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Abstract: This paper presents a simplified design method for laterally loaded rigid monopiles in
cohesionless soil. The proposed design method is based on a constant depth of the rotation point and a
bi-linear distribution of soil lateral reaction along the embedded length of the monopile. Furthermore,
a mobilization coefficient of soil resistance is introduced to quantify the magnitude of the soil reaction
mobilized under a certain load level applied at the pile head. The mobilization coefficient is found to
be directly related to the pile head rotation by back-analyzing test results measured from 13 laterally
loaded piles in the published literature. The feasibility and reliability of the proposed design method
are evaluated with another 23 laterally loaded piles, which are compiled in a database. The results
show that the proposed design method yields relatively satisfactory predictions of the nonlinear
load-deformation responses of these piles. Furthermore, comparison of soil lateral reaction profiles
between those measured and calculated with the proposed method proves the validity of the assumed
soil reaction profiles. As the mobilization coefficient is back-analyzed from piles mostly embedded in
uniform ground and the pile bending and translational deformations are neglected in this study, the
proposed method is suitable for monopile designs in uniform sites with medium~medium-dense
sand, in which the pile bending and translational deformations can be ignored.

Keywords: monopile; lateral load; rotation depth; monotonic design; cohesionless soil

1. Introduction

Pile foundations are widely employed to resist the lateral forces arising from traffic,
wind, waves, and water currents in civil engineering. For example, many long-span bridges,
high-rise buildings, transmission lines, and oil and gas production platforms are supported
by pile foundations to resist both vertical and lateral superstructure loads. Based on the pile
geometric characteristics, the quality of the pile, and the characteristics of the founding soils,
laterally loaded piles can be generally classified as flexible piles and rigid piles [1,2]. For
most cases in practical engineering, laterally loaded piles can be regarded as flexible piles,
for example, the pile foundations used in high-rise buildings and oil and gas production
platforms, in which pile slenderness ratios (i.e., ratio of pile embedded length Lem to outer
diameter D) are usually greater than 20. With the development of the energy industry,
especially offshore wind turbines, large-diameter rigid monopiles are becoming widely
used to resist the lateral load and moment transferred from offshore wind turbines [3–5].
The monopile foundation, consisting of an open-ended steel pipe with an outer diameter
D generally ranging from 3.5 m to 8 m, is often driven into the seabed with an embedded
length Lem of (5~10)D. Compared with the long slender piles widely used in the offshore
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oil/gas sector, the large-diameter monopile behaves similar to a rigid pile and tends to
move around a rotation point under lateral loading [6–8].

When designing piles to resist lateral loads, two design criteria should commonly
be satisfied: one is a reduction in the ultimate load considering a safety factor and the
other is an allowable lateral displacement [6]. In general, a design based on an allow-
able lateral displacement provides a more rational approach because it can allow the
designer to simultaneously consider the ultimate bearing capacity state and serviceability
limit state. For example, Kozubal et al. [9] conduced a three-dimensional sophisticated
probabilistic approach to investigate the influence of varying soil properties on laterally
loaded piles and defined the failure criterion as the pile head displacement exceeding the
displacement threshold.

In order to predict the load-displacement response of laterally loaded piles, a series of
analytical methods have been developed over the years. For example, Ashour et al. [10]
proposed a strain wedge model to assess the three-dimensional response of a flexible pile
under lateral loading. Higgins et al. [11] analyzed laterally loaded piles using Fourier
FEM, and based on the analysis, equations describing pile head deflection, rotation, and
maximum bending moment were proposed. Suryasentana and Lehane [12] presented a
numerical derivation of CPT-based P–y curves applicable to both small- and large-diameter
laterally loaded single piles in sand. However, most of these analytical methods originate
from flexible pile assumptions, and the applicability of these methods for the design of rigid
piles should be further investigated. For example, the Winkler foundation-based P–y curve
method has been extensively developed and is recommended by some design guidelines
for laterally loaded piles. Even though this method gives successful designs for piles
that commonly have diameters no more than 2 m and slenderness ratios (Lem/D) greater
than 20, the applicability and reliability issues of this method were reviewed by many
researchers when applied to the design of larger diameter rigid monopiles with slenderness
ratios generally smaller than 10 (e.g., Abdel-Rahman and Achmus [13], Hu et al. [14],
Wang et al. [15]).

