuration (e.g., an
NVIDIA GeForce RTX 3060 Ti graphics card and 8 GB RAM), SGD is capable of achieving
superior performance with constrained computational resources, while minimizing com-
putational overhead, making it an optimal choice for training deep learning models. In
contrast, while the Adam optimizer can facilitate convergence in certain instances, it typi-
cally requires more memory and computational resources, particularly when dealing with
larger datasets. Consequently, in resource-constrained environments, SGD outperforms
Adam due to its enhanced computational efficiency and reduced memory consumption,
making it particularly well-suited for long or large-scale model training tasks.
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In summary, SGD, with its stable convergence and excellent generalization ability, is
more suitable for the long-term training requirements of this study.

5.1. Fault Diagnosis Based on Classic CNN Model

In order to identify the most appropriate model for comparative analysis, this study
employed a number of classic convolutional neural network (CNN) models, including
LeNet-5, AlexNet, VGG11, and ResNet18, in order to conduct fault diagnosis experiments
on the same dataset. At the outset, the training and validation samples were input into each
network model for training purposes. Following iterative optimization, the test samples
were employed to evaluate the model’s performance. This approach allows for an effective
comparison of the performance of different CNN models in the fault diagnosis task, thereby
facilitating the selection of the optimal model. The training results of the four classic CNN
models are presented in Figure 9, which illustrates the training accuracy in Figure 9a,
training loss in Figure 9b, validation accuracy in Figure 9c, validation loss in Figure 9d. The
graphs for the visual observation of the performance of each model during training and
validation, thus enabling an assessment of their effectiveness in the fault diagnosis task.
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A review of the performance of the four classic CNN models during the training
process, as illustrated in the accompanying figure, reveals the following observations:



J. Mar. Sci. Eng. 2024, 12, 2046 20 of 35

(1) The training accuracy is as follows: As the number of training epochs increases, the
training accuracy of all models demonstrates a gradual improvement. The ResNet18 model
exhibits the highest accuracy, approaching 1.0, suggesting that it performs optimally on
the training set. Additionally, VGG11 and AlexNet demonstrate robust performance with
high accuracy, though slightly below that of ResNet18. LeNet-5 exhibits comparatively
suboptimal performance, with a gradual increase in accuracy that does not reach a high
level by the conclusion of the experiment.

(2) Similarly, as the number of epochs increases, the training loss of all models de-
creases, which aligns with the trend of rising accuracy. The decrease in loss for ResNet18 is
the most rapid, with the loss value dropping and stabilizing at an early stage of the process,
indicating a smooth optimization. VGG11 and AlexNet exhibit a slower decline in loss,
with the final values slightly above that of ResNet18. LeNet-5’s loss value decreases rapidly
in the initial stages but remains at a higher level by the end.

(3) With regard to the validation set accuracy, the ResNet18 model demonstrates
the most optimal performance on the validation set, with its accuracy approaching 1.0
at an early stage, thereby exhibiting excellent generalization capabilities. Subsequently,
VGG11 and AlexNet demonstrate a gradual increase in validation accuracy, stabilizing
in the later epochs but still lower than ResNet18. In contrast, LeNet-5 exhibits relatively
low validation accuracy, reaching a peak of approximately 0.8, which suggests limited
generalization capability.

(4) From the validation set loss, ResNet18 exhibits the most stable validation loss,
reaching a minimum at an early stage, which reflects its robust optimization performance.
VGG11 and AlexNet display some fluctuations in the initial stages, but their losses stabilize
as the training progresses. LeNet-5’s validation loss initially decreases at a gradual rate, fol-
lowed by an increase, and remains relatively high, indicating the potential for underfitting
on the validation set.

To validate the generalization capability of the aforementioned classic CNN models
and eliminate the influence of randomness on the results, each model was subjected to 10
independent repeat experiments. The specific steps were as follows: while maintaining
the model hyperparameters constant, 50% of each fault class was randomly selected as a
new test set for the independent evaluation of the models. The mean, standard deviation,
and measurement time for each model over 10 trials are presented in Table 4, with the
results illustrated in Figure 10. The results demonstrate that ResNet18 not only exhibits
the shortest measurement time and the smallest standard deviation in comparison to other
classic CNN models, but it also displays superior accuracy performance.

