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Abstract: Biofouling is a serious problem in marine aquaculture facilities, exerting several negative
effects on cage structures. In this study, different materials of nets were placed in the Fujian Sea area
of China, and the main biological adhesion species were determined. The drag force of different
materials of fouled nets was studied by a physical test in a flume tank. The drag force coefficient
of a clean polyethylene terephthalate (PET) net was 0.53. The drag force coefficients of ultrahigh-
molecular-weight polyethylene (UHMWPE) and polyethylene (PE) nets were 161.2% and 133.5%
higher, respectively, compared with those of PET nets. Crustaceans, mollusks, and algae were
the main organisms that adhered to the nets. Compared with the clean nets, the drag force of
PET, UHMWPE, and PE nets increased by 1.29–5.06 times, 1.11–2.85 times, and 0.55–2.46 times,
respectively. Based on backpropagation (BP) neural network training, the relationship between
biological characteristics (average adhesion thickness and density) and the drag force of three kinds
of net materials was determined. The drag force of the biofouled net at various time points throughout
the year can be predicted based on this model, which can guide the cleaning and maintenance of nets
in cage structures.

Keywords: panel net; biological adhesion; hydrodynamic characteristics; density

1. Introduction

Aquaculture is among the fastest-growing areas of food production worldwide, con-
tributing significantly to global food security and high-quality protein supplies; marine
cage farming constitutes an important part of aquaculture [1]. As a core component of
the marine cage culture system, a suitable net is crucial for marine culture production.
Conventional polyethylene and nylon nets are susceptible to fouling organisms [2]. The
adhesion of marine organisms to cage nets has emerged as a global problem, increasingly
affecting the mariculture industry [3]. It reduces the volume of the cage, shrinks the mesh,
increases the drag force of the cage anchor system [3], and seriously increases the weight of
the cage, further causing the cage to sink and net deformation [2,3]. Biological adhesion
can cause direct physical damage to the net and accelerate its aging. Shrinking mesh
size can reduce the flow velocity, exchange of nutrients, and diffusion and dilution of the
excrement of the farmed organisms [4]. Simultaneously, the dissolved oxygen content
is disturbed, especially in summer when the amount of fouling biological attachment is
large. The fouling biological attachment and higher water temperature, coupled with the
respiration activities of the fouling organism itself, can further aggravate the decline in
dissolved oxygen content, and anoxia may occur in severe cases. This affects aquaculture
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production and the surrounding marine environment, resulting in local eutrophication
and other negative effects [5]. The biological adhesion can provide a place for parasites
and pathogenic microorganisms to live, potentially harming the health of farmed organ-
isms [6]. Physical and chemical methods, such as net change, manual or machine cleaning,
anti-fouling coating, and input of chemical products, are commonly employed in marine
cage aquaculture practices to remove fouling organisms; however, these methods can
also adversely affect the surrounding marine environment and are ineffective in some
cases [7]. This increases the breeding costs and reduces income [8]. Therefore, studying the
hydrodynamic characteristics of biologically fouled nets for designing and maintaining
cages is crucial.

