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Abstract: When marine deep-towed multichannel seismic data are processed, the description of
the receiving array geometry significantly impacts the quality of the imaging profile. Therefore,
achieving a highly precise description of the receiving array geometry is very important for the
fine imaging of such data. While basic particle swarm optimization (PSO) is known for its ease of
implementation and efficiency, it often exhibits a low convergence accuracy. Consequently, the PSO
algorithm is improved by modifying the inertia weight and incorporating Gaussian mutation. In
combination with the actual motion of the towing streamer during surveys, a strategy for inheriting
particle positions is introduced. When each seismic shot is solved sequentially, the results from the
previous shot can serve as the initial particle positions for the next shot. The results indicate that this
strategy achieves superior fitness values and outperforms the basic PSO algorithm. This method
exhibits simplicity, rapid optimization, and a favorable solution quality, thereby offering a valuable
approach to deep-towed array geometry inversion. It enhances the efficiency of deep-towed seismic
data processing and serves as a reference for similar applications.

Keywords: particle swarm optimization; array geometry inversion; near-bottom acoustic detection
technology; deep-towed multichannel seismic system; algorithm improvement

1. Introduction

Deep-towed multichannel seismic systems involve placing a seismic source and re-
ceivers at a certain height above the seabed and conducting seismic surveys in near-seabed
environments [1,2]. These systems offer higher lateral and vertical resolution, increased
signal-to-noise (SNR) ratios, and the ability to finely characterize the seafloor strata, mak-
ing them powerful tools for marine gas hydrate exploration and underwater geological
hazard assessment [3–5]. During surveys, seismic signals are generated from the source
within the towing body, penetrating the seafloor under deep water and returning to the
source. The signals are then received by the towed streamer trailing from the towing body,
enabling high-resolution raw data to be acquired. The ultra-high-resolution attributes of
deep-towed seismic technology necessitate the precise positioning of the seismic source
and the hydrophone array within the towed streamer [6]. Thus, the description of the array
geometry significantly influences the quality of the stacked profiles.

The Deep-Towed Acoustics and Geophysics System (DTAGS), developed by the
U.S. Naval Research Laboratory (NRL) in the 1980s, was the first deep-towed seismic
system capable of surveying at a thousand-meter depth. The geometry of deep-towed
arrays was first described to calculate the positions of hydrophones between DTAGS
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engineering nodes using linear interpolation [7]. Subsequently, Walia and Hannay [8]
constrained the array geometry by incorporating the travel time of the sea surface reflection,
thereby improving the accuracy of the relative positions of the sources and hydrophones
within individual shot ensembles. Building on this work, He et al. [9] further constrained the
array geometry by incorporating the travel time of the direct wave and jointly optimizing it
with the travel time of the sea surface reflection. They introduced genetic algorithms to seek
a global optimal solution, further optimizing the DTAGS array configuration. Following a
similar approach, Kong and He [10] expanded the constraints by adding two optimization
parameters: the average seawater seismic wave velocity at individual shot points and
system errors in the engineering node depth. They used a genetic algorithm to further
optimize the DTAGS array configuration, enhancing its overall performance.

The Kuiyang-ST2000 [2] was the first high-resolution deep-towed multichannel seismic
system in China (Figure 1). It primarily consists of a towing body, towing streamer, and
vessel connection streamer, using a plasma source with a maximum energy of 3000 J, a
48-channel digital seismic streamer (the channel spacing is 3.125 m), and an operating
depth of 2000 m. It operates at a certain height, approximately 100 m, above the seabed [11].
In the context of array geometry inversion for the Kuiyang-ST2000 deep-towed seismic
system, Li et al. [12] applied PSO to constrain the travel times of direct waves and seafloor-
reflected waves, obtaining satisfactory horizontal stacked profiles. However, in practical
computations, basic PSO exhibits a low convergence accuracy.
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Figure 1. Kuiyang-ST2000 deep-towed multichannel seismic system.

