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Abstract: River inlets, deltas, and estuaries represent delicate ecosystems highly susceptible to climate
change impacts. While significant progress has been made in understanding the morphodynamics of
these environments in recent decades, the development of models still requires thorough testing and
data integration. In this context, remote sensing emerges as a potent tool, providing crucial data and
the ability to monitor temporal changes. In this paper, an integrated approach combining remote
sensing and morphodynamic modeling is proposed to assess river systems comprehensively. By
utilizing multispectral or RGB optical imagery from satellites or UAVs for river classification and
remotely derived bathymetry, echo sounder data for ground truth, and photogrammetric modeling
of emerged areas, we outline a procedure to create an integrated and continuous digital terrain model
(DTM) of a riverbed, paying particular attention to the wet–dry interface. This method enables us to
identify the river centerline, its width, and its slope variations. Additionally, by applying a linear
morphodynamic model that considers the spatial variability of river morphology commonly found in
estuarine environments, it is possible to predict the wavelength and migration rate of sediment bars.
This approach has been successfully applied to recreate the DTM and monitor the morphodynamics
of the seaward reach of the Roya River (Italy).

Keywords: morphodynamic modeling; riverbed digital terrain model; bathymetry; multispectral
optical images; photogrammetry

1. Introduction

Small river basins frequently experience rapid flood events that can result in significant
loss of life, destruction of resources, and damage to structures and infrastructure. These
events have substantial economic, social, and psychological impacts. Over the past thirty
years, the Liguria region in Italy has witnessed several intense flood events, including
those in Sturla (1992), Varenna (1993), Verbone and Armea (2000), Chiaravagna (2010), Vara
and Cinque Terre (2011), Bisagno-Fereggiano (2011 and 2014), Entella-Rupinaro (2014),
Polcevera-Fegino and Stura-Orba (2019), and Roya (2020) [1].

Small and steep river catchments are highly vulnerable to extreme rainfall events,
both due to their topography, which increases the probability of flash floods, and the lack
of detailed hydrologic, hydraulic, and morphodynamic information needed to predict
their stability under extreme floods and thus to manage these environments. Additionally,
the rapid onset of floods in these areas complicates the design of protective and warning
measures. A recent example in Liguria occurred in the Roya basin on the French–Italian
border, which was hit by the Alex storm in 2020 [2,3], causing the Roya River to permanently
alter its course and occupy an adjacent national road after an extraordinary flood event.
This underscores the necessity of understanding hydraulic and morphodynamic processes

J. Mar. Sci. Eng. 2024, 12, 2055. https://doi.org/10.3390/jmse12112055 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12112055
https://doi.org/10.3390/jmse12112055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0009-0001-5982-3154
https://orcid.org/0009-0001-2817-9343
https://orcid.org/0000-0002-1963-3321
https://orcid.org/0000-0002-1801-3403
https://orcid.org/0000-0002-2952-7290
https://orcid.org/0000-0002-4598-4758
https://doi.org/10.3390/jmse12112055
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12112055?type=check_update&version=1


J. Mar. Sci. Eng. 2024, 12, 2055 2 of 28

in river basins to improve the protection and management of these fragile environments
against flooding.

Over the past few decades, significant advancements have been made in understand-
ing the morphodynamics of river courses and inlets [4,5]. However, developing and
validating morphodynamic models requires data that accurately reflect the geometry of
natural environments and the factors influencing their spatial and temporal evolution.
While such data were once difficult to obtain, derived mainly from surveying cross-sections
of the river plain by total station or GPS/GNSS satellite positioning, remote sensing tech-
niques, such as photogrammetry or laser scanning from UAV or aircraft, now allow for the
rapid and extensive acquisition of river morphology. In fact, these techniques enable the
production of high-resolution, spatially continuous, and accurate data [6–8].

Even these remote sensing technologies face limitations. Photogrammetry cannot
penetrate dense vegetation; it captures the height of the canopy rather than the ground
beneath. On the other hand, Light Detection and Ranging (LiDAR) sensors, used by UAVs
or aircraft, are effective in penetrating vegetation canopies [9]. However, given the high
cost of LiDAR sensors, photogrammetry remains a valuable tool for reconstructing the
emerged areas of a river DTM.

Submerged areas are traditionally surveyed using Single-Beam or Multi-Beam Echo
Sounders (SBES or MBES) mounted on boats or uncrewed watercraft. They produce highly
accurate bathymetric data [10,11] but require a significant investment in equipment, which
must be carefully calibrated, and considerable time for data collection and processing [12,13].
In the case of shallow waters, bathymetry can also be estimated by photogrammetry or
bathymetric LiDAR after appropriate correction for water refraction [14]. In addition,
multispectral optical images from satellites, aircraft, and UAVs have also recently been
used to obtain remotely derived bathymetry (RDB) products [15–18]. However, in the
case of unclear waters, estimating bathymetry from remote sensing can prove technically
challenging [19,20].

Several methods have been proposed to obtain digital terrain models (DTMs) of
emerged and submerged areas in coastal or riverine environments by integrating remote
sensing data from various sources. In fact, a complete description of such environments is
essential for many applications [21–24]. Integration is already an issue within the individual
data acquisition domains, without necessarily referring to the further integration between
bathymetry and topography, as addressed by Lewicka et al. [25]. A first method aiming to
create a continuous surface for bathymetry and topography in coastal areas was proposed
by Gesch and Wilson [26]. While the premises of their study share some similarities with
ours, their focus on a shallow coastal environment distinguishes it from our riverine context.
They acquired high-quality data and successfully interpolated along the coast. Integrating
data in fluvial environments may require additional attentions, as fluvial topographic and
bathymetric data are often collected using very different instruments. A comprehensive
DTM creation process was proposed by Schäppi et al. [27] relying on riverbed cross-
sections, which were not available in our dataset. Note that the accuracy of cross-sections
is depth-dependent, since they are usually performed by walking in the riverbed. While
the method is suitable for fluvial environments, it requires specific adaptations to handle
complex morphologies and significant topographic changes. Additionally, the quality of
the model depends on the density of cross-sections and the accurate definition of breaklines,
especially in dynamic areas such as river bends or reaches subject to frequent morphological
changes. Karaki et al. [28] explored more experimental alternatives, integrating a UAV
carrying an aerial optical sensor for photogrammetry, with an ASV (Autonomous Surface
Vehicle) equipped with underwater acoustic sensors. That solution required specialized
instrumentation, which usually raises costs. In this regard, our goal was to develop a highly
adaptable method for fluvial environments that could effectively integrate heterogeneous
datasets, even those not initially intended for merging, while maximizing automation
and replicability.
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This paper shows the research performed so far within the European-funded RAISE1.
It aims at integrating morphodynamic modeling with digital modeling derived from image
analysis, for enhanced river management. Images enable continuous monitoring of the
river, while the morphodynamic model facilitates management by offering quick and
user-friendly simulations to address critical questions, such as the following ones: Will
dredging in one area lead to deposition elsewhere? Will bedform migration cause shifts in
the excavation site, and if so, how quickly? What long-term changes can be anticipated if
river flow increases?