Table 4. Independent repetition test time of classical CNN models.

Number 1 2 3 4 5 6 7 8 9 10 Mean Standard
Deviation

LeNet-5 14.85 14.85 14.91 14.95 15.31 14.83 14.82 15.38 15.24 15.35 15.05 0.23
AlexNet 14.93 14.86 14.79 14.97 15.16 14.97 15.01 15.09 14.98 14.87 14.96 0.10
VGG11 17.81 17.54 17.35 17.71 17.63 17.54 17.54 17.35 17.42 17.68 17.56 0.15

ResNet18 13.76 13.75 13.81 13.69 13.82 13.76 13.77 13.81 13.77 13.78 13.77 0.04

Moreover, Figure 11 depicts the four most optimal training outcomes for the ResNet18
model. Figure 11a–d illustrate the training accuracy, training loss, validation accuracy, and
validation loss, respectively. The presented graphs offer a more detailed representation
of the model’s performance, showcasing the consistency and efficacy of ResNet18 across
various training processes.
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As illustrated in Figure 11, while ResNet18 demonstrates remarkable proficiency on
the training set, it displays considerable variability on the validation set, particularly during
the initial stages of training. This suggests that ResNet18 is unable to fully account for
the temporal dependencies inherent in the rotational speed data. The model is unable to
effectively process time-series information, which has a detrimental impact on its ability to
generalize on the validation set.

5.2. Fault Diagnosis Based on BiLSTM Model

To assess the efficacy of models designed to process time-series data, fault diagnosis
experiments were conducted utilizing BiLSTM models (single-layer, double-layer, and
triple-layer) on the identical dataset. In this experiment, the single-layer BiLSTM model is
represented by BiLSTM1, the double-layer BiLSTM model is represented by BiLSTM2, and
the triple-layer BiLSTM model is represented by BiLSTM3. The number of hidden nodes for
all three BiLSTM models was set to 128. The training results of these models are illustrated
in Figure 12, where plots (a), (b), (c), and (d) represent the training accuracy, training loss,
validation accuracy, and validation loss, respectively. A summary of the diagnosis results
is provided in Table 5.
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Table 5. Diagnostic results of different BiLSTM models.

Model Accuracy of
Training/%

Training
Loss

Accuracy of
Verification/%

Validation
Loss Times/h

BiLSTM1 71.47 0.6971 66.48 0.7891 0.784
BiLSTM2 88.35 0.3006 79.89 0.5259 0.801
BiLSTM3 86.60 0.3395 78.77 0.5308 0.835

As illustrated in Figure 12 and Table 5, the double-layer BiLSTM model exhibits
superior performance in comparison to the single-layer and triple-layer models. The double-
layer BiLSTM model exhibits superior training accuracy, reaching 88.35%, and validation
accuracy, at 79.89%. These values exceed those of the other two models. Furthermore, the
loss values of the double-layer BiLSTM are markedly lower than those of the single-layer
and triple-layer models, suggesting that it more effectively captures the data features during
training. Furthermore, the training time remains within a reasonable range. The double-
layer structure allows for deeper extraction of temporal information, thereby providing
stronger modeling capability compared to the single-layer model. At the same time, it
avoids the potential overfitting issues observed in the triple-layer model, as its moderate
complexity strikes a balance between feature learning and model generalization.

To assess the generalization capacity of the double-layer BiLSTM model, performance
evaluations were conducted using the test set. The specific procedure was as follows: the
trained model was subjected to 10 independent experiments using the test set. For each
test, 50% of the samples from each category were randomly selected to form a new test
set, ensuring category balance. The resulting test results are presented in Figure 13 and
Table 6. The content of the bar graph represents accuracy and the content of the line graph
represents test time. The average accuracy across the ten independent experiments was
79.99%, with a standard error of 1.01, indicating that the model’s performance remains
relatively stable across different combinations of test samples.
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Table 6. Repeated test accuracy and time of the double-layer LSTM model.