To predict the response of laterally loaded rigid piles, designs based on the assumed
profiles of soil ultimate lateral resistance and load equilibrium have been recommended
by many researchers, e.g., Brinch-Hansen et al. [16], Zhang et al. [17] and Li et al. [18]. For
simplicity, the ultimate lateral resistance of soil is usually assumed to be fully mobilized in
most of these approaches, which is not the case in reality, especially at the depth near the
rotation point. In addition, the disadvantage of these methods is that the pile deformation
cannot be estimated.

Another kind of design method for laterally loaded rigid piles is force and mo-
ment equilibrium-based solutions, such as the analytical methods proposed by Zhang [6],
Motta [7], Zhang and Ahmari [19] and Wang et al. [15], in which laterally loaded piles
are considered to undergo rigid rotation, with the distribution models of soil reaction and
horizontal subgrade reaction modulus being assumed. Based on the equilibrium of pile
force and moment, the deformation of the laterally loaded monopile can be obtained. It
should be noted that, however, in order to obtain a good prediction of the rigid monopile
response, the modulus of horizontal subgrade reaction should be carefully examined, and
an iteration process is needed to solve the high-order nonlinear equations [6].

To facilitate the nonlinear design of laterally loaded rigid monopiles in cohesive
soil, a simplified design method with an assumption of a fixed rotation depth has been
developed by Luo et al. [5], in which the lateral soil reaction is assumed to vary in a trilinear
pattern with depth, and a soil reaction mobilization coefficient is introduced to evaluate
the mobilization of lateral soil resistance with monopile rotation. The main advantage
of this method is that it can be employed without computer programing, and the input
parameters can be conveniently obtained through conventional laboratory or field tests.

As an extension of the proposed design method for rigid monopiles under lateral load
proposed by the authors in [5], the objective of this paper is to present a simplified design
method for laterally loaded rigid piles or monopiles in cohesionless soils. A bi-linear profile
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of soil lateral reaction is assumed, and a mobilization coefficient is introduced to quantify
the magnitude of the soil reaction mobilized under a certain load. This mobilization
coefficient is related to the applied load and pile rotation through the load equilibrium of
the pile system and is back-analyzed using a database of 13 test piles with a wide range
of dimensions. The general design procedures for a laterally loaded rigid monopile in
cohesionless soil have been summarized, and another database consisting of 23 test piles is
compiled to evaluate the feasibility and reliability of this proposed method, as well as to
prove the validity of the assumed soil lateral reaction profile.

2. Proposed Design
2.1. Depth of Rotation Point of Rigid Monopile

Figure 1 shows the deformed shape of a rigid monopile of outer diameter of D with
an embedded length of Lem under a lateral load applied at a height of Lup above the ground
surface level. In general, if the relative stiffness between the subsurface soil and monopile is
small enough, the monopile under lateral loading undergoes pure rotation as a rigid body
around a point located at a depth of Zr below the ground surface [2]. In order to investigate the
location of the rotation point, a series of loading tests on rigid monopiles have been collected.
These test piles, having a wide range of pile dimensions, were installed in loose to dense sand
and loaded monotonically. The details of these pile tests are summarized in Table 1.
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Table 1. Database of test piles for rotation point determination.