In the past few decades, many scholars [9–12] have conducted several experiments
using physical models and numerical simulations on the hydrodynamic characteristics
of nets and cages and obtained many hydrodynamic coefficient values and mechanical
characteristics of clean nets. However, there are few published studies on the hydrodynamic
characteristics of cages or nets with fouling organisms attached. Lader et al. [10] used the
mesh data obtained from field tests in a farm in Norway as reference data for net ropes
attached to an artificial hydroid and measured the force of net ropes through laboratory
flume experiments. As a result, the fitting curve of the drag force coefficient was as follows:
for the twine with the shortest hydroids (9 mm), the drag was from 1.5 times (Re = 4000) to
2.2 times (Re = 1000) the drag on clean twine; for the longest hydroids (21 mm), the drag
was 2 times and 3.8 times that on clean twine, respectively. Farshad et al. [11] generated a
full-size gravity cage model. The net comprised polyester (PES) material, and the simulated
fouling organisms were wound on the mesh with nylon rope of different lengths to obtain
cages of different densities. Bi et al. [12] established a porous media model to simulate
the biologically attached mesh, and studied the characteristics of the prototype scale,
including the internal and external fields of the cage under water flow. Compared with
the clean cage, the flow velocity decreased as the biological adhesion increased, and the
flow field distribution became disordered inside the cage gradually. On this basis, Bi
and Xu [13] simulated the flow field characteristics of a cage array (taking a 2 × 4 cage
array as an example) under a tidal current. In general, the greater the degree of biological
attachment, the more obvious the influence on the tidal current field around the cage.
Compared with the results without considering the effect of biological attachment, the
presence of attachments changed wave fields inside and outside the cage significantly.
After a wave propagates through the cage array, its crest and trough are reduced due to
the damping effect of the cage and the attachment [14]. Swift et al. [15] studied the stress
characteristics of the attached panel net of marine organisms and measured the stress of
the net with different adhesion degrees under the current by laboratory model tests and
field measurements. Lader et al. [10] used model tests to analyze the stress characteristics
of net-attached organisms in water flow. The results showed that the stress of the net
was closely related to the length, growth time, and Reynolds number of the attached
organism. Gansel et al. [16] used a physical model test to analyze the hydrodynamic
characteristics of the panel net under water flow by an attachment such as a hydroid,
and obtained the relationship between the drag force on the net and the density of the
biological adhesion. Bi et al. [17] conducted a field hanging test and obtained a mesh with
different biological attachment degrees by controlling its depth and duration of immersion.
A series of physical model tests were conducted in a flume tank to measure the drag
force and corresponding drag force coefficient of mesh with different adhesion degrees at
different flow velocities. The attachment can increase the drag force on the net by more
than 10 times. Different twine preparation (degree of twist, multifilament, monofilament,
etc.) processes change the surface structure and texture of the twine, thus affecting the
biological attachment. Dos Santos et al. [18] suggest that compared with monofilament
twine, the surface of multifilament twine is rougher, which makes it easy for marine
organisms to attach and increases the mesh’s hydrodynamic force. Therefore, in the actual
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breeding process, attention should be paid to the timely cleaning or replacement of mesh
clothing [19].

Although much progress has been made, the effects of biological pollution on the
hydrodynamic characteristics of fishing nets have not been systematically studied, ne-
cessitating studies on the hydrodynamic properties of the net under different biological
pollution levels. The variety of organisms attached to the net varies, depending on the sea
area and the season. Physical and geometric characteristics and the distribution of different
types of biological fouling exert different effects on the hydrodynamic characteristics of the
cage. Quantifying the effects of biological pollution with various physical and geometric
characteristics on the hydrodynamics of aquaculture nets is necessary. To this end, the
present study first (i) classified and statistically analyzed the main adhesion organisms
of three kinds of panel net material, namely PET, UHMWPE, and PE, in different months
in the East China Sea and (ii) explored the effects of biological adhesion characteristics
(thickness and density) on the drag force performance of each net through a dynamic flume
test. Finally, (iii) the BP neural network was trained to fit the relationship between the
biological adhesion characteristics and the drag force performance of the net. The findings
can provide a scientific basis for the application screening of new materials, maintenance,
and cleaning strategies for the net in the marine cage culture.

2. Materials and Methods
2.1. Area and Time of Sea Trials

The experimental operation was conducted from October 2021 to September 2022,
within the East Sea near Fujian Province (25.24◦ N, 119.54◦ E) (Figure 1). The operating sea
depth was 15–20 m.
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Figure 1. Geographic maps showing the experiment position.

2.2. Experimental Net

The experimental net materials selected were determined according to the net used on
the aquaculture cage, including PET, UHMWPE, and PE. The size of the breeding object,
a large yellow croaker (Larimichthys crocea), was 0.5–0.6 kg, requiring the selection of net
material with a twine diameter of 3.0 mm and a mesh size of 50–70 mm. The mesh shape of
PET and UHMWPE was hexagonal, and that of PE mesh was diamond. The parameters of
the experimental nets are shown in Figure 2.