Number 1 2 3 4 5 6 7 8 9 10 Mean Standard
Deviation

Test
Accuracy/% 78.21 79.36 80.29 80.64 81.07 78.21 79.93 80.43 80.71 81.07 79.99 1.01

Test Times/s 13.49 13.61 13.71 13.66 13.43 13.64 13.67 13.61 13.81 13.67 13.63 0.10

The analysis of BiLSTM models with varying numbers of layers revealed that, while
the double-layer BiLSTM model exhibited relatively superior performance, the training
process still encounters convergence issues. This suggests that the model’s capacity to
extract features remains constrained, particularly when confronted with intricate time-
series data. While the double-layer BiLSTM structure offers improvements in capturing
temporal dependencies, it may still encounter difficulties in optimizing when faced with
more intricate signal patterns, potentially resulting in suboptimal performance.

5.3. Fault Diagnosis Based on Fusion Model

In light of the preceding analysis, this study has selected AlexNet, VGG11, and
ResNet18—three classic convolutional neural network (CNN) models that have demon-
strated robust performance—and has combined each with a double-layer bidirectional long
short-term memory (BiLSTM) unit to construct three fusion models. These convolutional
neural network (CNN) models are capable of extracting powerful features from the input
data, effectively capturing spatial characteristics. Bidirectional long short-term memory
(BiLSTM) networks are particularly adept at handling sequential data and capturing long-
range dependencies within sequences. Therefore, the combination of convolutional neural
networks (CNNs) and bidirectional long short-term memory (BiLSTM) networks can fully
leverage the advantages of CNNs in feature extraction while utilizing BiLSTM to manage
dynamic changes in time series. In the AlexNet–BiLSTM and VGG11–BiLSTM models,
the feature extraction components utilize the AlexNet and VGG11 networks, respectively.
The extracted features are adjusted using the Permute and Reshape methods to ensure
compatibility with the input format of the BiLSTM. The training results of the three fusion
models are illustrated in Figure 14, where graphs (a), (b), (c), and (d) represent training set
accuracy, training set loss, validation set accuracy, and validation set loss, respectively. The
diagnostic results are shown in Table 7.
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Table 7. Diagnostic results of three fusion models.

Model Accuracy of
Training/%

Training
Loss

Accuracy of
Verification/%

Validation
Loss Times/h

AlexNet–BiLSTM 99.66 0.0116 95.78 0.1589 1.521
VGG11–BiLSTM 99.95 0.0018 97.64 0.1007 2.818
ResNet–BiLSTM 99.97 0.0016 99.08 0.0364 2.949

The figure above illustrates the performance of the three different fusion models
during the training process, thereby revealing the following conclusions.

(1) The accuracy of the training set is as follows: As the number of epochs increases,
the ResNet–BiLSTM model demonstrates a rapid increase in training accuracy, reaching a
value of approximately 1.0 after approximately 40 epochs, with a relatively stable curve.
Additionally, the VGG11–BiLSTM model rapidly attains an accuracy approaching 1.0,
exhibiting a trajectory closely aligned with that of the ResNet–BiLSTM model, but the
convergence rate was insufficient. In contrast, the AlexNet–BiLSTM model demonstrates
a more gradual improvement in accuracy. While it ultimately approaches 1.0, its overall
growth rate is not as rapid as that of the first two models, and it experiences notable delays
during the mid-training phase.

(2) With the increase in epochs, the loss curves for ResNet–BiLSTM and VGG11–
BiLSTM decrease rapidly, approaching zero after 50 epochs, indicating that these models
experience a swift reduction in loss during training. In contrast, the loss curves for AlexNet–
BiLSTM display a slower decline, with significantly higher values in the initial stages
compared to the other two models. While it also approaches zero after 100 epochs, this
reduction occurs at a slower pace.

(3) The validation accuracy curve for ResNet–BiLSTM exhibits the most optimal perfor-
mance, displaying a rapid increase and stabilizing near 1.0 after 30 epochs, with a relatively
smooth curve and minimal fluctuations. Similarly, the VGG11–BiLSTM model also exhibits
a rapid increase in accuracy, approaching 1.0. However, it displays greater fluctuations
between certain epochs, indicating slightly lower stability. In contrast, the performance of
AlexNet–BiLSTM on the validation set is inferior, with a curve that fluctuates significantly
and maintains a relatively low accuracy.

(4) Regarding the validation set loss, ResNet–BiLSTM demonstrates a rapid decrease,
maintaining a low level throughout the latter stages of training with minimal fluctuations.
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VGG11–BiLSTM also exhibits a rapid decrease in validation loss, but it experiences consider-
able fluctuations between some epochs. AlexNet–BiLSTM presents the poorest performance
in terms of validation loss, with relatively high values and substantial volatility.

