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Abstract: A hybrid ship uses integrated generators, an energy storage system (ESS), and photo-
voltaics (PV) to match its propulsion and service loads, and together with optimal power and voyage
scheduling, this can lead to a substantial improvement in ship operation cost, ensuring compliance
with the environmental constraints and enhancing ship sustainability. During the operation, sig-
nificant uncertainties such as waves, wind, and PV result in considerable speed loss, which may
lead to voyage delays and operation cost increases. To address this issue, a distributionally robust
optimization (DRO) model is proposed to schedule power generation and voyage. The problem is
decoupled into a bi-level optimization model, the slave level can be solved directly by commercial
solvers, the master level is further formulated as a two-stage DRO model, and linear decision rules
and column and constraint generation algorithms are adopted to solve the model. The algorithm
aims at minimizing the operation cost, limiting greenhouse gas (GHG) emissions, and satisfying the
technical and operational constraints considering the uncertainty. Extensive simulations demonstrate
that the expected total cost under the worst-case distribution is minimized, and compared with
the conventional robust optimization methods, some distribution information can be incorporated
into the ambiguity sets to generate fewer conservative results. This method can fully ensure the
on-time arrival of hybrid ships in various uncertain scenarios while achieving expected operation
cost minimization and limiting greenhouse gas (GHG) emissions.

Keywords: hybrid ship; distributionally robust optimization; uncertain wind and wave conditions;
GHG; energy management

1. Introduction

About 3–5% of global greenhouse gas (GHG) emissions are produced by marine
transport [1,2]. If no mitigation measures are taken, GHG emissions from marine transport
will rise to 8% of global GHG emissions by 2050 [3,4], so marine transport needs to reduce
GHG emissions significantly. To meet the demand for emission reduction, hybrid ships
have gained industry attention. Hybrid ships refer to ships driven by different types of
engines or electric motors and contain multiple energy sources [5]. In the past, hybrid
ships were usually referred to as diesel–electric hybrid ships. With the development of
new energy technology, new energy technology represented by photovoltaics (PV) has
begun to be applied on ships, and PV has been used when carrying out certain research
studies on hybrid ships composed of diesel generators (DGs), energy storage systems
(ESSs), and PV [6,7]. In [8], it is verified by the results of actual navigation experiments that
the participation of photovoltaic power generation in reasonable scheduling can help the
shipping industry meet the “low-carbon navigation” policy.

Energy management is the key to achieving economic objectives and emission re-
duction on the premise of ensuring power performance. In [9], a deterministic energy
management approach is proposed for a cruising ship, to minimize the fuel consumption
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cost by effectively scheduling the power generation units and voyage. In [10], a coordinated
optimal power management method is studied according to the different objectives. The
management model is solved by particle swarm optimization. The system is initialized
with a population of random solutions and searches for optima by updating generations.
At each time step, the velocity of each particle is changed as it heads toward its p-best
and l-best locations. Ref. [11] proposes a scheduling model to optimize the economic and
environmental objectives for the ship integrated with hybrid BS and energy storage.

However, due to the influence of weather, photovoltaic power generation has fluctua-
tions and uncertainties. Compared to land, ships may encounter more uncertainties when
navigating at sea, such as ship pitching and rolling, which greatly increases the prediction
error of photovoltaic power generation and affects the accuracy of overall power generation
and navigation scheduling. Based on this, in recent years, stochastic optimization and
robust optimization have been proposed to deal with uncertain power grid optimization
problems. In [12], a stochastic optimization method is adopted to solve the coordinated
operation optimization problem of a multiple-energy microgrid under various uncertain-
ties; however, many scenarios need to be generated according to the probability density
function in advance, which increases the calculation burden. Compared with stochastic
optimization, robust optimization only needs to construct an uncertain set and does not
need the probability distribution of uncertain variables which are difficult to obtain, and the
solution of robust optimization is robust to all possible scenarios. In [13], a robust optimiza-
tion method is adopted to address the uncertainty of photovoltaic power generation on a
ship to minimize the operating cost under the worst uncertainty scenario while satisfying
all the operational constraints.

In addition, most existing studies have not considered the speed loss caused by water
waves or wind during ship navigation. Although the speed loss models for different
ships may be diverse, various tests have shown that the speed loss induced by water
and waves for most ship prototypes is significant and may usually exceed 10% of the
nominal speed even in moderate weather conditions. Since the propulsion load has a
cubic relationship with the cruising speed, the propulsion power loss led by speed loss
is much more significant. In this view, speed loss is always an important issue, and in
conventional maritime applications, this problem is referred to as “weather routing” [14].
Therefore, in [14], a robust optimization method is proposed for the joint scheduling of
power generation and voyage of a ship considering the uncertain wind and wave, and
the results show that the proposed robust optimization model can ensure the punctuality
of ships in various uncertain situations. In [15], hydrogen fuel cells are integrated into
ship microgrids, and a two-stage robust optimization method is proposed. A two-level
column constraint generation algorithm was used to solve the optimization model, aiming
to minimize operating costs for the entire voyage in the worst-case scenario.