2.3. Experimental Equipment and Procedures

The mesh material was fixed with a steel bar frame matching its size, which was
rectangular as a whole. Nylon cable ties were used to fix the mesh material on the steel bar
frame, and the spacing of the mesh material was fixed to maintain its randomness. PE twine
was used to connect the mesh material in series at the outer four corners. The net pieces of
three different net materials were hung in the sea area where the fan was installed in Fujian.
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The water depth for the hanging was 5.0 m, and the size of the net pieces was 0.3 m × 0.3 m.
During the experiment, the net pieces at sea were tied with cable ties on a square frame
of 0.3 m × 0.3 m with a diameter of 6.0 mm for testing (Figure 3). The hanging time of
the mesh was 1 year, and sampling was performed on the 25th of each month. During
sampling, the ship’s windlass was used to pull the rope out of the sea to sample. The net
group was disassembled and divided into individual net garments, packed flat in PE-sealed
bags, and brought back to the laboratory for analysis of the classification number.
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The experiment was conducted in the circulating flume tank at the East China Sea Fish-
eries Research Institute (Figure 4). The circulation flume tank measured 1.8 m (length) × 0.5 m
(width) × 0.5 m (depth) and contained ~450.0 kg of freshwater (density: 998.2 kg/m3; tem-
perature: 17.6~18.4 ◦C). The maximum flow rate was 2.5 m/s. A front view window of the
tank allows the users to observe the behavior of the nets during testing. To reliably measure
hydrodynamic forces, the panel net was attached to a rigid frame with a side length of 0.3 m
and submerged in water to a depth of 0.1 m. A current meter was installed approximately
2.0 m upstream of the panel net to detect the flow velocity. Hydrodynamic force signals
were measured using a six-component load cell with capacities of 5.0 kg each and a specified
accuracy of 2.0%. These hydrodynamic force signals were amplified using a dynamic strain
amplifier (DPM-6H), and then sent to an A/D converter and a computer. The data were
sampled at 100 Hz.
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The drag force of the net was determined by subtracting the frame drag from the drag
of the combined structure (panel net and rigid frame). The rigid frame was connected
to the six-component structure of the load cells, resulting in the plane of the rigid frame
being perpendicular to the current direction. These load cells were calibrated and zeroed at
each test’s beginning and end, and linearity was confirmed. The drag force of the frame
was measured at different flow velocities, ranging from 0.2 to 1.3 m/s with an interval of
0.1 m/s. The measurements of the combined structure were conducted at five different
flow velocities (0.4 m/s, 0.6 m/s, 0.8 m/s, 1.0 m/s, and 1.2 m/s). The rigid frame and
panel net were assembled into the six-component instrument, making the rigid frame plane
perpendicular to the flow direction. Finally, the relationship between the drag coefficient
and Reynolds number (800–4200) was established to evaluate the effects of biological
adhesion to the net and the drag force.

2.4. Data Extraction

The identification and analysis of biological attachment nets mainly focused on
(i) adhesion species composition, (ii) adhesion thickness, and (iii) adhesion density.

(i) The methods of identification of the attached species were as follows: observation and
identification with a microscope, and reference to Zoology of China, the Atlas of Marine
Life of China, and other books. Seasonal changes in the community were analyzed
according to the results of identification.

(ii) The measurement method for adhesion thickness was as follows: five areas with
attached organisms on the top, bottom, left, and right of the mesh material were
selected to determine the thickness with a vernier caliper, and the average value
was obtained.

(iii) The method of density calculation was as follows: input the image, adjust image size,
select a valid region, calculate the valid region area (D1), perform image automatic
threshold segmentation, calculate the attachment and net area (D2), and output the
data measurement (D2/D1) × 100%. Among these steps, the selection process of
the valid region was as follows: by positioning the vertex coordinates of the four
sequential corners of the mesh, the enclosed quadrilateral was divided into two
triangles. The point coordinates of the two triangles were entered into the program
to calculate the area using Helen’s formula, and the areas of the two triangles were
added to obtain the area of the quadrilateral (Figure 5a–c). The effect diagram of
automatic threshold segmentation is shown in Figure 5d–f.