The table above presents the diagnostic results of three distinct fusion models. As
evidenced by the data presented in the table, ResNet–BiLSTM exhibits the most optimal
performance on both the training and validation sets. It achieves the lowest training loss and
validation loss, at 0.0016 and 0.0364, respectively, while also attaining the highest validation
accuracy of 99.08%. Although ResNet–BiLSTM necessitates a more extended training period
due to its deeper network structure as a feature extractor, in addition to the supplementary
computational overhead of BiLSTM when processing temporal features, this augmented
complexity results in elevated time costs. In contrast, other models, such as AlexNet–
BiLSTM and VGG11–BiLSTM, while demonstrating reduced training times, exhibit inferior
accuracy and loss performance. This suggests that although ResNet–BiLSTM has greater
computational resource and time demands, its notable performance enhancement makes it
a valuable compromise for the high accuracy demands of practical applications.

In conclusion, the ResNet–BiLSTM model demonstrates the optimal integration of the
residual network architecture of ResNet18 with the temporal dependency capture capabili-
ties of BiLSTM, thereby achieving the most comprehensive performance among the three
models. The model demonstrates a high level of accuracy during training, approaching 1.0
with remarkable swiftness. Furthermore, it exhibits superior performance on the validation
set, attaining a validation accuracy of 99.08% and the lowest validation loss with mini-
mal fluctuations. This illustrates the model’s robust generalization capacity and stability.
Furthermore, the training time for ResNet–BiLSTM is only 2.949 h, indicating that the
model maintains high precision while also exhibiting considerable computational efficiency,
rendering it well-suited for applications where training time and model performance are of
paramount importance. This makes it the optimal model selected for this study. In contrast,
while VGG11–BiLSTM also achieves a validation accuracy of 97.64% and performs well
on the training set, its validation loss and accuracy exhibit significant fluctuations during
certain epochs, indicating slightly lower stability compared to ResNet–BiLSTM. Although
the training time for VGG11–BiLSTM is marginally shorter than that of ResNet–BiLSTM,
this time advantage does not translate into a significant performance improvement. In
contrast, the larger fluctuations in its validation loss suggest that its generalization abil-
ity and stability are somewhat inferior to those of ResNet–BiLSTM. AlexNet–BiLSTM,
while ultimately achieving a high training accuracy, shows a slower improvement rate
and comparatively poor performance on the validation set, with a validation accuracy of
only 95.78%. The higher validation loss and noticeable fluctuations indicate an insufficient
generalization ability. Despite the shortest training time at just 1.521 h, the performance
falls significantly short of the other two models.

To assess the model’s capacity for generalization, a new test set was constructed by
randomly selecting 50% of the samples from each class, thus ensuring a fair and unbiased
evaluation. Subsequently, the model’s performance was evaluated through 10 independent
experiments, with the objective of ensuring the reliability of the results and eliminating the
effects of randomness. The results of the experiment are presented in Figure 15 and Table 8.
The mean test accuracy was 99.30%, with a standard deviation of 0.08, indicating that the
model exhibits remarkable stability across diverse test sets. The average test time was 13.56
s, with a standard deviation of 0.07 s, thereby demonstrating consistency and efficiency in
the model’s operational performance. These results indicate that the proposed model not
only achieves high diagnostic accuracy but also exhibits excellent stability and consistency
in terms of testing time and performance fluctuations, thereby further confirming the
model’s generalization ability and reliability in practical applications.
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Table 8. Repeat test time and accuracy of ResNet–BiLSTM fusion model.

Number 1 2 3 4 5 6 7 8 9 10 Mean Standard
Deviation

Test
Accuracy/% 99.29 99.32 99.36 99.43 99.21 99.19 99.21 99.23 99.33 99.41 99.30 0.08
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5.4. Comparative Experimental Analysis of Different Models

To enhance the reliability of the proposed model’s performance assessment, this
study selected the AlexNet–LSTM model referenced in [45] and the VGG–LSTM model
referenced in [46] for diagnosing engine misfire faults. The aforementioned models were
then compared with the proposed ResNet–BiLSTM model based on a number of criteria,
including accuracy, loss values, training time, and the number of parameters. The training
results are illustrated in Figure 16, wherein figures (a), (b), (c), and (d) represent the
training set accuracy, training set loss, validation set accuracy, and validation set loss,
respectively. The specific diagnostic parameter results are presented in Table 9 for the
reader’s convenience. It is noteworthy that the diagnostic outcomes presented herein
encompass comparative results for all models discussed in this study.