The contributions of this study are as follows: First, we propose a method for generat-
ing a comprehensive DTM of the entire riverbed by integrating image analysis, taking care
of its automation and replicability for future application to different case studies. This is
crucial for monitoring riverbed changes over time and providing valuable information that
can be used to test morphodynamic models. Second, we use the morphometric data derived
from the DTM, such as channel width, bar length, localized scours, and deposition areas,
to calibrate a simple morphodynamic model and assess the accuracy of its predictions.

Concerning the DTM generation, the submerged morphology is computed using a
Remote-Derived Bathymetry (RDB) algorithm [17,29] applied to multispectral optical im-
agery, while the emerged sections are measured using UAV photogrammetry. Concerning
morphodynamic modeling, we refer to the model proposed by Ragno et al. [30], based on
a linear stability analysis. It offers the advantage of predicting, at a low computational
cost, whether bars may form and if so, the type of bars (alternate or central) that typically
emerge in the early stages of development, along with their wavelength and migration
rate. Moreover, the model represents the forefront of research in the literature on linear
stability analyses of river bedforms, as it accounts for the effects of seaward boundaries
and width variation.

This integrated approach is applied to create a DTM and monitor morphodynamics in
the seaward stretch of the Roya River (Italy). The present findings indicate a qualitative
alignment between the theoretical model and remote sensing data, encouraging the further
development of the present integrated approach to improve understanding of river mor-
phology, hydrodynamics, and sediment dynamics, to support informed decision-making
for sustainable river management. Additionally, the proposed method emphasizes repli-
cability and cost-effectiveness, contributing to ongoing river monitoring and enhancing
datasets for model refinement.

The structure of the article is thus organized as follows. Section 2 offers an outline of
the state of play of the principles and methodologies behind morphodynamic modeling,
along with insights into the creation of the DTM. Section 3 outlines the materials, including
the study area and data collection information. Section 4 explains the methodology used for
DTM generation and morphodynamic modeling. Section 5 presents the results, followed
by a discussion of the study’s advantages and limitations in Section 6. Finally, Section 7
provides the conclusion and future work.

2. Background
2.1. Morphodynamic Modeling

From a morphodynamic standpoint, rivers may conceptually be modeled as systems in
a state of quasi-equilibrium, i.e., such that flow perturbations relative to some equilibrium
state let the system evolve on spatial-temporal scales much larger than the hydrodynamic
scale. This quasi-equilibrium pertains to the cross-sectionally averaged bed elevation
rather than its local value. Indeed, in the real world, rivers display spatial variations and
temporal fluctuations in the flow properties acting on various scales, like free and forced
bedforms, which arise from bed interface instabilities and channel geometry deviations,
respectively. Moreover, larger scales involve variations in water discharge and sediment
flux due to events like floods and seasonal changes. Despite these perturbations, the concept
of morphodynamic equilibrium, viewed in an averaged sense, remains insightful [5].
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Traditionally, equilibrium in geomorphology is linked to the notion of formative
discharge [31], which essentially assumes that the unsteady forcing on the river is morpho-
logically equivalent to some effective steady forcing. The initial goal of morphodynamics
was thus to define this equilibrium state in a simple configuration: a cohesionless straight
channel with a constant slope under steady flow and sediment supply. Despite its existence,
mechanistic approaches have revealed that the equilibrium configuration is not stable.
Notably, bed perturbations lead to the formation of large-scale fluvial sedimentary patterns
known as bars.

The so-called “free bars”, resulting from spontaneous bed state instability, exhibit
large-scale deposition bumps and scour holes on alternate channel sides and are typically
migrating features. These bars impact navigability, enhance bank erosion, and interact with
engineering structures. For these reasons, over the past 50 years, extensive literature has
emerged on river bars, including theoretical studies [32], experimental investigations [33],
field observations [34], and numerical modeling [35]. These studies show that bars form
spontaneously in both gravel and sand bed rivers when the channel’s width-to-depth
ratio exceeds a critical value. Bars are downstream-migrating features, often appearing as
single rows (alternate bars) or multiple rows in wider, shallower streams. A linear analysis
predicts bar wavelength and migration speed, while a nonlinear analysis is needed to
determine their amplitudes [36].

Compared to the pure riverine case, the morphodynamics of estuaries, in which both
the fluvial and tidal forcing concur to determine the flow field, has received comparatively
less attention. Most research has concentrated on understanding the long-term equilibrium
profile [37,38], with some recent numerical simulations exploring the morphodynamic
evolution of large-scale estuarine systems [39]. However, a complete study dealing with
bars’ formation, evolution, and equilibrium configuration in these peculiar transitional
systems is still absent. For this reason, here, we refer to the model of Ragno et al. [30],
who faced the problem of the embryonic formation of free bars in weakly converging tidal
channels and estuaries mathematically within a unified two-dimensional shallow water
and sediment mass balance model. The main physical parameters employed in the model
are recalled in Section 4.2 for its applications.

2.2. Digital Terrain Model of a River

Morphodynamic modeling frequently necessitates data describing the river envi-
ronment from both morphometric and hydrodynamic perspectives. An accurate DTM
representation of the riverbed, with continuity between the emerged and submerged parts,
is necessary both as input data and for model validation [40]. It allows one to extract
morphometric information, such as channel width, bar length, localized scours, and depo-
sitions. Moreover, information on sediments in the riverbed and the possible presence of
vegetation are fundamental for the definition of the roughness coefficient, which influences
water velocity and discharge. Obtaining such data is usually challenging and requires
costly measurement campaigns. Usually, descriptive elements of the riverbed are sourced
from ground-based techniques, such as total stations or GPS/GNSS positioning, involving
traversing the river plain and requiring each point to be approached individually [41]. This
time-consuming methodology requires the watercourses to be accessible and the water to
be shallow. Furthermore, the acquired data are discrete. Recent advancements in technol-
ogy have significantly streamlined the processes of data acquisition. Nowadays, various
remote sensing techniques enable the production of high-resolution, spatially continuous
and accurate data, following meticulous calibration, processing, and analysis [6–8].

Tools valuable for remote sensing studies of river morphology include aerial and
satellite imagery [42]. Satellite images offer a synoptic and recurrent viewpoint on the area
of interest, providing automatic acquisition [43]. On the other hand, aerial imagery can be
produced by UAVs, yielding high spatial resolution, flexibility, capacity to gather data at
different times of the day, and relatively lower cost compared to traditional platforms [44].
UAV photogrammetry enables extensive and rapid surveys, offering valuable information
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for modeling the non-vegetated emerged sections of the riverbed. However, in areas with
dense vegetation, it captures the height of the canopy rather than the underlying terrain.