The above robust optimization methods only consider the worst-case scenario where
uncertainty occurs. However, the probability of uncertainty occurring at the extremes is
small, so the results of robust optimization are too conservative and often require higher
economic costs. Combining the characteristics of stochastic and robust optimization,
distributionally robust optimization (DRO) has been proposed in recent years to solve
the uncertainty problem [16,17]. DRO is an effective way to handle diverse uncertainties,
which incorporates the available probability distribution information into an ambiguity set
to characterize the true probability distribution of uncertainties and reduce the solution
conservatism. At present, this method has not been used to deal with the uncertainty of
ship power systems, which is worthy of further study.

This paper comprehensively considers the uncertainties of photovoltaic output power
and wind and wave events and proposes a DRO method to jointly optimize the scheduling
of power and voyage speed to minimize the ship operation cost.

This paper contributes to this field of research in the following aspects:

(1) To address diverse uncertainties from photovoltaic systems and wind and wave
events, a distributionally robust optimization (DRO) model is proposed to schedule
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power generation and voyage. With the proposed method, ships can arrive at each
port on time, while ensuring a lower operation cost compared to existing methods.

(2) The original model is decoupled into a bi-level optimization model, the slave level
can be solved directly by commercial solvers, the master level is further formulated
as a two-stage DRO framework, and linear decision rules are adopted to solve the
model, which is suitable for practical applications.

2. Deterministic Optimization Model

As shown in Figure 1, a hybrid ship microgrid consists of DGs, ESSs, and PV for
propulsion and service loads.
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2.1. Objective

In the optimal scheduling model constructed in this paper, it is assumed that the
operation cost of PV and ESSs is zero, and the objective function includes the start–stop
cost and the operation cost of the DG units, and the expression is shown as follows:

min(F1 + F2) (1)

where F1 is the startup and shutdown cost of the DG units; and F2 is the operation cost of
the DG units.

F1 and F2 are calculated in (2) and (3), respectively:

F1 =
T

∑
t=1

N

∑
i=1

(Cion
t +Cio f f

t ) (2)

F2 =
T

∑
t=1

N

∑
i=1

Ci
t (3)

Ci
t = a0iPi2

t + a1iPi
t + a2i (4)

where T is the time period during navigation; t is the time interval; N is the number of
onboard DGs; Cion

t denotes the startup cost of the ith generator; Cio f f
t denotes the cost of

the shutdown of the ith DG; Ci
t denotes the fuel consumption cost of the ith generator;

a0i, a1i, and a2i are cost coefficients for the ith generator, respectively; and Pi
t is the output

power of the ith DG.
For the convenience of subsequent solving, segmental linearization is used to trans-

form the fuel consumption cost function into a linear function in this paper. By dividing
the ith DG to the output Pi

t at the tth time interval into Ki segments, the fuel consumption
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cost of the DG can be approximated as a linear function in each of the k segments. The
expression is shown in Equation (5):

Ci
t = Ci

0 +
Ki

∑
k=1

cikPik
t

Pi
t = Pi

min +
Ki

∑
k=1

Pik
t

0 ≤ Pik
t ≤ (Pi

t − Pi
min)

(5)

where cik is the generation cost coefficient of the ith DG after linearization in section k; Pik
t

is the power increment of the ith DG in section k; and Ci
0 is the ith DG cost at minimum

output power Pi
min, which is calculated by the SFC curve and fuel price.

Since the start–stop state of the DG is a discrete variable and the on/off s cost of the
unit at each time interval depends on the on/off s state, the start–stop cost is also a discrete
function that needs to be linearized as follows:

Cion
t ≥ Ci

on(oi
t+1 − oi

t)

Cion
t ≥ 0

Cio f f
t ≥ Ci

o f f (o
i
t − oi

t+1)

Cio f f
t ≥ 0

(6)

where oi
t is the start–stop state of the ith DG at time t, with 0 indicating that the generator is

in the shutdown state and 1 indicating that the generator is in the startup state.