Pile No. Field/
Lab

Soil
Condition

Prototype Pile Dimensions
Pile Type ReferenceD

(m) Lem/D Lup/D

PR1 Field Dense sand 0.34 6.5 1.18 Steel Pipe Pile Li et al.
[3]

PR2 Field Medium-dense 0.245 6.1 1.63 Steel Pipe Pile Murphy et al.
[20]

PR3 Field Medium-dense 0.245 6.1 1.63 Steel Winged
Pipe Pile

Murphy et al.
[20]

PR4 Lab Medium-dense
to dense 1.092 8.3 1.14 Steel Pipe Pile Georgiadis et al.

[21]
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Table 1. Cont.

Pile No. Field/
Lab

Soil
Condition

Prototype Pile Dimensions
Pile Type ReferenceD

(m) Lem/D Lup/D

PR5 Lab Dense sand 3 6.0 15 Steel Pipe Pile Klinkvort & Hededal
[22]

PR6 Lab Loose sand 0.168 7.1 1.16 Steel Pipe Pile Naggar & Wei
[23]

PR7 Lab Dense sand 0.032 15.6 3.59 Steel Pipe Pile Qin & Guo
[24]

PR8 Lab Dense sand 0.032 12.5 3.59 Steel Pipe Pile Qin & Guo
[24]

PR9 Lab Dense sand 6 5.2 5.5 Steel Pipe Pile Choo & Kim
[25]

PR10~
PR12 Lab Dense sand 0.048 8.3 1.04 Steel Pipe Pile Mu et al.

[26]
PR13~
PR18 Lab Dense sand 0.165 5.5 6 Steel Pipe Pile Zhu et al.

[27]

The variations of normalized rotation depth Zr/Lem with normalized load magnitude
Qb are presented in Figure 2. The normalized load magnitude Qb is defined as Qb = F/Fu,
in which F is the applied lateral load and Fu is the ultimate load capacity of the laterally
loaded monopile. For test piles for which the ultimate load capacities were not specified
in the literature, the ultimate load capacity is taken as the load corresponding to a pile-
head displacement of 0.1D [27,28]. As shown in Figure 2, with some discrete in general,
the normalized rotation depth Zr/Lem is mainly located in the range of 0.7~0.81, and
the depth of the rotation point is approximately constant, independent of the test pile’s
dimensions, soil conditions, load eccentricity, and applied load magnitude. This agrees
with the observations from the numerical modeling [28]. Based on the analysis above, the
proposed design method in this paper assumes the depth of the rotation point Zr is constant
and equal to 0.75Lem, which is the same as the assumption proposed by Wang et al. [29].
From an engineering point of view, the error caused by the assumption of a fixed rotation
depth is within the acceptable tolerances, with an inaccuracy less than 10%.
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2.2. Mobilization Coefficient of Soil Lateral Reaction

Figure 3 shows the proposed distribution of soil lateral reaction for a rigid monopile
under lateral loading in this paper, which is defined as follows:

(1) As the depth increases, the magnitude of the lateral soil reaction around a monopile
generally increases to a maximum value and then decreases to zero at the depth of
the rotation point, and following that, at the rear side of the monopile, it gradually
increases from this rotation point to a maximum value at the pile tip (e.g., Prasad and
Chari, [30]; Zhang et al. [17]; Li et al. [18]; Wang et al. [15]). The maximum soil lateral
reaction in the front side is located at a depth of Zm.

(2) The maximum soil lateral pressure in the front side of the monopile is pm, which may
be calculated using Rankine’s passive earth pressure theory (Kpγ′Zm) and the mobi-
lization coefficient of ultimate soil resistance η, where γ′ is the effective unit weight of
soil, and Kp is the coefficient of Rankine’s passive earth pressure. The mobilization
coefficient η is introduced to quantify the amount of soil pressure/reaction mobilized
under a certain loading magnitude. At a given depth of the monopile, to account
for the non-uniformity distribution of soil lateral pressure across the diameter of a
circular monopile, a reduction factor of 0.8 is usually introduced (e.g., Zhang et al. [17];
Prasad and Chari [30]).