Light Detection and Ranging (LiDAR) is a remote sensing technology used from UAVs
or aircraft that measures distances by emitting laser light and analyzing the reflected signal.
It is effective for surveying both dry and wet areas. One of LiDAR’s key advantages
is its ability to penetrate vegetation canopies [9], providing detailed information about
ground-level data even in densely vegetated areas. When LiDAR is used for topographic
surveys, it typically operates at near-infrared (NIR) wavelengths (1064 nm) [45,46] and
the signal cannot penetrate water, thus providing a direct reference for water surface
elevation [47]. In contrast, bathymetric LiDAR uses green light that travels through the
water column up until reaching the submerged riverbed. However, this technology can face
challenges related to transient water turbidity, which affects data quality in shallow water
environments. Separating surface reflections, water column effect, and bottom reflections
in LiDAR-based surveys can also prove technically complex [20]. Given the high cost of
LiDAR sensors, photogrammetry is a technique most widely used for reconstructing the
emerged areas of a river DTM.

Submerged areas are traditionally surveyed using acoustic sonars mounted on boats or
uncrewed watercraft. Single-Beam Echo Sounders (SBES) and Multi-Beam Echo Sounders
(MBES) are well known for their ability to produce highly accurate single-point or continu-
ous bathymetric data [10,11]. However, achieving this level of precision requires significant
equipment investment, careful installed device calibration, and considerable time for sur-
veying and data processing [12,13]. Additionally, using these technologies in shallow
waters can be problematic due to breaking waves and submerged obstacles, limiting their
overall applicability [48].

In the case of very shallow and clear water, bathymetry can be estimated from pho-
togrammetry after appropriate correction for water refraction [14]. In the case of un-
clear water, an appropriate relationship between turbidity and brightness factors can be
found [19].

In recent decades, optical multispectral imagery from remote sensing platforms, such
as satellites, aircraft, and UAVs, has also been used to obtain Remote-Derived Bathymetry
(RDB) products [15–18]. These techniques rely on analyzing the interactions between light
at various wavelengths and the water column, which are influenced by water constituents
and bottom materials [49]. There are two primary approaches for estimating water depth
based on optical band attenuation in RDB [15]. Statistical approaches entail correlating the
reflectance of one or more suitable spectral bands with bathymetry, without considering the
physics of light propagation in water or environmental factors [49]. Their main advantage is
their ease of application. Conversely, physics-based approaches incorporate the dynamics
of light propagation in water. These models can be solved using semi-empirical and
analytical methods. Semi-empirical methods are founded on specific assumptions about
radiative transfer and light attenuation in water and are calibrated with in situ data [15].
Notable semi-empirical methods include those developed by Lyzenga [50] and Stumpf [29],
which have been applied directly or adapted for deriving bathymetry in various studies
focusing on fluvial environments [14,51–53]. Analytical methods depend on understanding
the biophysical and optical properties of water constituents. While analytical methods
can achieve high accuracy, they are complex to implement and require numerous in situ
parameters and precise atmospheric correction inputs [49].
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3. Materials
3.1. Study Area

Roya is a river in the French–Italian Maritime Alps (43°48′21′′ N, 7°35′33′′ E), flowing
into the Ligurian Sea in Ventimiglia (Figure 1).

Figure 1. Geolocalization of the Roya basin and its seaward reach, selected as the study area.

It is 59 km long and has an area of drainage basin of about 660 km2. The source of the
Roya River is located in Colle di Tenda, at 1908 m AMSL, within the French municipality
of Tenda. It exhibits typical characteristics of an alpine river in its upper course, with a
steep and rugged bed traversing narrow gorges. As it descends towards the valley, it
flows through several localities, including Tenda, San Dalmazzo di Tenda, and Fontan,
and is joined by tributaries such as the Bevera stream. The hydrology of the Roya River is
characterized by a torrential regime, with substantial flow rates throughout the summer
due to its alpine watershed. Nevertheless, the river is prone to sudden and intense flooding,
particularly during autumn and spring. A notable event occurred in October 2020, when
heavy rainfall caused by the Alex storm [2,3], together with the release of water from
the Casterino dam, resulted in severe flooding and widespread damage along the river
course, significantly affecting Ventimiglia, where the river mouth is located. It can therefore
be inferred that the river was chosen for this study due to its societal relevance. The
reach under investigation begins at the river mouth and extends up to the confluence
with the Bevera Stream, spanning a linear distance of 4.67 km in a north–west direction,
as illustrated in the red rectangle of Figure 1. This reach was selected as it offered the best
balance between the spatial coverage of the available data, the gradual variation in channel
dimensions moving upstream from the mouth, and the requirement for a sufficiently large
area to effectively evaluate the resulting digital model.
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3.2. Data Collection

Datasets employed in this study are described in Table 1.

Table 1. Datasets.

Data Type Source Acquisition Date Features

Aerial orthophoto AGEA 13 August 2019 0.2 m spatial resolution
Photogrammetric digital model Gter Summer 2019 0.4 m spatial resolution

SBES points CNR-INM/Gter 5 November 2019 42,585 sampled points covering an area of
approximately 0.04 km2

• The aerial orthophoto (Figure 2) available on the Liguria Region Geoportal (Italy)2

was acquired in 2019 by RTI CGR Spa/e-Geos S.p.A under a commission received
from AGEA. The image comprised 4 spectral bands (red, green, blue, NIR) with a
spatial resolution of 0.2 m. The image was used to classify the riverbed and calculate
the bathymetry.

• The photogrammetric survey (Figure 3), performed by Gter Ltd. during the summer
of 2019, produced a digital model with spatial resolution of 0.4 m. In this work,
the photogrammetric digital model was used to extract bare-soil areas’ elevation and
to create a surface that allowed bathymetry to be converted from depth to elevation.

• The SBES survey, performed within the seaward reach of the Roya River (Figure 2), re-
lied on an Autonomous Surface Vehicle (ASV), referred to as SWAMP. It was equipped
with a Microstrain 3DM-GX3-35 GPS + AHRS (attitude heading reference system),
and an Echologger ECS400 single-beam Sonar (with a working frequency of 200 kHz)
for river-bottom range measurement [54]. The survey, carried out on 5 November
2019, sampled more than 42,000 points over an area of approximately 0.04 km2. In this
study, SBES points were used to calibrate and validate the RDB model.

Figure 2. RGB aerial orthophoto of the study area (on the left). SBES survey conducted within the
seaward reach of the Roya River (on the right).
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Figure 3. Photogrammetric survey within the seaward reach of the Roya River.