J. Mar. Sci. Eng. 2024, 12, 2064 6 of 15

 

Figure 5. The quadrilateral was selected and divided into two triangles (a–c), and the automatic
threshold segmentation effect is shown (d–f).

2.5. Data Analysis

The drag coefficient was calculated using Equation (1) as follows:

Cx =
2R

ρSV2 or Crx =
2R

ρSaV2 (1)

where Cx is the drag coefficient, Crx is the relative drag coefficient, R is the drag force, ρ is
the density of water (=998.2 kg/m3), S is the net twine areas, Sa is the average biological
adhesion density, and V is the flow velocity.

The Reynolds number represents the ratio of inertial and viscous forces and is calcu-
lated as follows:

Re =
Vd
v

or Re =
Vda

v
(2)

where Re is the Reynolds number, d is the twine diameter, da is the average biological
adhesion thickness, and v is the kinematic viscosity (=0.001005 Pa*s).

Backpropagation is an algorithm used to train a neural network in machine learn-
ing [20]. Figure 6 shows the structure of the BP neural network. Xi represents the exper-
imental values, which are input values for the input layer (i = 1, 2, . . ., n), and n is the
number of the input layer; wij is the weight of the j-th hidden layer from the i-th input layer
(j = 1, 2, . . ., p), and p is the number of the hidden layer; wjk is the weight of the k-th output
layer from the j-th hidden layer (k = 1, 2, . . ., m), m is the number of the output layer, and
Yk is described as the objective value. For transfer functions from the input to the hidden
layer and from the hidden to the output layer, a tangent sigmoid transfer function (tansig)
and a linear transfer function (purelin) are chosen and denoted as follows, respectively:

Hj = f
(
∑n

i=1 wijXi − aj

)
(3)

f (x) =
1

1 + exp(−1)
(4)

Ok = ∑p
j=1 (w jk Hj − bk

)
(5)
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where aj and bk are threshold values for the hidden and output layers. Ok is the predicted
value. The error (ek) different from the expected value Yk is demonstrated as follows:

ek = Yk − Ok (6)

In each iteration, the weight and threshold values were trained by referring to the
gradient descent backpropagation as follows:

wij = wij + ηHj
(
1 − Hj

)
Xi∑m

k=1 wjkek (7)

wjk = wjk + ηHjek (8)

aj = aj + ηHj
(
1 − Hj

)
∑m

k=1 wjkek (9)

bk = bk + ek (10)

where η is the learning rate coefficient (η = 0.1 in this study). The root mean square error
(RMSE) less than the order of negative four was applied for convergence. The number
of hidden layers was determined using the regression R2-value. In this study, the flow
velocity, average thickness, and average density were the experimental values of the four
input layers, and drag force was the objective value of the output layers. The number of
units for the hidden layer was chosen as 16 since the excellent prediction accuracy with
the regression R2-value was close to 1 in our pretest work. The procedure was conducted
using Matlab (The MathWorks Inc., Portola Valley, CA, USA).
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3. Results and Discussion
3.1. Drag Force on Nets Without Biological Adhesion

The drag force on the nets was determined by subtracting the average measurements
for each flow velocity on the rigid frame from the average measurements for each flow
velocity on the frame and nets. The results are shown in Figure 7. The drag force on
different nets increased as the flow velocity and attack angle increased. The drag forces
on the PE net were 239.95 ± 5.80% and 54.91 ± 5.58% greater than those on the PET and
UHMWPE nets, respectively.
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On average, the drag force coefficients were 0.52 ± 0.03, 1.37 ± 0.08, and 1.23 ± 0.04
of the PET, UHMWPE, and PE nets at a 90◦ attack angle, respectively (Figure 8). The drag
force coefficients of the nets were increased with the increase in the attack angle but did
not change with an increased Reynolds number. Moreover, the twine area of the PE net
was the largest (15,120 mm2); specifically, it was 45.45% and 82.28% larger than those of the
PET and UHMWPE nets. The results showed that the PET net had the smallest drag force
for the same twine area, which may be mainly related to the twine structure. The PET net
uses monofilament twine, while UHMWPE and PE comprise braided twine, leading to a
relatively small surface smooth drag for PET. The drag force coefficient of the UHMWPE
net was larger than that of the PE net, which may be caused by the different weaving
modes of the twines. The shape of the UHMWPE twine was cylindrical, while that of the
PE mesh was flat with better filterability. When the water flowed through the twines, the
cylindrical UHMWPE net showed relatively poor filterability due to the structure of the
twine, resulting in a greater drag force coefficient.
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3.2. Biological Adhesion Characteristics of Different Nets in Different Months