2.2. Constraints
2.2.1. Generation Constraints

1. Power Balance

In a power system, the total power output of the generating unit must be equal to the
load power, i.e., the power balance is maintained as follows:

N

∑
i=1

Pi
t+PEss

t + PPv
t = Plp

t + Pls
t (7)

where PEss
t is the charging/discharging power of the storage battery t; PPv

t is the photo-
voltaic power; Plp

t is the load power of the electric propulsion device; and Pls
t is the load

power of the electric service device.
The relationship between ship speed and propulsive load power is as follows:

Plp
t = c1vc2 (8)

where c1 and c2 are the proportional and exponential coefficients, respectively; generation
scheduling and voyage scheduling are coupled by Equation (8).

2. Generator

The power of DGs is limited by its lower and upper limits, as shown in (9):

oi
tP

i
min ≤ Pi

t ≤ oi
tP

i
max (9)

where Pi
min is the minimum power; and Pi

max is the rated output power.
The maximal/minimal ramp rates of DGs are limited, as shown in (10):{

Pi
t+1 − Pi

t ≤ Ri
max

Pi
t − Pi

t+1 ≤ Di
max

(10)
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3. ESS

State of charge (SOC) refers to the proportion of the remaining capacity to the total
capacity, and SOC at any moment is determined by the remaining capacity of the battery at
the previous moment and the charging/discharging power, so the dynamic model of the
SOC of ESSs at each time step can be described by (12) and (13):

SOCEss
t =

EEss
t

EEss (11)

EEss
t =

{
EEss

t − PEss
t /ηch∆t t ̸= 1, PEss

t < 0
EEss

t − PEss
t /ηdis∆t t ̸= 1, PEss

t ≥ 0
(12)

EEss
t and EEss are the remaining capacity and rated capacity of the ESS at the t-th

moment, respectively; PEss
t is the ESS output power at the t − 1 moment; and ηch and ηdis

are charging/discharging efficiencies.
The SOC limits during the voyage are expressed as follows:

SOCmin ≤ SOCt ≤ SOCmax (13)

where SOCmin and SOCmax represent the minimal and maximal SOCs of an ESS, respectively.
The power of an ESS is limited by its lower and upper limits, as shown in (14):{

Pch.max < PEss
t−1 < 0 PEss

t−1 < 0
0 ≤ PEss

t−1 < Pdis.max PEss
t−1 ≥ 0

(14)

where Pch.max indicates the maximum charging power of the battery and Pdis.max indicates
the maximum discharging power of the battery.

4. Minimum On/Off Time

Once a DG is turned off (or on), it must remain in the same state for a time interval
until the next time interval when it is turned on (or off); this is described by (15):

t2 − t1 ≥ Ton/o f f (15)

where t2 and t1 are any two adjacent on/off state switching (on to off or off to on) times.

5. EEOI

To improve the energy efficiency of ship operation and reduce emissions, EEOI is
limited during ship operation as shown in (16) and (17):

EEOI = ∑i∈N ∑t∈T

(
ot

i ·G
i,t
DG·∆t

mAESDistt

)
(16)

EEOI ≤ EEOImax (17)

where Gi,t
DG is the carbon dioxide emissions during the operation of the DG, for which the

formula is shown in Equation (18); mAES is the weight of the ship cargo, in knots; Distt is
nautical miles of voyage; and EEOImax is the maximum allowed.

Gi,t
DG(t) = g0,i(r

i,t
DG(t))

2
+ g1,i(r

i,t
DG(t)) + g2,i (18)

Here, g1,i, g2,i, and g3,i are the calculation factors for CO2 emissions from DGs.

6. Action Spinning Reserves Constraints

To ensure the stable operation of the ship’s power system, it is necessary to consider the
active spinning reserve; the active spinning reserve mathematical model for DGs and ESSs
is shown in (19) and (20), and the total active spinning reserve is shown in Equation (21):
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RDG(t) = ∑n∈N (PDG,max−PDG,i(t)), ∀t ∈ T (19)

RESS(t) =
{

Pmax
ESS − PESS(t), PESS(t) ≥ 0

Pmax
ESS , PESS(t) < 0

, ∀t ∈ T (20){
RR(t) = RDG(t) + RESS(t)
RR(t) ≥ δR·NDG·PDG,max

, ∀t ∈ T (21)

where RDG, RESS, and RR are the active spinning reserves of DGs and ESSs and the total
active spinning reserve, respectively; δR is the spinning reserve coefficient; and NDG is the
number of diesel generators placed.

2.2.2. Voyage Constraints

The ships sail between multiple ports, which contain a variety of operating conditions
such as berthing, cruising, and docking, with different speed requirements, and the speed
constraints are shown in Figure 2 [14]. The black arrows indicate the speed limits; in each
interval, the cruising speeds should be within the upper and lower bounds. The blue
arrows indicate the voyage distance limit, meaning that the ship must arrive at the next
port within the specified time from the previous port. Equations (22)–(24) are the cruising
speed constraints during the cruising intervals and the partial speed intervals.