As illustrated in Figure 16, the performance of three distinct models during the training
phase is depicted. From the figure, the following observations can be made.

(1) The training accuracy is as follows: As the number of training epochs increases,
the training accuracy of the ResNet–BiLSTM model remains at a consistently high level
throughout the training process, ultimately approaching 1.0. This demonstrates the model’s
capacity for effective fitting and robust learning with respect to the training set. Further-
more, the increasing trend is notably smooth, exhibiting minimal fluctuations, which
indicates rapid and stable convergence of the model. While the remaining two models
also demonstrated a training set accuracy of approximately 1.0, neither exhibited the same
rapid convergence as the proposed model.

(2) As the number of training epochs increases, the training loss of the ResNet–BiLSTM
model rapidly decreases in the initial stages, eventually stabilizing at a value close to zero.
This trend indicates the model’s effective fitting to the training data, reflecting a strong
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learning capability with a low loss value. The overall trend is characterized by a smooth
trajectory with minimal fluctuations, which indicates excellent convergence. In contrast,
the AlexNet–LSTM model demonstrates a relatively modest reduction in training loss,
ultimately reaching a value of approximately 0.017. This indicates that, despite achieving a
reasonable level of accuracy on the training set, the model’s fitting ability is not as strong as
that of the ResNet–BiLSTM model. The final loss of the VGG–LSTM model is numerically
lower than that of AlexNet–LSTM, but its convergence rate is slow.

(3) In terms of the validation accuracy. The ResNet–BiLSTM model demonstrates
a rapid increase in validation accuracy during the initial stages of training (the first 30
epochs), subsequently stabilizing and approaching a level approximating 1.0. This suggests
that the model is highly effective in capturing data features, thereby enabling it to learn
effective representations rapidly. Throughout the majority of the training process, the
validation accuracy remains at a high level, thereby demonstrating the model’s robust
capacity for generalization. In contrast, the AlexNet–LSTM model exhibits a gradual
increase in validation accuracy, ultimately reaching a value of approximately 0.96. While
this final accuracy is relatively high, the improvement process is slower, indicating that the
learning speed is not as rapid as that of ResNet–BiLSTM. During specific training phases
(such as the initial 30 epochs), the increase in accuracy is constrained, indicating a potential
limitation in feature extraction capabilities. The VGG–LSTM model demonstrates the lowest
validation accuracy throughout the training process, reaching a maximum of approximately
0.93. In the initial 40 epochs, the accuracy exhibits significant fluctuations, suggesting an
unstable learning process that may be influenced by overfitting or underfitting.

(4) The ResNet–BiLSTM model exhibited the lowest validation loss, ultimately con-
verging to approximately 0.036. This indicates that the model performs with great stability
and efficacy on the validation set, exhibiting minimal fluctuations throughout the training
process. This demonstrates the model’s capacity for adaptability to the validation data.
In contrast, the AlexNet–LSTM model exhibits a validation loss of approximately 0.116,
which is considerably higher than that observed in the ResNet–BiLSTM model. This indi-
cates that the model’s performance on the validation set is suboptimal and exhibits some
degree of overfitting. Although the fluctuations in validation loss are minimal, they remain
higher than those of the ResNet–BiLSTM model, indicating a deficiency in generalization
capability compared to ResNet–BiLSTM. The VGG–LSTM model exhibits the highest final
validation loss, approximately 0.204, and experiences considerable fluctuations in the early
stages of training, suggesting an unstable performance on the validation set. Although
the training loss is relatively low, the validation loss indicates that the model is unable to
generalize effectively, suggesting that overfitting may be a risk.

As illustrated in Table 9, the diagnostic outcomes of the various models are delineated.
As can be seen from the table, the following observations can be made:

The ResNet–BiLSTM model demonstrated the most optimal overall performance, at-
taining the highest accuracy on both the training and validation sets (99.97% and 99.08%, re-
spectively) and the lowest loss (0.0016 and 0.0364, respectively). Moreover, it demonstrates
remarkable stability and generalization capability. Despite the increased computational
complexity associated with a larger number of parameters and longer training time, the
model’s superior performance justifies the additional computational resources required.