4. Methods
4.1. DTM Computing Method

The UML (Unified Modeling Language) activity diagram of Figure 4 illustrates the
workflow to reconstruct the DTM of a riverbed from remote sensing data, described in
detail in the following subsections. The initial step involves identifying whether sections
of the riverbed are above or below the water level (Section 4.1.1). Emerged areas are
then categorized by riverbed type (i.e., bare soil or vegetation), while an algorithm is
applied to submerged ones to retrieve bathymetry (Section 4.1.2). Subsequently, Elevation
Point Clouds (EPCs) are generated for each section, based on the specific data sources
available. Lastly, EPCs are interpolated to reconstruct a continuous DTM of the riverbed
(Section 4.1.3).

4.1.1. Image Classification

Classifying the elements within the riverbed involved processing the multispectral
image through a series of sequential steps, providing the basis for all subsequent work-
flow activities.

First, the internal portion of the riverbed bounded by the lateral banks had to be
identified. To this end, we referred to a land use map from the Ligurian Geoportal, which
was manually refined to single out the area of interest and mask certain anthropogenic
features, such as overpasses, bridges, and side walls, as shown in Figure 2.

Subsequently, distinguishing emerged and submerged sections of the riverbed was
accomplished by analyzing the near-infrared band. Since water has a distinct spectral
signature in this wavelength range compared to bare soil and vegetation [55], by applying
an appropriate threshold value to this band, it was possible to differentiate wet and
dry surfaces.
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Through a supervised process implemented in a GIS environment, the emerged
sections were further classified between vegetated areas and those comprising bare soil,
which in the seaward reach of the Roya River mainly included small pebbles. Training maps
representative of the two different homogeneous classes within the image were manually
defined, and the corresponding spectral signatures were computed. These served as
input to a maximum likelihood classifier algorithm3, which assigned each pixel previously
marked as dry land to the class to which it had the highest probability to belong.

Figure 4. Workflow for the computation of riverbed DTM from remotely sensed data.

Similarly, a supervised classification was also employed to identify shadows cast on the
water surface by vegetation and crossing structures. This was necessary because shadows
have a negative impact on the calibration of the model used to calculate bathymetry,
as illustrated below.
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4.1.2. Remote-Derived Bathymetry

Bathymetric data were derived from optical multispectral imagery extending the semi-
empirical method proposed by Stumpf et al. [29]. That method is based on the principle
that light intensity decreases exponentially as it passes through the water column due to
absorption, with the rate of attenuation depending on the wavelength. It relies on a set of
in situ bathymetric observations to correlate water depth with the ratio of log-transformed
reflectance values from appropriate spectral bands. In this study, drawing on suggestions
from other authors who analyzed variations to Stumpf’s linear solution, offering better
adaptability and accuracy in capturing the observed data’s behavior [56,57], we extended
Stumpf’s approach by adopting a three-parameter exponential model:

Z = exp

{
a

ln[nRw(λi)]

ln[nRw(λj)]
+ b

}
+ c (1)

where Z is the water depth, Rw(λi) and Rw(λj) are the reflectance values measured across
the spectral bands having λi and λj as their central wavelengths, a, b, and c are calibration
parameters, and n is a fixed constant ensuring the ratio always remains positive.

The high-density SBES data were resampled to align with the spatial resolution of
the orthophoto, preventing multiple depth values from being assigned to the same pixel.
This operation reduced our initial 42,585 ground-truth points to 9752. Finally, resampled
points were randomly divided into two separate datasets: one for calibration and one for
validation of the RDB model, each comprising half of the available points.

Model calibration was performed following the nonlinear least squares method. An ini-
tial set of parameters that provided the best-fit regression between the calibration dataset
and the image band ratios was computed. Both the blue/red and blue/green band ratios
were examined, with the spectral bands masked to show only the submerged sections of
the riverbed. The blue/red ratio was ultimately selected due to its superior performance
in shallow waters. The coefficient of determination (R2) was computed as a proxy for
the quality of the model calibration. This statistical measure indicates the percentage of
variance in the dependent variable that can be predicted by the independent variable.
A higher R2 value indicates a better fit, meaning the model more accurately captures data
trends. Outliers were removed according to Chebyshev’s theorem [58], also known as the
three-sigma criterion, which excludes values more than three standard deviations from the
sample mean. The model was then recalibrated, and a validation procedure was carried out
to evaluate its robustness. This included comparing the estimated depths with the actual
validation dataset and calculating a series of statistical parameters: Root-Mean-Square Error
(RMSE), Mean Absolute Error (MAE), Bias Average (BIAS AV), and Bias Standard Deviation
(BIAS STD). The RMSE quantifies the average squared deviation between predicted and
observed values, with lower RMSE values signifying higher accuracy of the model. The
MAE captures the average magnitude of errors in predictions ignoring their direction. The
BIAS AV refers to the average residuals, computed as the difference between control depths
and the estimated RDB, showing whether the model overestimates or underestimates the
target variable. The BIAS STD indicates the variability of these residuals around the BIAS
AV, with lower values indicating more consistent predictions.

4.1.3. DTM Reconstruction

EPCs were generated for each riverbed type (i.e., bare soil, water, and vegetation)
based on the specific data sources available. Then, EPCs were interpolated and eventu-
ally smoothed to obtain a discontinuity-free DTM that encompassed both emerged and
submerged areas.

Identification of EPCs for submerged section. While geomatics instruments provide
direct elevation readings for emerged areas, submerged areas, which are surveyed using
echo sounders or RDB, are commonly described by depth values rather than elevation
measurements [59]. Depth is measured as the vertical distance between the free-water
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surface and the river bottom. Thus, by knowing both the depth values and the elevation
of the water surface, which follows the gradient of the river from the mouth to the source,
the river bottom elevation can be properly derived.

The proposed method calculated water depth from multispectral images and estimated
the water surface elevation using bare soil points located just next to the water as indirect
measurements. This process began by identifying the river’s centerline, which could be
carried out either manually through digitization or by using Voronoi polygons [60] if a
set of points along the river-banks was available. Once the centerline was established,
a series of points was spaced along it at 1-m intervals. Next, a buffer zone 0.5 m wide
was created around the water areas. Within that buffer, points classified as bare soil were
identified, as these points were considered representative of the water surface height.
The elevation of each point along the river’s centerline was then assigned based on the
closest bare soil point within the buffer zone. Finally, using Voronoi polygons, the elevation
values assigned to the centerline were extended across the entire riverbed, allowing for a
continuous representation of the water surface elevation based on the surrounding terrain.
This approach leveraged the spatial relationship between bare soil and water to generate a
detailed model of the river’s surface.

This method created a stepped surface, which was then filtered using a SAGA Simple
Filter tool [61] to produce a smoother result mirroring the height increase from the river
mouth to its source. The riverbed elevation was computed by subtracting depth values
from the water surface height.