(3) According to the equilibrium of lateral force and moment on the monopile, the
depth of the maximum soil pressure Zm in front of the monopile can be deter-
mined using Equation (1), while the correlation between the applied lateral load
and the mobilization coefficient η is given by Equation (2). The derivation process
of Equations (1) and (2) can be referred to Appendix A. Equation (1) demonstrates
that the depth of the maximum soil pressure Zm is only related to the pile embed-
ded depth Lem and load eccentricity Lup, and it is independent of the magnitude of
the applied lateral load F, which is in line with the findings by other researchers
(e.g., Georgiadis et al. [21]; Zhu et al. [27]; Prasad and Chari [30]).
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Zm =

√
0.09Lup2 + 0.0132Lem2 + 0.08LupLem − 0.3Lup

0.2
(1)

η =
F

ZmKpγ′LemD(0.3 − 0.025Lem
0.75Lem−Zm

)
(2)

2.3. Correlation between Pile Head Rotation and Mobilization Coefficient

The magnitude of mobilized soil lateral reaction depends on the applied load, as
illustrated in Equation (2); therefore, it can be inferred that the pile deformation is directly
related to the applied load, and a correlation between mobilization coefficient η and pile
lateral deformation (e.g., pile head rotation θ) should exist. In this study, results measured
from a series of rigid pile loading tests have been employed to back-analyze this correlation.
These piles, embedded in different types of cohesionless soils of varying density and with
a wide range of dimensions, were loaded monotonically. The details of these pile tests are
summarized in Table 2.

Table 2. Details of pile tests for mobilization coefficient correlation.

Pile
No

Pile Dimensions in Prototype Soil Properties
Test

Description

Height of
Displacement

Measured
(m)

Reference
D(m) Lem/D Lup/D γ′

(kN/m3)
ϕp
(◦)

ϕc
(◦)

Dr
(%)

P1 0.075 13.3 1 15.25 46 32 a 82 Angular dry sand
1 g model test 0

Chari and
Meyerhof

[31]

P2 1

6

15 16.7 43.2

30

93
Dry/Saturated

Fontainebleau sand,
centrifuge test

1.375

Klinkvort and
Hededal. [22]

P3 3 8.25 10.3 42.5 88 4.125

P4 3 10.5 10.4 43.4 93 4.125

P5 3 12.75 10.2 42.3 87 4.125

P6 0.102 6 1.5 18.3 43 33.3 b 75
Well-graded angular

dry sand
1 g model test

0 Prasad and
Chari [30]
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Table 2. Cont.

Pile
No

Pile Dimensions in Prototype Soil Properties
Test

Description

Height of
Displacement

Measured
(m)

Reference
D(m) Lem/D Lup/D γ′

(kN/m3)
ϕp
(◦)

ϕc
(◦)

Dr
(%)

P7

0.165 5.55 6

9.1 41.5

35.5

88

Saturated Hangzhou
silt sand,

1 g model test

0.99

Zhu et al.
[27]

P8 0.495

P9 0.165

P10
8.8 37.4 70

0.99

P11 0.495

P12 0.165

P13 0.34 6.5 1.18 20 54 37 100
Heavily

over-consolidated
Blessington sand

0 Li et al.
[32]

a: defined by the critical friction angle of silica sand [33]. b: defined by the loose condition of the test sand.

To derive the correlation between mobilization coefficient η and pile head rotation θ
from the measured response on each test pile, three steps need be followed.

Firstly, for a specifically applied lateral load Fi, the mobilization coefficient ηi is calcu-
lated using Equations (1) and (2). Secondly, the pile head rotation θi or lateral displacement
yi corresponding to this applied load Fi can be read from the measured pile head response.
If only yi is given, the pile head rotation θi can be calculated using Equation (3), as shown
in Figure 3. It should be noted that Equation (3) is based on assumptions that the test pile
is 100% rigid and the depth of the rotation point Zr is a constant value of 0.75Lem. Then,
the mobilization coefficient ηi and pile head rotation θi under the applied lateral load Fi
are derived.