In spring, 24 species adhered on the experimental nets, including 9 species of crus-
taceans, 5 mollusks, 5 algae, 3 annelids, 1 cnidarian, and 1 bryophyte, which accounted for
37.50%, 20.83%, 20.83%, 12.50%, 4.17%, and 4.17%, respectively (Figure 9A–I). The number
of species adhered on the experimental nets in summer was the largest (43 species), with
crustaceans and mollusks accounting for 13 species (30.23%), and 7 more algae species
(16.28%) compared with spring, along with 4 annelids (9.30%), 3 cnidarians (6.98%), 2 moss
animals (4.65%), and 1 echinoderm (2.33%) (Figure 9J–R). In autumn, 35 species of adhered
organisms were identified on the three nets of different materials. The number of crus-
taceans was the largest, with 14 species, accounting for 40.00% of the total species, 6 species
of mollusks, accounting for 17.14%, 5 kinds of algae, accounting for 14.29%, and 4 annelids
(11.43%). Moreover, there were two cnidarians and two echinoderms, accounting for 5.71%,
and one bryophyte (2.86%) and one chelicera (2.86%) (Figure 9S–a). In winter, the number
of species of adhered organisms on the experimental nets was the lowest (21 species). The
number of crustacean species was the highest (seven species, accounting for 33.33% of the
total species). There were five species of mollusks and algae, accounting for 23.81%; three
annelids accounted for 14.29%, and one cnidarian accounted for 4.76% (Figure 9b–j).

The classification and statistical analysis showed that the organisms attached to the net
in the East China Sea were mainly crustaceans, mollusks, and algae. In Norway, cages are
associated with a wide variety of biological fouling organisms, such as hydroids, mussels,
and algae [21]. In Norway, which is the leading producer of Atlantic salmon, the hydroid
(Ectopleura larynx) dominates biofouling communities on coastal fish farms during the peak
of the biofouling season [22]. Therefore, the biofouling of hydroids on salmon cage nets
poses an urgent concern for the Norwegian finfish industry. Bi et al. [17] found that the
attached organisms in the Yellow Sea of China include hydroids. The difference between
the results of this study and those of others is mainly due to different marine environments.
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The biological adhesion thickness of the three material nets was the largest in January
and began to decrease thereon, showing fluctuations from March to December. The thickness
of biological adhesion on the PET net was maintained at 12.40 ± 2.16 mm–19.30 ± 0.50 mm.
The biological adhesion thicknesses of UHMWPE and PE nets ranged from 13.90 ± 1.62 mm
to 21.00 ± 1.00 mm and 14.00 ± 5.00 mm to 22.30 ± 0.40 mm, respectively (Figure 10a).
The densities of biological adhesion of the PET and UHMWPE nets were maintained at
44.32 ± 3.96% and 50.93 ± 7.07%. The densities of the PET and UHMWPE nets showed little
change in the first three months, and from March to May, the biological adhesion on the
two material nets increased significantly, reaching the maximum in May. Subsequently, it
decreased. From October to December, biological adhesion on the PET net was maintained at
34.15 ± 2.99%, while the biological adhesion on the UHMWPE net increased. The biological
adhesion on the PE net reached 96.20 ± 2.47% in January and subsequently began to decrease,
dropping to 65.91 ± 9.04% in March. From April to June, the density of biological adhesion
on the mesh began to increase, reaching the maximum in June, and then decreased. Similarly,
the density of biological adhesion was low in October and remained at 52.74 ± 3.30%. In
summary, the biological adhesion thickness and density of the PE net were larger than those
of the PET and UHMWPE nets. The PET net showed the lowest biological adhesion thickness
and density (Figure 10b).
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The nets of PE and UHMWPE were braided, with many gaps in the twine, thus
providing conducive attachment conditions for marine organisms. The net of PE was
diamond-shaped, and the solidity ratio was smaller than that of UHMWPE, so the tentacles
of marine-attached organisms were more easily attached to the net twine. Bi et al. [17]
studied the effects of biological attachment to the net on the hydrodynamics of the net
in the fishing ground of the Yellow Sea in China. The attached organisms on the net
were mainly hydroids in autumn. The biological pollution level of the panel net was
significantly positively correlated with the inundation time. However, in this study, the
attached organisms on the net in the Fujian Sea of China were mainly crustaceans, and
the biological pollution level of the panel net was correlated with the season. Biological
pollution was not more serious with longer submersion times. The biological pollution
level and the inundation time in autumn were negatively correlated. The reason may be
that the dominant organisms in different sea areas are different, and the growth cycles of
organisms also differ. This results in a gradual increase in hydroids attached to the Yellow
Sea in autumn, while the number of crustaceans in the Fujian Sea gradually decreases.