Identification of EPCs for the emerged section. Elevation values for bare soil were directly
extracted from the photogrammetric point cloud. However, since photogrammetry does not
provide detailed elevation information for the ground beneath the canopy, the proposed
approach used interpolation techniques to estimate the EPC beneath the canopy. The
process began by creating a buffer zone (0.5 m) around the vegetated areas. By subtracting
the original vegetation area from that buffer, a thin strip outside the vegetation was obtained.
This strip included water points, with elevations calculated as the difference between the
water surface and the RDB, and bare soil points derived from photogrammetry. The
elevations of water and bare soil points were then interpolated using a Triangulated
Irregular Network (TIN) to produce a surface that approximated the ground elevation
beneath the vegetation. Finally, that interpolated surface was converted from raster to
vector format to generate an EPC in the vegetated areas.

Generation of DTM from all the EPCs. EPCs for each class (i.e., bare soil, water, and veg-
etation) were consolidated into a single dataset. TIN interpolation was then applied to
generate a continuous surface. That method is particularly effective for filling in large
no-data gaps, such as those beneath bridges and walkways. To further smooth the resulting
surface, it was converted from a raster grid to a vector point cloud, and cubic spline inter-
polation was applied. If necessary, an additional smoothing step may be performed using a
Gaussian filter [61]. The final result of this process was a continuous, smooth surface that
provided elevation values for both the emerged and submerged sections of the river.

4.2. Morphodynamic Method

In this application, the morphodynamic model for bar formation in micro-tidal estuaries
and tidal channels developed by Ragno et al. [30] was utilized. The main features of the model
are hereafter summarized, while interested readers may refer to [30] for a detailed formulation.

The model operates within a two-dimensional framework, using a depth-averaged
shallow water formulation commonly employed in many bar models. The flow is assumed
to occur in a well-mixed tidal stream, over a cohesionless bed composed of homogeneous
sediment characterized by a median grain size ds, and a tidal sea as the seaward boundary.
The effect of wind waves is neglected, and the banks are assumed to be non-erodible.
A Cartesian reference frame is used, with x and y indicating the longitudinal and transverse
coordinates, respectively, with x = 0 at the tidal sea and extending landward. Spatial
variations in channel geometry are considered, as depicted in Figure 5.
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In natural tidal environments, channel width typically increases gradually toward the
mouth, which can be approximated by an exponential law:

B = Bu + (Bm − Bu)exp
(
− x

Lc

)
(2)

where Lc is the convergence length, Bm is the half-width at the mouth, and Bu is the
upstream half-width not affected by tidal processes.

Figure 5. Geometrical scheme of the river with a micro-tidal mouth adopted in the formulation
of [30].

The model relies on several spatial scales: the planimetric dimension of bars related to
channel width, the convergence length governing the rate of smooth widening toward the
mouth, and the backwater length Lb, defined as the ratio between uniform flow depth and
bed slope, crucial for studying coastal processes like stratigraphic patterns and avulsion
phenomena. Analyses have shown that B is typically much smaller than both Lc and Lb,
which are of similar magnitude. This identifies two spatial scales for studying bedform
formation: the short bar scale and the long channel scale. The governing equations are
the St. Venant equations for shallow water flow, coupled with the Exner equation for
sediment mass conservation. Closure relations are needed to express shear stress and
sediment transport rate in terms of the governing variables. This is achieved through a
“local equilibrium” approximation, justified by the slowly varying flow field. Shear stress
and sediment transport rate are computed based on local flow variables, with the friction
coefficient estimated using the Manning–Strickler formula and sediment transport rate
determined using the Engelund et al. [62] formula.

To solve the system, proper boundary conditions are imposed: the channel walls are
impermeable to both flow and sediment fluxes, the tidal sea induces a small oscillation of
the free surface at the mouth, and normal flow conditions with steady freshwater discharge
per unit width and bed slope are assumed upstream.

According to Ragno et al. [30], bar formation in tidal streams is investigated using
a linear stability analysis, a mathematical tool to examine conditions where the system’s
reference state loses stability to small perturbations. For an infinitely long straight channel
with constant upstream water discharge, the equilibrium state is a uniform turbulent flow
over a sloping bed. In tidal streams, channel widening and tidal motion complicate this
basic flow, making it a function of time and space [38]. The linear analysis examines
the stability of the basic state to small perturbations in flow and sediment transport.
A linear “normal mode analysis” is performed, expanding perturbations in the Fourier
series and investigating each mode independently. The linearized differential system is
solved numerically using a Runge–Kutta scheme, starting with a small random perturbation
of the bed topography.

The morphodynamic model requested input morphometric information, such as river
width and slope, which were extracted from the riverbed DTM following the workflow
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outlined in Figure 6. In particular, the river centerline was first derived from the DTM. This
allowed us to identify the curvilinear longitudinal axis of the river and each transversal
cross-section of the river.

Each cross-section provided a local value of the river width (as the distance between
the two cross-section banks) and of the bottom elevation (by averaging transversally along
the cross-section the bottom elevations).

Once the distributions of the river width and cross-sectionally averaged bottom eleva-
tion along the curvilinear longitudinal axis were known, these data could be analytically
fitted to extrapolate key parameters for the morphodynamic model, such as the mean river
slope, inlet width, uniform flow width, and convergent length.

Additional field data directly extrapolated from the DTM included bar patterns, which
were identified by rectifying the bottom profile and cutting back the cross-sectionally
averaged bed profile. These data were used to validate the morphodynamic model by
comparing them with the corresponding information generated by the model.

Figure 6. Workflow of the morphodynamic approach integrated with the DTM.
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5. Results

The methods described above were applied to create the DTM and study the morpho-
dynamics of the seaward reach of the Roya River, from its mouth to the confluence with the
Bevera Stream. To present clear and easily interpretable figures, the DTM process results
are only shown for the estuarine terminal portion of the river. Conversely, the results of the
morphodynamic model cover the entire analyzed reach of the river.

5.1. DTM Computing

The results of the Roya riverbed classification, obtained by processing the multispectral
orthophoto in GRASS GIS, are displayed in Figure 7a. Submerged sections of the riverbed
are shown in blue, vegetated areas in green, bare soil composed of pebble-sized sediments
in yellow, and shadows cast on the water surface in red.

Figure 7b presents the bathymetric map generated using the band ratio method. The
robustness of the RDB model was confirmed by the calibration and validation statistics in
Figure 8. The high R2 value of 0.868 suggested a strong correlation between depth values
and the band ratio. In addition, the low RMSE value of 21 cm denoted that the model
achieved a good level of accuracy in depth estimation, effectively capturing the variations
in the riverbed topography.

(a) (b)
Figure 7. Result of the riverbed classification (a), and RDB (b).