θi = arctan(
yi

Lup + 0.75Lem
) (3)

It should be noted that, as the monopile is assumed as an absolutely rigid pile in this
study, the translational and bending deformations are neglected for the computation of
pile head displacement, and the proposed method is only suitable for the piles in which
the translational and bending deformations can be ignored. For sites with loose or over-
consolidated sand, the pile translational or bending deformation cannot be neglected, and
the application of the proposed method should be examined carefully.

By repeating these steps above, the correlation between η and θ is derived for each
test pile, which is shown in Figure 4:

(1) As expected, the value of mobilization coefficient η increases with pile head rotation θ
in a nonlinear pattern.

(2) The relationship between η and θ depends on the critical friction angle of soil ϕc and
the relative density Dr, i.e., piles in similar ground conditions generate nearly identical
η–θ correlations.

(3) A power function, as shown in Equation (4), is capable of modeling the relationship
between η and θ, where m and n are the model parameters.

η = m · θn (4)

To investigate the variation patterns of model parameters m and n with the sand critical
friction angle ϕc and relative density Dr, the power function for each pile case is presented,
as shown in Figure 5. To establish a design formula or chart for the determination of
model parameters, the normalized model parameters m′ and n are plotted with sand critical
friction angle ϕc and relative density Dr, respectively, as shown in Figure 6. The normalized
model parameter m′ is defined as m′ = m/Dr, in which m is the model parameter illustrated
in Equation (4) and Dr is the sand relative density.
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Figure 5. Correlation between pile rotation and soil resistance mobilization coefficient for each case.
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As shown in Figure 6a, the normalized model parameter m′ generally increases linearly
with the sand critical friction angle ϕc, which indicates that the higher the critical friction
angle, the stiffer the load-deformation response will be. As the relative density Dr is
incorporated into the normalized model parameter m′, a higher relative density will induce
a larger model parameter m, which agrees the observations in practical pile tests [27]. As
shown in Figure 6b, the model parameter n is mainly located in the range of 0.4~0.5 and is
irrelevant to the sand relative density Dr. Based on the cases analyzed, an average value of
n = 0.45 is employed in this study.

As highlighted by Li et al. [3] for short rigid monopiles, the contribution of factors
such as base shear and side shear stress becomes increasingly important. Although the
contribution of these factors is not directly considered in the presented model, it should be
pointed out that, however, as the correlation between pile head rotation and mobilization
coefficient are back-analyzed from the measured pile head responses of the pile loading
tests, the contribution of base shear and side shear stress has been indirectly incorporated
into the model.

2.4. General Design Procedures

The following procedures are recommended for a laterally loaded rigid monopile
in cohesionless soil, and the flow chart for calculating the load-displacement response of
monopiles is illustrated in Figure 7.

1. Set a specific value of pile head rotation θi;
2. According to the ground conditions, including the sand critical friction angle ϕc and

relative density Dr, the value of mobilization coefficient ηi can be calculated using
Equation (4), where m = (0.26 ϕc − 4.8)Dr; n = 0.45.

3. Calculate the corresponding pile head load Fi using Equation (5), as well as the pile
head displacement using Equation (6).

4. Repeating steps 1 to 3, the general pile head response of a monopile can be estimated.
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1 0.073 10 2.33 
15.1 41.2 32 a 77 1 g model tests F-y η = 
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Georgiadis et al. 
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Step4：general pile head response of a monopile
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determined by the calculating accuracy , typically 0.1°~ 0.2°)

• Repeating step 3, the general pile head response of a 

monopile is obtained

Figure 7. Flow chart for calculating the load-displacement response of monopiles.