In comparison, among the single models, ResNet18 demonstrates the most optimal
performance, while the other models exhibit overall performance inferior to ResNet18.
Nevertheless, the accuracy and loss of ResNet18 on the validation set suggest that it has
limited capacity for handling sequential data, particularly in dynamic environments where
the model’s adaptability may be constrained. Moreover, the relatively extended training
period does not confer a notable advantage in efficiency over the ResNet–BiLSTM.



J. Mar. Sci. Eng. 2024, 12, 2046 29 of 35
J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 30 of 38 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 16. Comparison results of different models. (a) Train Accuracy; (b) Train Loss; (c) Validation 
Accuracy; (d) Validation Loss. 

Table 9. Results of comparison of multiple models. 

Model 
Accuracy of 
Training/% 

Training 
Loss 

Accuracy of 
Verification/% 

Validation 
Loss 

Accuracy of 
Testing/% Parameter/M Times/h 

LeNet-5 97.17 0.0785 86.37 0.5446 86.62 5.407 1.952 
AlexNet 99.23 0.0224 95.76 0.1573 96.25 46.776 3.878 
VGG11 98.41 0.0459 92.83 0.2626 92.55 132.863 4.601 

ResNet18 99.95 0.0023 98.35 0.0601 98.04 11.183 2.485 
BiLSTM1 71.47 0.6971 66.48 0.7891 65.72 0.823 0.784 
BiLSTM2 88.35 0.3006 79.89 0.5259 80.11 1.218 0.801 
BiLSTM3 86.60 0.3395 78.77 0.5308 77.64 1.614 0.835 
AlexNet–
BiLSTM 99.66 0.0116 95.78 0.1589 95.75 3.328 1.521 

VGG11–
BiLSTM 99.95 0.0018 97.64 0.1007 97.78 13.487 2.818 

Figure 16. Comparison results of different models. (a) Train Accuracy; (b) Train Loss; (c) Validation
Accuracy; (d) Validation Loss.

Table 9. Results of comparison of multiple models.

Model Accuracy of
Training/%

Training
Loss

Accuracy of
Verification/%

Validation
Loss

Accuracy of
Testing/% Parameter/M Times/h

LeNet-5 97.17 0.0785 86.37 0.5446 86.62 5.407 1.952
AlexNet 99.23 0.0224 95.76 0.1573 96.25 46.776 3.878
VGG11 98.41 0.0459 92.83 0.2626 92.55 132.863 4.601

ResNet18 99.95 0.0023 98.35 0.0601 98.04 11.183 2.485
BiLSTM1 71.47 0.6971 66.48 0.7891 65.72 0.823 0.784
BiLSTM2 88.35 0.3006 79.89 0.5259 80.11 1.218 0.801
BiLSTM3 86.60 0.3395 78.77 0.5308 77.64 1.614 0.835

AlexNet–BiLSTM 99.66 0.0116 95.78 0.1589 95.75 3.328 1.521
VGG11–BiLSTM 99.95 0.0018 97.64 0.1007 97.78 13.487 2.818
AlexNet–LSTM 99.48 0.0174 96.82 0.1168 96.54 2.835 1.208

VGG– LSTM 99.94 0.0082 93.32 0.2048 93.25 11.185 2.492
ResNet–BiLSTM 99.97 0.0016 99.08 0.0364 99.11 15.443 2.949

Among the fusion models, AlexNet–LSTM exhibits relatively good overall perfor-
mance, effectively combining the feature extraction ability of AlexNet with the time-series
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learning ability of LSTM. However, AlexNet–LSTM demonstrates significantly lower ac-
curacy than ResNet–BiLSTM in both the validation and test sets, indicating that it may
encounter greater challenges in addressing complex time-series data, particularly in terms
of the model’s generalization ability and robustness.

In conclusion, the ResNet–BiLSTM model, which demonstrated superior performance
in training and validation, as well as notable advantages in generalization capability and
model stability, was identified as the optimal model in this study.