(1 − δv)vn ≤ vt ≤ (1 + δv)vn ∀t ∈ Tc (22)

ηv(1 − δv)vn ≤ vt ≤ ηv(1 + δv)vn ∀t ∈ Td (23)

vt = 0 ∀t ∈ Tb (24)

Here, Tc is the cruising intervals, Td is the partial speed interval, Tb is the berthing
interval; vn is the rated speed; δv is the rate of change of vn, and when the ship is cruising,
the ship speed is shown in (22); and ηv is the ratio between vt and vn, and when the ship is
sailing at a partial speed, the constraint is shown in (23).
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Since the ship needs to arrive at the port on time, the voyage distance to the intermedi-
ate and terminal ports is required, respectively, as shown in (25) and (26):

(1 − δmid)Distt
n ≤ Distt ≤ (1 + δmid)Distt

n (25)

DistnT
n ≤ DistnT ≤ (1 + δterm)DistnT

n (26)

where Dist is the actual sailing distance of the ship; and δmid and δterm are the maximum
permissible distance error for intermediate and terminal ports, respectively.
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2.3. Wave and Wind Resistance

Wind resistance and wave resistance, combined with the calm water resistance of the
ship, can be used to obtain the speed loss of the ship in different sea conditions.

Calm water resistance is mainly composed of frictional resistance R f , residual resis-
tance Rr, and attached resistance Rap [18,19], as shown in (27):

RT = R f + Rr + Rap (27)

The International Organization for Standardization (ISO) has constructed a mathemat-
ical model for calculating wind resistance and wave resistance based on the data obtained
from wind tunnel model tests [20,21], as follows:

Rwind =
1
2

ρairStCair[(vt + vw cos θt)
2 − v2

t ] (28)

where Rwind is the wind resistance; ρair is the air density, kg/m3; St is the lateral projected
area above the waterline, m2; Cair is the wind resistance coefficient; vw is the wind speed,
m/s; and θt is the wind direction.

The wave resistance is calculated using (29):

Rwave =
1
Ls

ρwatergh2
t B2

intCD,wat(τt, θt) (29)

where g is the acceleration of gravity, m/s2; ht is the wave height, m; Bint is the ship’s
width, m; and CD,wat is the wave resistance coefficient, with the wavelength τt and the
wind direction θt. When the ship is in a certain sea area, the wind direction and wave
direction can be approximated to be the same, as both are θt.

It should be noted that the variables vw and ht also depend on the season and geo-
graphic position. For example, in the South China Sea region, vw may be large and ht may
be tall in winter, thus Rwind and Rwave are large.

The total resistance (Rc) due to wind and waves can be estimated using Equation (30):

Rc = RT + Rwind + Rwave (30)

The ship speed loss is estimated based on the assumption that the required power
Pt at the ship speed in calm water is the same as the required power P′

t in the specific sea
condition, as follows:

Pt =
RT ·vt

ηdηs
, P′

t =
Rc·v′t
ηdηs

Pt = P′
t (31)

where ηd and ηs are the propulsion and transmission efficiencies.
Then, the cruising speed with speed loss can be calculated using (32):

v′t =
RT
Rc

vt =
RT
Rc

c2

√
Pt

c1
(32)

3. Uncertainty Model
3.1. Uncertainty Variables

In this paper, the uncertain PV power generation PPv
t and propulsion load power Plp

t
associated with speed are expressed as the sum of the expected value and a random term
for forecast error P̃t, given as

PPv
t = PPv

t + P̃Pv
t (33)

Plp
t = Plp

t + P̃lp
t (34)
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where PPv
t and Plp

t denote the expected value of PV power generation and propulsion load
power at t time interval, respectively, and P̃Pv

t and P̃lp
t denote the random terms of the

forecast error.
The next section will describe the process of a fuzzy set for P̃Pv

t and P̃lp
t . For the

convenience of the study, the uncertainty parameter matrix θ is used, where θ = [P̃Pv
t , P̃lp

t ].

3.2. Fuzzy Set Construction

This section focuses on modeling the random term of PV power and the propulsive
load power. According to the historical data of the random variable, as expected, the upper
bounds and lower bounds of a random variable are known. The mathematical expression
of the fuzzy set Ω constructed in this paper based on the first-order deviation moment
function is as follows:

Ω =

P ∈ ℑ|
EP{θ} = µ

P{θ ∈ D} = 1
EP
{

gj(θ)
}
≤ σj, ∀j ∈ [j]

 (35)

P is the distribution of a random variable, and ℑ denotes the set of all probability
distributions.