3.3. Hydrodynamic Characteristics of Biological Adhesion Nets in Different Months

The drag force of the biological adhesion nets of the three materials is shown in
Figure 11. The drag force of the three material nets was increased with an increase in
flow velocity. The drag force of the PET net was smaller than that of the UHMWPE and
PE nets, while the drag force of the PE net was the highest under the same conditions.
Specifically, in January, at 1.2 m/s, the drag force of the PET net was 74.1 N and increased,
then decreased. The drag force began to increase in April until the drag force was largest
in July. By August, the drag force of the PET net plummeted to 47.2 N, and the change
was stable. In December, the drag force was 43.2 N (Figure 11a). The drag force of the
UHMWPE and PE nets decreased first and increased in spring. The drag force of UHMWPE
and PE nets gradually decreased from April to August. Finally, it began to increase in
August, reached the maximum in October, and then began to decrease until December
(Figure 11b,c).

In fluid dynamics, the drag coefficient is a dimensionless quantity used to quantify an
object’s drag or resistance in a fluid environment. Usually, the area used in drag calculations
is the projection area [10,14,23]; for nets, however, the outline area is also used [15,16,24].
The drag coefficient based on the projection area of a panel net is primarily related to the
drag behavior of the net strand or the biofouling, while the drag coefficient based on the
outline area is directly related to the drag force acting on a panel net.
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With the increase in the Reynolds number, the drag force coefficient of the biological
adhesion mesh was unchanged after decreasing. In contrast, the drag coefficient had no
obvious relationship with the biological adhesion characteristics of the mesh. It showed
a tendency to decrease first and then increase slightly with an increase in the density of
biological adhesion. Specifically, at the same Reynolds number, when the densities of
biological adhesion on the PET, UHMWPE, and PE meshes reached 60.91%, 70.62%, and
69.96%, the drag force coefficient of the mesh was the smallest (Figure 11d–f). This may be
because, with the gradual increase in biological attachment, the surface of the mesh also
becomes rough. When the organisms continue to increase, the newly attached organisms fill
the gap between the former organisms and the mesh such that the gap between the attached
organisms is closed. When the attachment density of organisms sequentially increases
(>75% for PET and UHMWPE, >90% for PE), the attached organisms completely block
the mesh, and the drag force coefficient of the mesh reaches a larger value. Bi et al. [17]
found that the drag force coefficient of the mesh increased with the increase in the density
of biological adhesion, possibly because the attached organisms were mainly hydroids.
The abundance of attached organisms did not increase when they reached a certain level,
and the gaps between them could not be filled. Thus, the surface roughness of the mesh
remained unchanged. Therefore, the drag force coefficient of the mesh was positively
correlated with the density of attached organisms. The experimental results showed that
the attached organisms on the mesh were algae and crustaceans, and the gap created by
the increase in crustaceans could be filled by algae. The surface of crustaceans is relatively
smooth compared with that of hydroids. The drag force increased with the net solidity ratio
and biological adhesion volume, with considerable dispersion, which is attributed to the
different kinds of biofouling. Many fouling organisms are associated with cages, such as
hydroids, mussels, and algae [21]. The physical and geometric characteristics of biological
fouling and its various distribution forms have different effects on the hydrodynamic
characteristics of the cage.