As illustrated in Figure 17, the confusion matrices of the four models—ResNet18,
AlexNet–LSTM, VGG–LSTM, and ResNet–BiLSTM—further substantiate the exceptional
performance of the ResNet–BiLSTM model. The model exhibits high accuracy in identifying
diverse fault types in the classification task. It is noteworthy that the classification accuracy
for the normal state reached 100%, which is indicative of exceptional performance. The
classification accuracy for cylinder 6 misfire is 99.50%, while the accuracies for cylinders
2, 4, and 5 misfires are all 99.25%. The accuracy for cylinder 3 misfire is 99.00%. In com-
parison, the classification accuracy for cylinder 1 misfire is slightly lower, at 98.25%. These
findings suggest that the ResNet–BiLSTM model exhibits a high degree of discernibility
and reliability in addressing complex fault types associated with diverse cylinder misfires.
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In comparison, while ResNet18 performs optimally as a standalone model, its accuracy
in diagnosing cylinder 4 misfire is notably inferior to that of the ResNet–BiLSTM ensemble
model, thereby underscoring its limitations in certain specific classification tasks. Further-
more, the diagnostic accuracy of ResNet18 is inferior to that of ResNet–BiLSTM when
applied to other cylinder misfires, thus reinforcing the superiority of the ensemble model.
While the classification performance of the AlexNet–LSTM model is superior to that of VGG–
LSTM, it nevertheless falls short of the proposed model in terms of overall performance.

In summary, the ResNet–BiLSTM model, which integrates the exceptional feature
extraction capabilities of ResNet18 with the advantages of BiLSTM in processing sequential
information, not only outperforms the standalone ResNet18 model and the compared
models in classification accuracy but also demonstrates superior generalization ability. This
is particularly evident in the context of intelligent fault diagnosis for engine misfires, where
it demonstrates superior stability and efficiency in diagnostic performance.

The preceding analysis demonstrates that the ResNet–BiLSTM model exhibits superior
overall performance compared to the other models. This paper will conduct a more detailed
evaluation of the ResNet–BiLSTM model to gain further insights into its performance in
practical applications. Specifically, this section provides an in-depth analysis of the model
based on precision, recall, and F1-score, as mentioned in reference [47]. The formulas for
these metrics are as follows:

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 − Score = Precision×Recall
Precision+Recall

(7)

where TP represents the true positives, which is the number of samples that the model
correctly predicts as positive; FP denotes the false positives, which is the number of samples
that the model incorrectly predicts as positive; and FN signifies the false negatives, which
is the number of samples that the model incorrectly predicts as negative.

Table 10 presents results that are consistent with those shown in Figure 17, indicating
that the model performs well across all categories. While there are minor shortcomings in
precision and recall for specific categories (such as cylinders 1 and 2), the overall perfor-
mance remains satisfactory. This provides evidence that the model is effective and accurate
in classification tasks.

Table 10. Evaluation results of ResNet–BiLSTM model.

Label Precision Recall F1-Score

0 1 1 1
1 0.995 0.983 0.989
2 0.985 0.993 0.989
3 0.990 0.990 0.990
4 0.990 0.993 0.991
5 0.993 0.993 0.993
6 0.993 0.995 0.994

6. Conclusions

In order to achieve intelligent diagnosis of ship dual-fuel engine misfire faults, this
paper proposes a ResNet–BiLSTM model that integrates ResNet with BiLSTM. This model
fuses the robust local feature extraction capabilities of deep residual networks (ResNets)
with the benefits of bidirectional long short-term memory (BiLSTM) networks in processing
time series data, markedly enhancing the precision of identifying intricate fault patterns
and augmenting diagnostic efficacy. The principal conclusions are as follows:

(1) By employing sensor-collected instantaneous rotational speed data from the engine,
this study utilized a sliding window technique for data augmentation, which not only
markedly increased the sample size but also simulated the operating states of the engine
at disparate moments, thereby enhancing the model’s adaptability to various operating
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conditions. Subsequently, a continuous wavelet transform (CWT) was applied to convert
the one-dimensional time series data into two-dimensional graphical data. This approach
permits the concurrent examination of signals in both the time and frequency domains,
thereby disclosing spectral characteristics obscured within the time series. Furthermore,
the incorporation of image data augmented the diversity of data representation, enabling
the model to comprehend and learn the characteristics of engine misfires from multiple
scales and perspectives, thereby achieving exemplary performance in fault diagnosis tasks.