The first line suggests that the expectation of random variable θ is µ, which can be
obtained from the historical data; the second line suggests that all the values of random
variable θ are within the uncertainty set D, defined the same as the conventional robust
optimization. In this paper, the box-type uncertainty set is adopted to limit the range of
the fluctuation of the random variable; for D =

{
θ ≤ θ ≤ θ

}
, θ and θ are the upper and

lower bounds, respectively. P(g) is the probability function; the third line represents the
uncertainty of the first-order moment information of θ by adding the first-order deviation
moment function gj(θ) to the fuzzy set. gj(θ) can be approximated to a segmented linear
form, gj(θ) = max

{
θ − φj, 0

}
, which means the first-order statistical information deviates

from a certain given value φj, σj is a cut-off constant, which can be estimated from historical
statistics, j is the index of segments describing the distribution of each random variable,
and [j] is a set of segments describing the distribution of each random variable.

Since it is difficult to directly evaluate the expectations for each gj(θ) under an un-
certain distribution, to facilitate the equivalent transformation of the model, the auxiliary
variable u is introduced into the model in this paper [17]. With the extension of the original
fuzzy set, this is expressed as follows:

G =

Q ∈ B|
EQ{θ} = µ

P{(θ, u) ∈ H} = 1
EQ
{

uj
}
≤ σj, ∀j ∈ [j]

 (36)

H is the new extended uncertainty set, as shown in (37):

H =


θ ≤ θ ≤ θ

uj ≥ θ − φj, ∀j ∈ [j]
uj ≥ 0, ∀j ∈ [j]

 (37)

4. Solution Method
4.1. Matrix Form of the Model

To clearly demonstrate the solution of the proposed distributionally robust nonlinear
programming (DRONLP), the compact forms are shown in Equations (38)–(45):

Q(xt, θ) =
max

θ
min
xt

[
T

∑
t=1

N

∑
n=1

(Ci
t + Cion

t + Cio f f
t )

]
(38)
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s.t. MIEQ·xt = mIEQ, ∀t ∈ T (39)

MIEQ·xt ≤ mIEQ, ∀t ∈ T (40)

Cθ + Du ≤ d (41)

1T
a ·xt = c1·(yt)

c2 , ∀t ∈ T (42)

Ymin ≤ Y = [y1, · · · , yT]
T ≤ Ymax (43)

Dmin ≤ VT ·

kv(u1) L 0
M O M
0 L kv(uT)

·Y ≤ Dmax (44)

(θ, u) ∈ H (45)

where xt = [(oDG
1,t , · · · , oDG

N,t )
T , (PDG

1,t , · · · , PDG
N,t )

T , PESS
t , PPv

t , PPL
t ] is the generation variable;

yt = νc
t is the speed variable; and Q(xt, θ) is the generator fuel consumption cost and the

on/off cost. Equations (39) and (40) represent linear equation and inequality constraints;
Equation (41) is the matrix form of the extended fuzzy set; Equation (42) is the relation-
ship between propulsion load and speed; Equation (43) is the sailing speed constraint;
Equation (44) is the sailing distance constraint; and Equation (45) is the uncertain parameter
set constraint. All of the above coefficient matrices are derived from the original model.

4.2. Bi-Level Formulation of Proposed Model

Equations (38)–(43) are two scheduling problems, i.e., power generation scheduling
and voyage scheduling. The two scheduling problems are coupled through Equation (42),
i.e., the relationship between propulsion load and cruising speed. If this coupling con-
straint is removed, the original problem can be decomposed into two levels as shown in
Equations (46)–(48) [14]:

master : Q(xt, θ) (46)

s.t. MIEQ·xt ≤ mIEQ, ∀t ∈ T

Cθ + Du ≤ d

1T
a ·xt = c1·(yt)

c2 , ∀t ∈ T

(47)

slave : y∗t = argmin
(∣∣∣∣Dmax − VT ·Kv·Y

VT ·Kv·Y − Dmin

∣∣∣∣ : (44), (45)
)

(48)

In the above formulation, xt and yt are determined in different levels, and Q(xt, θ)
becomes related to xt only, while yt is considered as a constant in the master problem,
which is updated by the slave level. For the slave level, yt is obtained by minimizing
the voyage deviation. With this decomposition, Equations (46) and (47) are quadratic
programming, and Equation (48) is linear programming. The slave level can be solved
directly by commercial solvers; the master level is described in the next section.