3.4. The Effect of Biological Adhesion on the Hydrodynamics of Nets Based on the BP
Neural Network

BP neural network training was used to predict the influence of the characteristics
of average thickness and average density on the drag force of the mesh, and the results
are shown in Figure 12. For BP neural network training based only on flow velocity and
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average thickness, fitting yielded an R2 = 0.87. For the BP neural network training based
only on flow velocity and average density, fitting yielded an R2 = 0.90, suggesting that
the BP neural network training based on flow velocity, average thickness, and average
density showed a fitting with R2 = 0.94. The results showed that compared with the
average thickness, the density of biological adhesion had a greater effect on the drag force
of the mesh.
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In general, the solidity ratio of the fluid-fouled net and the density and thickness
of the biofouling are related to the drag force acting on the biofouled net. For the fluid
passing through the biofouled net, the drag force is mainly from the pressure drop, largely
dependent on the projected area. Therefore, the density of attached organisms has a greater
influence on the drag coefficient than the thickness of biological fouling. Therefore, the
training results of the BP neural network constructed using only the density of biological
attachment were closer to the measured values. Based on this model, image analysis can
be combined with photos of fluid-contaminated nets, and the drag coefficients of the nets
under different materials, different months, and different fluid levels can be obtained. Once
the drag coefficient of the fluid-contaminated net is obtained, existing predictions of the
net drag force performance can be used [25,26]. The main advantage of this method is
that some panel net components can be deployed around the cage, and by observing the
biological adhesion characteristics of the panel net in different months, the hydrodynamic
load of the full-size cage can be estimated.

The density of the mesh was processed based on the mesh photos in this study
(5 flow velocities × 3 material nets × 12 months = 180 data). Since the attached organisms
are flexible, their position and shape are prone to shifting and deformation, thus affecting
the projected area of the biological attachment net. In the flume physics experiment, the
attached organisms are streamlined under the impact of water flow. In this case, the
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projected area of the organism’s attachment changed with the flow velocity. However, it is
difficult to quantify the state and projected area of the attached organism under the impact
of the current. Therefore, in this study, the density of the biological pollution net refers
to the proportion of the biological attachment area independent of the flow velocity in
the total area of the net. The biological attachment thickness is the biological attachment
thickness when the mesh is vertically placed. Therefore, future studies should quantify the
effects of different types of biological pollution on the hydrodynamic characteristics of the
net [15,16].

Based on the BP neural network training model fitting test data, it was found that
the errors of the predicted and measured drag force of the PET, UHMWPE, and PE bio-
logical adhesion nets in different months and flow velocities were 3.9%, 1.5%, and 4.8%,
respectively (Figure 13). This proves once again that BP neural network training can
predict the drag force of biological adhesion nets based on the density and thickness of
biological adhesion.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 14 of 16 
 

 

mesh to have high drag force, so the mesh can be set to be cleaned once a month or every 
two months. It is recommended to use a PET net as the main material of the cage to reduce 
the negative impact of biological adhesion on the net. 

 
Figure 13. Comparison between the drag force predicted by the BP neural network and the actual 
experimental values ((a): PET; (b): UHMWPE; (c): PE). 

4. Conclusions 
There are serious negative effects of biofouling in aquaculture cages. Quantifying the 

effects of biological pollution with various physical and geometric characteristics on the 
hydrodynamics of an aquaculture net is urgent. Through field sampling, we determined 
that the main biological fouling on the fishing nets in the Fujian area of the East China Sea 
was by crustaceans, mollusks, and algae, and the average thickness of the nets attached 
was 12.4–30.9 mm. The thickness and density of biological adhesion varied seasonally, 
being highest in the summer and lowest in the winter. 