Figure 9 presents the results of the multi-step process used to create a stepped surface,
which enabled the transition from a depth-based reference to an elevation-based one for
the submerged sections of the riverbed. Figure 9a shows the river centerline, identified
by constructing Voronoi polygons from the points along the river-banks. The pink dots
represent bare-soil photogrammetry points located within the buffer zone surrounding
water areas, whose elevation was assigned to the nearest points along the river centerline
(yellow dots). Voronoi polygons were constructed using both the centerline and banks
points. Figure 9b shows the final water surface outcome. It is important to note that the
elevation does not increase linearly from downstream to upstream, particularly near the
river mouth, where significant deposition occurs. In that region, the high variability in the
elevation of bare soil points close to the water led to uncertainty in determining the water
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surface elevation. Moreover, since the riverbed elevation was calculated by subtracting RDB
from the water surface elevation; where these two quantities are comparable in magnitude
and uncertainty, as in the mouth area, this may compromise the ability of the proposed
method to correctly reconstruct the elevation of the submerged area. Differently, moving
upstream, the reconstruction of the submerged areas of the riverbed was more accurate
because the elevation of the water surface increased and, at the same time, the uncertainty
in its definition decreased due to the greater homogeneity in the levels of the bare soil
points close to the water.

(a) (b)

Figure 8. Scatter density plots representing the results of the exponential RDB model calibration
(a) and validation (b). The color of the points reflects their density, with yellow indicating areas with
a high concentration of data points and blue showing sparsely distributed points.

(a) (b)
Figure 9. River centerline and photogrammetric points of bare soil within the buffer zone around
water areas (a); water surface derived by extending the elevation assigned to each point of the
centerline, as the elevation of the nearest photogrammetric point of bare soil near the water areas (b).
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In Figure 10, the results for bare soil areas and for interpolation in the vegetated areas
are shown. Figure 10a illustrates the elevation data for bare soil areas. This result was
strictly dependent on the photogrammetric survey’s characteristics since the values were
imported from the digital surface model without any processing. In Figure 10b, points
within the buffer created around the vegetation are visible. These points, categorized as
either water (in light blue) or bare soil (in orange), had their elevation values determined
by subtracting the RDB from the water surface or by using photogrammetry, respectively.
They were interpolated to reconstruct the terrain elevation beneath the canopies, as shown
in Figure 10c. Here, some peaks in the digital model are present, mainly due to the
high elevation in bare soil points at the boundary of the river plane. This outcome was
influenced by challenges in the classification process: isolated points may have erroneously
been identified as bare soil, resulting in their elevation being used in the DTM construction,
when in fact they represented the top of the vegetation canopy. Consequently, the final
result hinged on the photogrammetric survey’s ability to accurately capture the elevation
of bare soil near steep banks or dense vegetation, as well as the precision of the initial
classification of different riverbed types.

(a) (b) (c)

Figure 10. Elevation data corresponding to bare soil, directly extracted from the photogrammetric
digital surface model (a), bare soil, and water points within a buffer around vegetation, used for the
interpolation in vegetated areas (b), and resulting DTM for the vegetated areas (c).

Figure 11 illustrates the final DTM, in both 2D (Figure 11a) and 3D visualization
(Figure 11b). Since it was created through the interpolation of EPCs, the resulting surface
was continuous, even in areas beneath bridges and overpasses, indicated by black-striped
zones in Figure 11a, where elevation data were generally missing. This continuity made the
DTM well suited for extracting the necessary information for morphodynamic modeling.
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(a) (b)
Figure 11. DTM outcome: 2D visualization (a), and 3D visualization (b).

5.2. Morphodynamic Results

The 1D morphodynamic equilibrium of the terminal reach of the Roya River was
analyzed through the DTM data obtained with the procedure described above. Moreover,
other input data of the morphodynamic model were sediment characteristics and typical
values of the flow rate, detailed by Colombini and Bolla Pittaluga [63].

The basic state (i.e., the cross-sectionally averaged bottom elevation) and the width
distribution of the seaward reach of the river were derived by identifying the longitudinal
axis of the river from the continuous DTM.

Figure 12 presents both the elevation of the mean bottom profile (represented by the
green dots) and a constant slope profile (dashed line) that best fit the observed data. The real
data points suggested a relatively uniform trend in the channel’s elevation, allowing for a
simplified interpretation of the riverbed’s morphology. As illustrated, the channel’s slope
could be approximated as constant, with an estimated value of 0.0052. This approximation
of a constant slope allows for the application of theoretical models which often rely on
idealized geometries. Nevertheless, as Figure 12 shows, it is important to acknowledge
that real river systems often exhibit local fluctuations with respect to the mean slope due to
sediment deposition, erosion, and natural or human-induced modifications to the channel.
While these small-scale deviations are not captured by the constant-slope assumption, they
may be incorporated into more detailed models or addressed in future studies where local
morphodynamics are of particular interest. For the purposes of this analysis, however,
the constant slope provided a reasonable first approximation that allowed for the study of
the main river morphodynamic processes.
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Figure 12. Elevation of the mean bottom profile (dots) and elevation of a constant slope profile
(dashed line) best fitting real data.

Similarly to Figure 12, Figure 13 shows the distribution of the river width along
its longitudinal axis. As commonly observed in natural environments, the river width
was characterized by a slight increase toward the mouth in its seaward reach (within
the first km from the river mouth). Nevertheless, Figure 13 shows that the river width
undergoes several fluctuations proceeding landward, on average slightly increasing its
width. This peculiar behaviour may be associated with the fact that most river-banks
are not natural but artificially fixed. For this reason, as a first approximation in this
simulation, we considered the river width B constant and equal to an average value of 144
m (infinite convergence length Lc = ∞), leaving possible investigations on the effect of
width variations to the future.

Figure 13. Channel width (blue line) plotted versus the longitudinal coordinate of the river axis with
origin at the river inlet. The orange line represents the mean width value (144.66 m). The equation at
the top shows the exponential width variation best fitting real data.
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Additional input parameters for the model were the formative discharge, Q = 475 m3/s,
the mean sediment diameter, ds = 29 mm, and the mean Strickler parameter of 30 m1/3/s.

Figure 14 illustrates the temporal evolution of the maximum bed perturbation ampli-
tude for the first two lateral modes within the terminal widened reach, which spanned
approximately the last 5000 m. The results indicate that linear theory identified the first
mode (i.e., alternate bars) as the most rapidly growing mode. This finding aligns with the
bedform pattern observed in Figure 15.

Figure 14. Temporal behavior of the maximum amplitude of the bed perturbations for the first two lat-
eral modes (mode 1 = alternate bars, mode 2 = central bars).

Figure 15 is also evidence that the considered river reach was not entirely straight but
rather included bends along its course. However, the seaward half of the river, spanning
from meter 0 to around meter 3600, was predominantly straight. This section of the river
displayed minimal curvature, allowing it to be treated almost as a straight channel in
preliminary analyses. The bends were confined to the landward half of the river reach,
specifically between meter 3600 and meter 4700, covering an entire meander wavelength.
However, recognizing that bends in the landward portion affected sediment transport, flow
velocity distributions, and the formation of riverbed features like forced bars, the relatively
straight seaward reach supported, as a first approximation, the employment of theoretical
models referring to straight channels.