4.3. Linearization for the Master Level
4.3.1. Two-Stage Optimization Model

The master level model can be transformed into a two-stage optimization problem, and
the variables in the master level are decomposed into first-stage variables and second-stage
variables. The first-stage variables are decision variables that do not change with uncer-
tainties, denoted by x1, and before the power of PV and propulsion loads are determined,
the on/off plan of generating units will be formulated first; the second-stage variables will
be affected by uncertainties, denoted by x1, and the power of each generating unit will be
optimized according to the actual power of PV and propulsion loads under the constraints.
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The first-stage optimization problem can be formulated as shown in (49) and (50):

mincTx1 + Q(x1, θ) (49)

s.t. A·x1 ≤ b (50)

The second-stage objective function Q(x1, θ) can be represented by the second-stage
variable x2, as follows:

Q(x1, θ) = min qTx2 (51)

s.t. Nx1 + Mx2 ≤ h(θ) (52)

The function h(θ) contains the random variable θ, which will be affected by uncertainty,
as follows:

h(θ) = h0 +
s

∑
s=1

hθ
s θs (53)

where h0 denotes the constant coefficient column vector and hθ
s denotes the column vector

associated with θs.

4.3.2. Two-Stage Distributional Robust Optimization Model

Based on the fuzzy sets, the previous two-stage optimization model can be written as
a two-stage distributionally robust optimization model, as follows:

mincTx1 + max
Q∈G

EQ{Q(x1, θ)}

s.t. A·x1 ≤ b
(54)

The objective function minimizes the expectation of function Q(x1, θ) under a distri-
bution P. The objective function minimizes the expectation of the function Q under the
probability distribution Q, which is the worst distribution on the fuzzy set G. The function
Q(x1, θ) represents the economic dispatch cost associated with x1 under a random variable
θ, which can be solved by the second-stage problem.

The second-stage objective function max
Q∈G

EQ{Q(x1, θ)} can be written in a general

matrix form, as follows:

max
Q∈G

EQ{Q(x1, θ)} = minmax
Q∈G

EQ
{

qTx2
}

s.t. Nx1 + Mx2 ≤ h(θ)
(55)

However, solving the second-stage decision variable x2 based on all realizations θ
within fuzzy set G is an NP-hard problem. A linear decision rule is an efficient way to
deal with this y intractable problem [22,23], which restricts decision variable x2 affine
dependence on the uncertain parameter θ.

In this paper, a linear decision rule model is adopted which approximates x2(θ, u) by
a linear affine function of random variables θ and auxiliary variables u.

The linear affine function x2(θ, u) can be expressed as (56):

x2(θ, u) = x2
0 +

S

∑
s=1

xθ
2sθs +

J

∑
j=1

L

∑
l=1

x2
u
jlujl (56)

By converting the second-stage decision variable x2 to a linear affine function x2(θ, u),
the original second-stage optimization problem can also be re-represented as follows:

minmax
Q∈G

EQ
{

qTx2(θ, u)
}

(57)



J. Mar. Sci. Eng. 2024, 12, 2087 11 of 18

s.t. Nx1 + Mx2(θ, u) ≤ h(θ) (58)

Instead of solving the recourse problem under all outcomes of uncertain parame-
ters, the reformulated problem attempts to search for optimal coefficients of the decision
rule x2(θ, u) such that the worst-case expectation is minimized under all second-stage
constraints. A detailed proof is given in Appendix A in the literature [17].

In the second stage, the inner maximization problem max
Q∈G

EQ
{

qTx2(θ, u)
}

can be

expressed as a semi-infinite optimization problem, the problem is further transformed into
a finite-dimensional optimization problem by Lagrange duality, and the original two-layer
min-max optimization problem is equivalently reduced to a minimization problem, as
shown in Equations (59)–(62):

minη + γTλ (59)

s.t. λ ≥ 0 (60)

η + θTρ + uTλ ≥ qTx2(θ, u) (61)

Nx1 + Mx2(θ, u) ≤ h(θ) (62)

After the equivalent transformation of the optimization model, constraints (61) and
(62) are still infinite-dimensional linear constraints, they can be transformed based on dual
theory, and the model of the second-stage problem is as shown in Equations (63)–(72):

minη + γTλ (63)

s.t. λ ≥ 0 (64)

π0 ≥ 0 (65)

πm ≥ 0 (66)

η − qTx2
0 + πT

0 d ≥ 0 (67)

πT
0 Cs = ∑

n∈Nv
s

qnxθ
2ns − ρs = qTxθ

2s − ρs (68)

πT
0 Di = ∑

n∈Nu
i

qnxu
2ni − λi = qTxu

2i − λi (69)

NT
k x1 + MT

k x2
0 − h0

k + dTπm ≤ 0 (70)