(2) By employing image data, a series of convolutional neural network (CNN) and
recurrent neural network (RNN) models were developed, encompassing LeNet-5, AlexNet,
VGG11, ResNet18, and bidirectional long short-term memory (BiLSTM) networks. The
integration and comparative analysis of different CNNs with a double-layer BiLSTM
model revealed that the ResNet–BiLSTM model, which combines ResNet with BiLSTM,
demonstrated superior performance across various performance metrics. In particular, the
ResNet–BiLSTM model demonstrates significantly lower loss values on both the training
and validation sets in comparison to other fusion models, which indicates its superior
capacity for data fitting. Moreover, this model demonstrates superior classification accuracy
and exceptional generalization ability, outperforming other fusion models in these respects.

(3) A comprehensive performance analysis was conducted on the proposed ResNet–
BiLSTM model in comparison to the existing AlexNet–LSTM and VGG–LSTM models,
with a particular emphasis on key metrics, including accuracy, loss value, training time,
and parameter count. The findings demonstrate that despite the ResNet–BiLSTM model
exhibiting a greater number of parameters and a longer training period in comparison
to the other two models, it attains a more rapid convergence, higher accuracy, and lower
loss values, thereby exhibiting markedly superior overall performance. From a practical
standpoint, the ResNet–BiLSTM model is particularly well-suited to tasks that necessitate
high precision and model performance, given its exceptional accuracy and stability.

Moreover, a comprehensive assessment of the model was conducted using pivotal
metrics, including the confusion matrix, precision, recall, and F1-score. The findings demon-
strate that the ResNet–BiLSTM model markedly outperforms existing techniques in terms
of fault diagnosis accuracy. Even in instances where fault categories are difficult to differen-
tiate, the ResNet–BiLSTM model demonstrates an exceptional capacity for classification.
The model exhibits remarkable precision in the majority of categories, underscoring its
robust capacity to accurately identify positive samples.

Furthermore, the preliminary results demonstrate that the methodology proposed in
this paper is not only applicable to the diagnosis of misfires in marine dual-fuel engines but
also has the potential for extension to fault diagnosis tasks in engines with varying cylinder
numbers (12 or 16) and various models, including diesel and gas engines. Other similar
diagnostic tasks can be realized by appropriately adjusting the model parameters and
structure. This method demonstrates robust fault recognition capabilities across diverse
internal combustion engine types, showcasing remarkable generality and adaptability. It
offers novel insights into fault detection in other internal combustion engines, further
enhancing the practical applicability of the research.

Although the ResNet–BiLSTM model has been shown to perform well in intelligent
fault diagnosis of ship dual-fuel engine misfires, there is still scope for further improvement.
Further optimization opportunities may be identified in the following areas:

(1) It is recommended that the dataset be expanded and diversified. While the cur-
rent data preprocessing and augmentation methods have effectively enhanced model
performance, the scale and diversity of the dataset remain limited. Expanding the dataset,
particularly by incorporating data from a greater variety of operating conditions and fault
types, could enhance the model’s generalization ability and robustness.

(2) The model structure may be optimized as follows: Although the ResNet–BiLSTM
model effectively combines the strengths of ResNet and BiLSTM, there is still scope for
further optimization of its structure. It would be beneficial to enhance the model’s feature
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extraction capabilities and classification performance, thereby improving its ability to
recognize complex fault patterns.

(3) The integration of data from diverse sensors through multimodal learning ap-
proaches can facilitate the consolidation of information from disparate data sources, thereby
enhancing the accuracy and reliability of fault diagnosis and reducing diagnostic errors
attributable to the limitations of a single data source.
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Nomenclature

Abbreviation Full Name
ResNet Residual network
BiLSTM Bidirectional long short-term memory
CWT Continuous wavelet transform
VGG Visual geometry group network
LSTM Long short-term memory
ICE Internal combustion engine
FFT Fast fourier transform
ANNs Artificial neural networks
CNNs Convolutional neural networks
RNNs Recurrent neural networks
SGD Stochastic gradient descent
BiLSTM1 Single-layer Bidirectional long short-term memory
BiLSTM2 Double-layer Bidirectional long short-term memory
BiLSTM3 Triple-layer Bidirectional long short-term memory
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