The difference in drag force of PET, UHMWPE, and PE nets and the characteristics 
of hydrodynamic performance under different biological adhesion conditions in different 
months were investigated by physical experiments using a flume tank. In general, the drag 
force coefficient of clean PET mesh was the lowest (~0.53), and those of UHMWPE and PE 
meshes were 161.2% and 133.5% higher, respectively. With the increase in the biological 
pollution level, the drag force acting on the net also increased. Biological attachment in 
the PET mesh was the lowest, with the lowest relative drag force coefficient, indicating 
that the PET net has a good anti-fouling property. Based on BP neural network training, 
the relationship model between the biological adhesion characteristics (thickness and den-
sity) and the drag force characteristics of the net was established. The biological adhesion 
density had a stronger effect on the drag force performance of the mesh than the biological 
adhesion thickness. Additionally, the accuracy of predicting the drag force of nets only by 
the density and thickness still needs to be improved, and the shape of the biological at-
tachment net when impacted by the current underwater is completely different from that 
on the laboratory measuring table, which affects the accuracy of the measured density and 
thickness data. Therefore, the measurement methods for the density and thickness of the 
net also need to be improved in future research. 
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Figure 13. Comparison between the drag force predicted by the BP neural network and the actual
experimental values ((a): PET; (b): UHMWPE; (c): PE).

Through the investigation, it was found that aquaculturists usually clean and main-
tain the cages regularly. The BP neural network training can effectively make fast and
accurate predictions according to the test data. The current research involves establishing
a cleaning and maintenance plan for the biologically attached nets according to the rela-
tionship between the density and thickness of biological adhesion and the drag force of
the nets through training. By doing so, it can not only reduce unnecessary cleaning by
aquaculturists and effectively ensure the water permeability of the cage, but also realize
the automation of cage cleaning and maintenance, ultimately resulting in cost savings. In
addition, corresponding cleaning and maintenance plans according to different materials
of nets can also be made. For the PET mesh, the biological adhesion increases rapidly in
spring and summer, resulting in a significant increase in net drag force. Therefore, the
frequency of mesh cleaning can be increased. The amount of biological adhesion increases
slowly in autumn and winter, and the frequency of washing can be appropriately reduced.
Moreover, the annual biological adhesion of UHMWPE and PE meshes can cause the mesh
to have high drag force, so the mesh can be set to be cleaned once a month or every two
months. It is recommended to use a PET net as the main material of the cage to reduce the
negative impact of biological adhesion on the net.

4. Conclusions

There are serious negative effects of biofouling in aquaculture cages. Quantifying the
effects of biological pollution with various physical and geometric characteristics on the
hydrodynamics of an aquaculture net is urgent. Through field sampling, we determined
that the main biological fouling on the fishing nets in the Fujian area of the East China Sea
was by crustaceans, mollusks, and algae, and the average thickness of the nets attached was
12.4–30.9 mm. The thickness and density of biological adhesion varied seasonally, being
highest in the summer and lowest in the winter.

The difference in drag force of PET, UHMWPE, and PE nets and the characteristics
of hydrodynamic performance under different biological adhesion conditions in different
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months were investigated by physical experiments using a flume tank. In general, the drag
force coefficient of clean PET mesh was the lowest (~0.53), and those of UHMWPE and PE
meshes were 161.2% and 133.5% higher, respectively. With the increase in the biological
pollution level, the drag force acting on the net also increased. Biological attachment in the
PET mesh was the lowest, with the lowest relative drag force coefficient, indicating that
the PET net has a good anti-fouling property. Based on BP neural network training, the
relationship model between the biological adhesion characteristics (thickness and density)
and the drag force characteristics of the net was established. The biological adhesion
density had a stronger effect on the drag force performance of the mesh than the biological
adhesion thickness. Additionally, the accuracy of predicting the drag force of nets only
by the density and thickness still needs to be improved, and the shape of the biological
attachment net when impacted by the current underwater is completely different from that
on the laboratory measuring table, which affects the accuracy of the measured density and
thickness data. Therefore, the measurement methods for the density and thickness of the
net also need to be improved in future research.
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