πT
mCs = ∑

n∈Nv
s

Wmnxθ
2ns − hθ

ms = WT
mxθ

2s − hθ
ms (71)

πT
mDi = ∑

n∈Nu
i

Wmnxu
2ni = Wmxu

2i (72)

After the above series of transformations, the original two-stage distributional ro-
bust optimization model is transformed into a mixed-integer linear programming model,
objective function is as (73), The constraints include (50) and (64)–(72).

mincTx1 + η + γTλ (73)

As mentioned above, the original problem is decomposed into master and slave levels,
where the master level is transformed into a mixed-integer linear programming problem
by linear decision rule. The overall process of the proposed solution method is shown in
Figure 3.
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5. Case Study
5.1. Simulation Parameters

In this study, four DGs, PV, and ESSs were considered for simulations, and the cases
had two intermediate ports and one terminal port, as shown in Figure 4. The total voyage is
24 h; ship cruising occurred during t = 1–7, 9–15, and 17–23, and staying in a port occurred
during t = 8, 16, and 24, and furthermore when t = 1, 7, 9, 15, 17, and 23,to avoid outage
events, a DG remained closed until it needed to be turned on.
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The service load is shown in Table 1 and the basic parameters of DGs and ESSs are
shown in Table 2 [14,24]. The parameters of the voyage scheduling are shown in Table 3.
The predicted mean value and upper and lower bounds of PV power and propulsion
power are shown in Figure 5. The capacity of the ESS is 30 MWh, and the rated power is
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15 MW. The rated cruising speed is 19 knots. Environmental data along the cruise route
were downloaded from the ERA5 global reanalysis data set [25].

Table 1. Electricity service load power.

Time interval 1 2 3 4 5 6 7 8 9 10 11 12
Service load 8.96 8.92 9.43 10.97 8.45 8.52 7.96 8.54 8.01 7.97 8.95 10.82
Time interval 13 14 15 16 17 18 19 20 21 22 23 24
Service load 8.91 7.93 8.99 8.35 8.9 7.46 9.67 10.34 8.51 7.62 7.38 9

Table 2. Diesel generator specifications.

DG PDGn (MW) PDGmin (MW) ru,rd (%/∆t) a0,1,2 (m.u./p.u.) g0,1,2 (uCO2/p.u.)

DG1 15 4 +/−50% 13.5, 10, 450 386, −2000, 8383
DG2 15 4 +/−50% 13, 12, 430 386, −2000, 8383
DG3 15 4 +/−50% 13.5, 12, 460 363, −650, 950
DG4 15 4 +/−50% 5.6, 58, 390 125, 450, 850
ESS ηch = 95% ηdis = 97%

Table 3. Parameters of voyage scheduling.

l = 175 m Bint = 25.4 m St = 274 m ηd = 98% ηs = 0.7 Plp
t = 0.003vt

3

ht ∈ [0, 4.5] m τt ∈ [0, 1.5] m vw ∈ [0, 15.5] m/s θt ∈ [30, 180] deg Cair = 0.025 ρair = 1.29 × 10−3 g/cm3

ρwater = 1.04 g/cm3 CD,wat = 0.041 [26] g = 9.8 m/s2
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5.2. Analysis of Results
5.2.1. On-Time Rates Under Different Methods

In this study, the speeds of the three methods are analyzed as shown in Figure 6, where
RO is robust optimization, DRO is distributionally robust optimization, NR is without
considering wind and wave resistance, and Nom denotes the nominal speed. In Figure 6,
the speeds of both RO and DRO are significantly higher than those in the case of NR, so
both can cover the speed loss caused by wind and waves and ensure that the ship arrives
at the port on time. On the other hand, the speed in NR is obviously lower than the rated
speed, which makes the ship fail to arrive at the harbor on time.
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When t = 1~7 and 17~23, due to DRO not being as conservative as the RO for the uncer-
tainty, the cruise speed is relatively low compared to the RO, and the power of the propulsion
load is also lower at these intervals, so the generator output power is reduced accordingly,
and so DRO improves the ship’s energy-saving and emission reduction capabilities.

5.2.2. Analysis of Economic Costs

Figure 7 shows the fuel consumption for each time step under four different methods,
Due to PV being used as supplementary energy during t = 10–15 periods, fuel consumption
during t = 10–15 is lower than at other times, so the integration of the PV system can reduce
ship operating costs. In NR, the fuel consumption is lowest because the impact of wind
and waves is not considered, but it also causes the ship to fail to arrive at the port on time.
The RO and DRO consider the uncertainty; therefore, fuel consumption is higher than the
Nom Speed scenario. It can also be seen from Figure 8 that the fuel consumption of DRO is
always lower than that of RO.