F = η[ZmKpγ′LemD(0.3 − 0.025Lem

0.75Lem − Zm
)] (5)

yi = tan θi · (Lup + 0.75Lem) (6)

3. Validation
3.1. Database

A database consisting of 23 pile tests is compiled from the published literature to verify
the proposed design approach. The diameter of these test piles is up to 3 m in prototype
scale, which were tested in centrifuge facilities, and the slenderness ratio ranges from
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3 to 10. The load eccentricity is in the range of (0.92~15)D. The cohesionless soil consists of
medium or dense sand with an estimated critical friction angle value of 30◦~35◦. A detailed
description of the compiled database is presented in Table 3.

Table 3. Pile tests for design validation.

Pile
No.

Prototype Pile Dimensions Soil Properties
Test

Description
Measured
Curves b η~θ Reference

D(m) Lem/D Lup/D γ′

(kN/m3)
ϕp
(◦)

ϕc
(◦)

Dr
(%)

1 0.073 10 2.33

15.1 41.2 32 a 77 1 g model
tests

F-y η = 2.7θ0.45 Joo
[34]2 0.09 8.9 2.78

3 0.102 8.8 2.75

4 1.224 7.4 1 16.3 36 30 60 centrifuge
tests F-y η = 1.8θ0.45 Georgiadis et al.

[21]

5

0.076

9

0.92

16.42

41.4

32.9 medium
dense

1 g model
tests

F-y η = 1.8θ0.45 Agaiby et al.
[35]

6 8.6 41.4

7 6 41.7

8 3 42.3

9

0.152

3

0.53

41.7

10 6 41.2

11 9 40.9

12

0.076
3

3
42.313 9

14 15

15 * 1 2 6 16.4 51 35 85 centrifuge
tests M-θ η = 3.7θ0.45 Nazir

[36]

16
1

6
2.5

16.2

43

30 80 centrifuge
tests

F-y η = 2.4θ0.45 Leth
[37]

17 8 42.5

18 10 42

19

2

6

1.43

41.6

20 8 40.9

21 10 40.4

22 3 6 1 40.5

23 3 8 39.9

a: values are determined according to silica sand [33]. b: F-y: load-displacement curve of piles; M-θ: moment-
rotation curve at ground line. * including 3 centrifuge tests.

3.2. Pile Head Response

To verify the moment-rotation response of the pile head, centrifuge model tests re-
ported by Nazir [36] are adopted. In total, 3 centrifuge tests with different accelerations are
performed to model an identical pile with a diameter of 1 m and embedded length of 2 m
in prototype scale, i.e., Test 1: acceleration = 50 g, diameter of model pile is 20 mm; Test 2:
acceleration = 40 g, diameter of model pile is 25 mm; Test 3: acceleration = 33.3 g, diameter
of model pile is 30 mm. The load eccentricity is 6 times the pile outer diameter. These tests
are carried out in dry dense Erith sand, and the unit weight is 16.4 kN/m3, corresponding
to a relative density of 85%. Studies performed by Dickin and King [38], Laman et al. [39]
and Dickin and Laman [40] on Erith sand show that:

(4) Erith sand consists of pure quartz grains with subrounded shape with critical friction
angle ϕc of 35◦ [40].

(5) The peak friction angle ϕp of Erith sand can be determined according to Equation (7).

ϕp = 46.1◦ − 2.06◦ ln(
σ3

101
) (7)

where σ3 is the confining pressure in kPa.
To analyze the prototype pile behavior using the proposed method, the peak friction

angle ϕp of the sand in the centrifuge tests should be first determined. For simplicity,
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the peak friction angle is assumed to be constant within the depth of the pile, and the
representative depth is 0.5Lem. For sand at a depth of 0.5Lem, the average stress σave = 9.8 kPa
(the coefficient of lateral earth pressure is assumed as 0.4). Thus, based on Equation (7), the
peak friction angle ϕp can be determined as 51◦, which is used to determine the coefficient
of Rankine’s passive earth pressure (Kp).