Figure 15. Bedform pattern of the bottom of the Roya River, obtained by subtracting the mean bottom
elevation from the real one.

To better compare the real and the predicted bar wavelength, Figure 16 shows the
longitudinal profiles of the bottom along the banks. The resulting bedform pattern obtained
by subtracting the mean bottom elevation from the real one is reported in Figure 16a,
suggesting a clear alternation of pools and riffles along the rivers, as simulated by the
model (Figure 16b).
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Field data (Figure 16a) indicated that bar wavelengths ranged between 700 and 900 m
within the two kilometers from the mouth, decreasing to nearly half that distance in the
third kilometer. Beyond 3 km from the inlet, no clear bar wavelength was detected.

The mathematical model (Figure 16b) provided similar results, with bar wavelength
ranging about 800–900 m in the first kilometer from the mouth, and ranging about 600 m in
the following two kilometers.

Some lag between the theoretical and actual bar profiles was expected, as bars are
migrating features, and the model may not precisely capture their exact positions. Moreover,
the theoretical model assumed a constant width, so some variation in the bar wavelengths
was expected from that assumption. However, there was a general agreement between the
mathematical model and the field data.

(a)

(b)
Figure 16. Bottom profile along the two river-banks, obtained from the DTM (a), versus the model’s
simulated one (b).

The two-dimensional plots of the corresponding bed topography are reported in
Figure 17. In particular, Figure 17a displays field data directly extrapolated from the DTM,
after rectifying the bottom profile and cutting back the cross-sectionally averaged bed
profile according to the procedure described in Section 4.2. The typical rhythmic sequences
of regions of scour (pools) and deposit (riffles) of alternate bars can be easily detected. It
is important to note that the bed interfacial waves had wavelengths scaling with channel
width and amplitudes scaling with flow depth. A similar alternate pattern of pools (red
regions) and scours (blue regions) was predicted by the analytical model (Figure 17b).
Although the linear model could not predict bar amplitudes, the comparison was still
satisfactory, as it accurately forecast a bottom pattern with wavelengths closely matching
the real ones.
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(a)

(b)

Figure 17. Comparison of the bottom profile along both river-banks, extracted from the DTM (a) and
simulated by the model (b). Both plots display a similar alternating pattern of pools (red regions)
and scours (blue regions).

6. Discussion
6.1. RDB Exponential Model

The RDB model used in this study to reconstruct the bathymetry of submerged river
sections differed from the one proposed by Stumpf in the regression law applied. In the
context of our study, the exponential solution showed greater flexibility in capturing data
trends compared to Stumpf’s linear model, as indicated by the R2 values in Table 2, which
showed an improvement of about 3.3%. This choice positively impacted model validation
as well. The RMSE and MAE values decreased by approximately 10%, demonstrating that
the exponential model offered greater accuracy.

Table 2. Statistical values resulting from the calibration and validation of the linear and exponential
RDB band ratio models.

Model R2 RMSE (m) MAE (m)

Linear 0.840 0.233 0.172
Exponential 0.868 0.211 0.157

6.2. DTM Transect Analysis

Two transects of the riverbed were analyzed to evaluate the continuity and reason-
ableness of the final surface by comparing it with the geometries of the available reference
data, as shown in Figure 18. The top section of the graphs indicates the riverbed classes
(water, vegetation, and bare soil) along the transects. Corresponding reference lines are
displayed for each segment: SBES data (light blue) serve as a reference for water sections,
while the photogrammetric digital model (purple) provides a reference for vegetated and
bare soil areas. The red line represents the final DTM elevation along the transect. In both
transects, the DTM profile closely matched the reference data in the water and bare soil
regions. In vegetated areas, discrepancies arose due to photogrammetry capturing the
top of the canopy, whereas the DTM reconstructed the ground level through interpolation.
Nevertheless, the interpolated surface still provided a realistic and accurate representation
of the riverbed.
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Figure 18. DTM’s correspondence with the reference surveys along two transects (a) and (b). The
upper section of each transect displays the riverbed classes. Each line corresponds to a specific survey
method. The red line represents the resulting DTM, forming a continuous surface that accurately
approximates the survey data.

6.3. DTM Reliability Map

The DTM can be accompanied by a reliability map, which visually communicates the
estimated confidence in the final data by highlighting the characteristics of the different data
acquisition methods used for each riverbed section. Photogrammetric surveying applied to
bare soil areas can be expected to yield centimeter-level precision [64], while RDB for water
regions typically achieves decimeter-level accuracy [65]. In our study, RDB yielded 21 cm
accuracy (RMSE value). However, the final elevation value for the water class was given by
subtracting the RDB from the water surface height, whose accuracy could be lower than
the decimetric level. In interpolated areas, such as those affected by vegetation, bridges,
or shadows, the reliability of the DTM varied from decimeters to meters. Unfortunately,
the lack of a validation dataset limited our ability to create a quantitative reliability map for
this case. Figure 19 presents a qualitative sample map for illustrative purposes. The color
scheme (light blue, yellow, red) on this map visually distinguishes between the classes
(water, vegetation, bare soil), with each class corresponding to a specific data source.
The accuracy in each area is directly linked to the reliability of the data source used.

6.4. Contributions and Limitations

The proposed approach provides several scientific advantages over the current state
of the art, addressing key limitations in existing methodologies for riverbed modeling and
morphodynamic analysis. A novel method capable of extrapolating a complete riverbed
DTM was developed and successfully tested, offering a more detailed and accurate repre-
sentation of the river’s morphology. This result represents a significant advancement in
the field, enabling continuous monitoring and extraction of crucial morphodynamic data
through a relatively straightforward and efficient image analysis process. This efficiency re-
duces the need for costly and time-consuming field measurements, making it accessible for
a wider range of applications, including routine monitoring and large-scale river systems.
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Figure 19. Qualitative example of a DTM reliability map, showing the different classes (water, bare
soil, vegetation) with different color patterns, corresponding to specific data sources (RDB + water
surface, photogrammetry, interpolation) characterized by different reliability. The DTM resulting
from the proposed procedure is in the background.

Moreover, the model proposed by Ragno et al. [30] was rigorously tested with mor-
phodynamic data derived from the image analysis.

The overall agreement between the model and field observations is encouraging,
as the model successfully captured the essential features of the bedform pattern, i.e., an
alternating sequence of pools and riffles. The fact that the model predictions and field
data exhibited comparable bar wavelengths in the initial kilometers suggests that the
model, although simple, was capable of representing the main morphodynamic processes.
The observed decrease in bar wavelength further upstream (beyond 2 km) was also captured
by the model, although there were some discrepancies in the exact wavelength values.