Table 4 shows the total fuel consumption for four different methods, and it can be
clearly seen that DRO generally outperforms RO in yielding lower expected costs.

Figure 8 shows that two units are turned on during most of the navigation time for the
DRO method since the two units are enough to follow wave, wind, and PV fluctuations at a
minimum cost. But for the RO method, three units are turned on for most of the navigation
time, which requires more economic costs. Therefore, compared to RO methods, DRO
methods greatly reduce the conservatism of decision-making and lower scheduling costs.
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Table 4. Total fuel consumption for different methods.

Total Fuel Consumption (m.u.)

DRO 70,222
RO 79,950
NR 54,357

Nom Speed 64,890

5.2.3. Analysis of Sensitivity

When the uncertain variable fluctuates in the range of ±15~±35% of the expected
value, it can be seen from Figure 9 that the total cost of DRO is generally lower than that of
RO, and with an increase in interval fluctuation, the advantage of DRO is more obvious.
This is because the decision made by the traditional RO depends on the worst case, while
the DRO can simulate the distribution of uncertain variables according to the probability
information contained in the fuzzy set, which reduces the conservative decision.
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6. Conclusions

To address the effects of uncertain wave and wind conditions in the navigation route,
this paper proposes a DRO formulation for solving the joint scheduling model of power
and voyage, aiming at operation cost minimization and GHG emission limitation. The
relationship between propulsion load and voyage as influenced by navigation speed and
waves is first established, and then a DRO model is established. Due to the complexity of
the examined model, the problem is decoupled into a bi-level optimization model, the slave
level can be solved directly by commercial solvers, the master level is further formulated as
a two-stage DRO model, and linear decision rules and column and constraint generation
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algorithms are adopted to solve the model. With the exploitation of the proposed method,
joint scheduling is achieved with excellent results. The obtained simulation results confirm
the effectiveness of the method, and compared with the conventional robust optimization
methods, less conservative results are obtained. Expected operation costs are minimized
and emissions are reduced while ensuring the on-time arrival of hybrid ships in various
uncertain scenarios. Future efforts might be spent on the consideration of incorporating
risk into the model to better guide operators.
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Nomenclature

Acronyms
DRO distributionally robust optimization
PV photovoltaics
GHG greenhouse gas
SOC state of charge
ESS energy storage system
DG distributed generator
ISO International Organization for Standardization
DRONLP distributionally robust nonlinear programming
Sets and indices
T, t index and set of time periods
N, i index and set of generator units
Ki, k index and set of segments
Parameters
Cion

t startup cost of the ith generator at time interval t
Cio f f

t shutdown cost of the ith generator at time interval t
a0i, a1i, a2i cost coefficients for the ith generator, respectively
cik ith DG cost coefficient after linearization in section k
Ci

0 ith DG cost at minimum output power Pi
min

oi
t start–stop state of the ith DG at time interval t

c1,c2 proportional and exponential coefficients
Pi

min minimum power
Pi

max rated output power
EEss rated capacity of ESS
ηchh, ηdis charging/discharging efficiency
Pch·max,Pdis·max maximum charging/discharging power of the battery
mAES weight of the ship cargo
Distt miles of voyage
EEOImax maximum allowed
g1,i, g2,i, g3,i calculation factors for CO2 emissions from DGs
RDG, RESS, RR active spinning reserve of DGs, ESS, total
δR spinning reserve coefficient
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Tc, Td, Tb cruising intervals, partial speed intervals, and berthing intervals
vn rated speed
δv rate of change of vn
Dist actual sailing distance of the ship
δmid, δterm maximum permissible distance error for intermediate and terminal port
ρair air density
St lateral projected area above the waterline, m2

Cair, vw, θt wind resistance coefficient; wind speed, wind direction
ht, CD,wat, τt wave height, wave resistance coefficient, wavelength
ηd, ηs propulsion and transmission efficiency
P̃Pv

t , P̃lp
t random term of the forecast error

Variables
F1 startup and shutdown cost of the DG units
F2 operation cost of the DG units
Pi

t output power of the ith DG at time interval t
PEss

t charging/discharging power of the storage battery t
PPv

t photovoltaic power
Plp

t load power of the electric propulsion device
Pls

t load power of the electric service device
EEss

t remaining capacity at the t-th time interval
Gi,t

DG carbon dioxide emissions during the operation of DG
R f , Rr, Rap, Rwind frictional resistance, residual resistance, attached resistance, and wind resistance

PPv
t , Plp

t expected value of PV power and propulsion load power
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