During the tests, the pile head rotation θ is recorded under various load magnitudes,
and the measured moment-rotation data from the three centrifuge tests are employed to
verify this study’s proposed design. According to the critical friction angle ϕc and relative
density Dr of Erith sand, the correlation between η and θ adopted in this study is η = 3.7θ0.45.
As shown in Figure 8, the proposed design method agrees well with the measured pile head
response, which demonstrates the validity of the proposed design method. In addition, the
prediction given by Zhang [6] is also shown in Figure 8, and the proposed method in this
paper agrees well with the lower boundary of the measured results and those obtained by
Zhang’s method. The proposed method is slightly better than Zhang’s [6] when the pile
rotation angle is larger than 2º. Comparing the computing efficiency, this study’s proposed
design is more convenient and does not need computer-based modeling and analysis.
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Figure 8. Comparison of the moment-rotation results [6].

To further verify the reliability of the proposed design procedures, the measured
pile head load-displacement responses from 23 piles in Table 3 are analyzed. Detailed
information for each test pile and the corresponding ground conditions are summarized in
Table 3. For clarity, only loads corresponding to pile head displacements of y = 5%D, 10%D,
15%D, and 20%D are compared between measured and predicted values, which are shown
in Figure 9. The vertical coordinate is the load ratio of predicted to measured Fp/Fm, and
the abscissa is the outer diameter of each test pile. Fp is the predicted load calculated by the
proposed method, and Fm is the measured load in the collected case history. It can be seen
from Figure 9 that the recommended design procedures generally produce relatively good
predictions for these test piles. The load ratio between measured and predicted is mainly
within 0.8~1.2. The η–θ relationship adopted in this study is based on the critical friction
angle ϕc and relative density Dr of the soil conditions, and the specific η–θ correlation
for each test pile is listed in Table 3. In addition, as shown in Figure 9, Fp tends to be
larger than Fm in general, and the reason may be due to the fact that the bending of the
pile is ignored in the proposed method. When pile bending is considered, it will result in
greater pile head deformation with the same pile rotation angle. In other words, ignoring
the bending of the monopile will overestimate the pile rotation angle under the same pile
head deformation, which will lead to overestimation of the soil resistance around the pile,
making the predicted value higher than the measured value.
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3.3. Soil Lateral Reaction Profile

To further verify the soil lateral reaction profile proposed in this study, soil lateral
reaction profiles measured by Georgiadis et al. [21] are employed. In Georgiadis’s centrifuge
tests, three lateral loading tests were performed on piles with diameters ranging from 1.09 m
to 1.23 m in prototype scale, and the soil lateral reaction profile for a pile with a diameter
of 1.224 m is illustrated in the literature. The ground model is prepared with uniform
fine-grained sand under dry conditions. The relative density is about 60% and in a medium-
dense state. The measured and predicted soil lateral reaction profiles of the test pile are
plotted in Figure 10, which shows that the predictions given by this study’s proposed
design procedures agree well with the profile measured in the test. A good agreement of
pile rotation depth is also shown between the measured and assumed values in this study.
This agreement proves the validity of this study’s recommended design procedures.
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4. Conclusions

A semi-analytical design method for laterally loaded rigid monopiles in cohesionless
soil has been presented in this paper, which can be applied without computer-based
modeling and analysis. This method has been developed on the basis that the soil reaction
along the monopile’s embedded length is linearly distributed, and the rotation point is
located at a depth of 0.75Lem, which has been validated by a series of field or laboratory tests
results. In this method, mobilization coefficient η is introduced to quantify the magnitude
of soil lateral reaction mobilized under a certain load. The correlation between coefficient η
and pile head rotation θ is derived by back-analyzing measured results from 13 test piles
reported in the published literature. Furthermore, it was found that the parameters in
Equation (4) are related to the critical friction angle ϕc and relative density Dr of cohesionless
soils. The normalized model parameter m′ generally increases linearly with the sand critical
friction angle ϕc, while the model parameter n is mainly located in the range of 0.4~0.5 and
is irrelevant to the sand relative density Dr, based on the cases analyzed.