A possible explanation for the larger differences in bar wavelengths between the
model and the observations in the landward reach of the river could be related to the fact
that, as shown in Figure 15, the river was not entirely straight and included several bends.
While the seaward half of the river (from meter 0 to approximately meter 3600) was nearly
straight, the bends were concentrated in the landward half (from meter 3600 to 4700). These
bends significantly affected the morphodynamics of the river, potentially leading to the
formation of different types of bedforms (the so called “forced bars”) that the model could
not capture. These bars, unlike “free bars” that form spontaneously due to bed instability,
are generated by the curvature of the river itself and typically do not migrate. Forced
bars tend to remain stationary, influenced by the channel geometry, while free bars are
mobile and can shift downstream over time. Additionally, free migrating bars are generally
shorter than the meander wavelengths, which could explain the observed discrepancies
in the model’s predicted bar wavelengths compared to real-world measurements in the
bent section of the river. A key question is whether the bedforms in the landward half
of the river reach are free bars, forced bars, or a combination of both. This distinction is
important for understanding the dynamics of bedform evolution in the presence of bends.
The fundamental research of [66,67] demonstrated that free and forced bars could coexist in
rivers, provided that the meander sinuosity was not too pronounced. In channels with mild
meanders, alternate free bars can migrate despite the bends, leading to complex interactions
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between these two types of bedforms. To clarify whether the bedforms in the landward
half of the river reach are free, forced, or a combination of both, additional information
is needed—particularly regarding their migration rates. Future research could resolve
this issue by comparing successive satellite images of the river, which would allow us to
track the movement (or lack thereof) of the bedforms over time. Such comparisons would
provide a clearer understanding of the interaction between free and forced bars in the bent
section of the river, offering valuable insights into the morphodynamic processes governing
the river’s evolution.

Among the other simplifications included in the simulations, it is also worth mention-
ing the constant-channel-width assumption, which could also explain the slight deviations
in bar wavelengths between the predicted and observed results. This hypothesis can be eas-
ily tested in the future by removing the constant-width constraint, as the model is already
designed to accommodate channels with varying widths. Nevertheless, the alignment
between the predicted and observed bar wavelengths reinforces the model’s utility in
simulating riverbed morphodynamics.

The testing results indicate the model’s strong potential for accurately predicting
the future response of the Roya River under various scenarios, including climate change-
induced sea level rise and extreme discharge events. This is a critical breakthrough as it
offers valuable insights into how river systems will adapt or respond to environmental
changes, enabling better risk assessment and management strategies. Predicting future river
responses is essential for sustainable water resource management, flood risk mitigation,
and the preservation of riverine ecosystems, especially in the face of increasing climate
variability. Additionally, the integration of this method with climate models opens the door
for simulating a wider range of potential future scenarios, making it a versatile tool for
both scientific research and practical decision-making.

The primary limitations of this study arise from the theoretical framework employed,
which, due to its inherently linear nature, is unable to predict the equilibrium bar amplitude.
The linear assumption, while effective for predicting early-stage instabilities in the flow and
sediment transport, falls short in describing the full range of interactions that occur as the
system evolves. Specifically, as the perturbation amplitude increases, nonlinear interactions
between the flow field and the evolving bed topography become more prominent, compli-
cating the behavior of the system. These nonlinear effects are critical in controlling the later
stages of bar formation and growth, including the transition towards equilibrium states.

To overcome these limitations, the approach could benefit from incorporating nonlin-
ear models that account for the complex interactions between flow dynamics and sediment
transport. Nonlinear models, such as those based on perturbation theory or full numerical
simulations, are capable of capturing the feedback mechanisms that emerge as bedforms
grow and interact with the flow. These models would allow for the prediction of bar
amplitudes and offer insights into the transient dynamics as the system evolves from an
initial perturbed state towards equilibrium.

Further expansion of the study could investigate secondary processes such as sediment
cohesion, the influence of vegetation, or variable flow regimes, which can significantly im-
pact the equilibrium bar geometry. These factors, commonly found in natural river systems,
can alter both the timescale and final state of morphodynamic adjustments. Extending the
current framework to include these complexities would enhance the model’s predictive
power, making it a more realistic tool for river management and restoration efforts.

Finally, one may wonder why using a simplified stability analysis instead of complete
3D commercial numerical code. In order to answer, it must be thus recalled that the present
study represents the first phase of a larger project that aims to integrate a morphodynamic
model with photogrammetry for improved river management. The photogrammetry tool
offers continuous monitoring of the river, while the morphodynamic model supports
management by providing quick and user-friendly simulations to address questions about
bedform formation (e.g., if dredging occurs in one area, will deposition follow?), bedform
migration (e.g., will the excavation shift over time? How quickly?), and long-term future
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scenarios (e.g., what changes can be expected if the river flow increases?). All these
information are easily provided by simplified models. Once potential “fragility” areas are
identified, the user would then need to turn to more detailed ad hoc simulations using
three-dimensional commercial models to assess local morphodynamics. However, these
models cannot provide the necessary preliminary insights within reasonable time frames
or computational costs.

7. Conclusions

This study developed and validated a procedure for generating a seamless riverbed
DTM by integrating various data sources, including an aerial multispectral orthophoto
and a UAV photogrammetric elevation survey. This integration allowed for a comprehen-
sive representation of the riverbed, encompassing both emerged and submerged sections,
overcoming the limitations of individual data acquisition methods. The derived DTM
proved highly useful, as evidenced by its application in extracting input parameters for
a morphodynamic model and validating the model’s predictions against observed bar
patterns. The research results indicated a qualitative alignment between the theoretical
model and remote sensing data, underscoring the effectiveness of the integrated approach.
This alignment suggests that combining these methods significantly improves our under-
standing of river morphology, hydrodynamics, and sediment dynamics. Such insights are
crucial for informed decision-making in sustainable river management. The integrated
approach not only enhances the accuracy of riverbed representations but also supports
better management strategies by providing a comprehensive view of river dynamics and
potential future changes.

Future research will focus on analyzing additional case studies and developing ad-
vanced remote sensing data analysis tools and methodologies to further enhance the
understanding of river morphodynamics. The procedure for generating riverbed DTMs
will be extended to other remote sensing imagery to assess river stability and bar migration.
An important future objective is to validate the predictions of bar migration speed, here
quantified as some cm/s using Ragno et al. [30]’s theoretical model, although this will
depend on the availability of suitable data. The model will also be tested under differ-
ent river discharge conditions and sea level elevations to evaluate bedform stability and
river responses to various future scenarios. Furthermore, potential improvements to the
model include incorporating vegetation growth over bars and accounting for varying bed
roughness into the theoretical framework.
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Notes
1 https://www.raiseliguria.it/en/spoke-3-raise/, accessed on 4 November 2024.
2 https://geoportal.regione.liguria.it, accessed on 4 November 2024.
3 https://grass.osgeo.org/grass83/manuals/i.maxlik.html, accessed on 4 November 2024.
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