The proposed design method has been verified against measurements from another
23 test piles compiled in a database, which showed that this method generally produces
a good prediction of pile head response, especially for larger diameter monopiles. Fur-
thermore, comparison of a measured soil reaction profile against one calculated by the
proposed design method proves the validity of the assumed soil reaction profiles.

It should be noted that as the mobilization coefficient is back-analyzed from piles
mostly embedded in uniform ground, the pile bending and translational deformations are
neglected in this study. The back-analyzed mobilization coefficient needs to be examined
using more rigorous and theoretical methods in the future. In addition, for sites with
loose or over-consolidated sand, the pile translational or bending deformation cannot be
neglected, and the application of the proposed method should be carefully examined.
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Notation

D outer diameter of pile
Dr relative density of sand
Ep elastic modulus of pile
F lateral force acted on pile head
Fu pile ultimate load capacity
h height of displacement measured
Kp coefficient of Rankine’s passive earth pressure
Lem embedded length of pile
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Lup loading eccentricity of pile
M0 moment acted on pile head
m, n parameters of correlation between η and θ

m′ normalized model parameter
nh constant of horizontal subgrade reaction
P lateral soil reaction
pm maximum soil pressure in the front side of monopile
y lateral displacement of rigid pile
Zm depth of maximum lateral soil reaction
Zr depth of rotation point
ϕc critical friction angle of sand
ϕp peak friction angle of sand
γ′ effective density of sand
θ rotation of pile
η mobilization coefficient of ultimate soil resistance
Qb normalized load magnitude

Appendix A. Derivation of Mobilization Coefficient η
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ment equilibrium.

Prasad et al. [30] introduced a reduction factor of 0.8 to account for non-uniform soil
reaction distribution across the pile diameter. In the present analysis, a reduction factor
of 0.8 is also introduced in the proposed method. Based on the soil pressure distribution
profile proposed in Section 2.2, the horizontal forces acting on the pile are illustrated in
Figure A1a, and can be expressed as follows:

F1 =
1
2
× (0.8ηKpγ′Zm × 0.75Lem)× D = 0.3ηKpγ′ZmLemD (A1)

F2 =
1
2
×

0.25Lem × 0.8ηKpγ′Zm

0.75Lem − Zm
× 0.25LemD = 0.025Lem

2D ×
ηKpγ′Zm

0.75Lem − Zm
(A2)

The horizontal force equilibrium yields:

0.3ηKpγ′ZmLemD = F + 0.025Lem
2D ×

ηKpγ′Zm

0.75Lem − Zm
(A3)
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The moments acted on the rigid monopile are illustrated in Figure A1b, and can be
expressed as follows:

M1 =
4

15
ηKpγ′DZm

3 (A4)

M2 =
2 × (0.75Lem − Zm)× (0.75Lem + 2Zm)× Zm

15
× ηKpγ′D (A5)

M3 = 0.025Lem
2D ×

ηKpγ′Zm

0.75Lem − Zm
× 11

12
Lem = 0.0229Lem

3D ×
ηKpγ′Zm

0.75Lem − Zm
(A6)

The moment equilibrium of the pile at the ground line yields:

M0 = F × Lup = 0.0229Lem
3D ×

ηKpγ′Zm

0.75Lem − Zm
− 4

15
ηKpγ′DZm

3 − 2 × (0.75Lem − Zm)× (0.75Lem + 2Zm)× Zm

15
× ηKpγ′D (A7)

By solving Equations (A3) and (A7), the depth of the maximum soil reaction Zm and the
coefficient of earth pressure η can be obtained:

Zm =

√
0.09Lup2 + 0.0132Lem2 + 0.08LupLem − 0.3Lup

0.2
(A8)

η =
F

ZmKpγ′LemD(0.3 − 0.025Lem
0.75Lem−Zm

)
(A9)
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