Metaheuristic algorithms and other mathematical methods are applied to solve com-
plex problems in different applications, such as thermal conductivity [13], seismic
behavior [14], predictive models for seismic source parameters [15], spatial data mining [16],
tunnel engineering [17], modeling for tsunami waves [18], the simulation of seismic wave
propagation [19], and adaptive filtering for cooperative localization [20]. Array geometry
inversion is a single-objective optimization problem that seeks the optimal solution under
specific constraints. Due to the high dimensionality of the objective function in array geometry
inversion, the algorithm’s performance can be affected by the curse of dimensionality [21].
Therefore, algorithms must be improved to enhance the computational efficiency and
achieve better results for the specified problem. Building on the research conducted by [12],
this study is focused on improving the PSO using particle initialization strategies, inertia
weight [22], and the addition of Gaussian mutation [23,24]. These improvements aim to
enhance the algorithm’s performance without increasing its complexity.
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2. Establishment of Model

The Kuiyang-ST2000 deep-towed seismic system is equipped with a depth transducer
and altimeter mounted onto the towing body. The altimeter records the source height, while
the depth transducer records the source depth. After the data are smoothed with spline fitting,
interpolation is performed at 0.2 m intervals, discretizing the seafloor interface depth.

In this study, the real travel time records of direct waves and seafloor-reflected waves
from 100 consecutive shots are examined, and the seafloor interface in the designated
interval is discretized. Since seismic signals are generally reflected from the seafloor behind
the source, for each excitation, the lateral distance before the source is set to 75 m, and
the lateral distance behind the source is set to 150 m as the probable interval where the
seafloor reflection point could be located (Figure 2). After discretization, there are a total of
1125 discrete points per shot, and due to multiple overlaps, there is a cumulative total of
4250 discrete points for the 100 shots.
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3. Streamer Array Geometry Inversion Using an Improved PSO Algorithm
3.1. Basic Particle Swarm Optimization (PSO) Algorithm

PSO is a metaheuristic algorithm that generates a swarm of particles P within a
specific search space [25]. Each particle moves through the search space based on its current
position and velocity, updating its position at each iteration using predefined formulas. By
leveraging the collective experiences of individuals and the group, PSO aims to discover
the optimal fitness value within the given search space.

The variables and formulas for the update process of the particle positions and veloci-
ties in the PSO algorithm are defined as follows: D denotes the dimensionality of the search
space, and n denotes the number of particles in each search space. For particle i:

(1) Position: Pi = (pi1, pi2, . . . , piD)
T ;

(2) Velocity: Vi = (vi1, vi2, . . . , viD)
T ;

(3) Individual best position: Pbi = (pi1, pi2, . . . , piD)
T ;

(4) Global best position: PG = (pi1, pi2, . . . , piD)
T .

During the iterations, the update formulas for the particle velocities and positions are
as follows:

Vk+1
id = ωVk

id + c1r1

(
Pk

bid − Pk
id

)
+ c2r2

(
Pk

Gid − Pk
id

)
(1)

Pk+1
id = Pk

id + Vk+1
id (2)

where ω represents the inertia weight. c1 is the personal learning factor. c2 is the global
learning factor. r1 and r2 are random numbers within the range [0, 1]. Vk

id and Pk
id denote

the velocity vector and position vector of particle i in dimension d at iteration k. Pk
bid and

Pk
Gid are the individual best position and global best position experienced by particle i in

dimension d at iteration k.
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The experimental data were collected from a real scene and contained a lot of noise;
therefore, they could not be directly used for the model training. The primary task of data
noise removal is to remove incomplete or wrong data. Here, the data cleaning was divided
into the removal of outliers and missing values. Data points significantly far away from the
fitted curve were marked as outliers using a regression fit between the sound speed and
each physical parameter. The missing sound speed values and physical parameters of each
sample were simultaneously removed to improve the data quality and integrity.

3.2. Improved Inversion Strategy Based on the PSO Algorithm
3.2.1. Improved PSO Algorithm

In a specific problem, the optimization parameter settings are crucial for tuning the
algorithm’s performance. When basic PSO is used to optimize the objective function
discussed in Section 3.1, issues such as slow convergence and low precision can occur. We
often use more iterations to increase the iteration accuracy, which consumes more time.

This issue is often attributed to the inertia weight ω in the PSO algorithm. In the early
stages of iterations, ω is set relatively high to enhance the global search capabilities. As the
iterations progress, ω is gradually reduced to boost the local search capabilities. Typically,
ω falls within the range of 0 to 1.

To address this issue, we employ a nonlinear decreasing function to adjust the inertia
weight, causing it to gradually decrease as the number of iterations increases. This is
expressed as:

ω = (1 − a)t (3)

where t represents the current iteration number and a is the inertia weight decay factor, which
influences how rapidly the inertia weight decreases as the number of iterations progresses.

Furthermore, in the basic PSO algorithm, the particle motion is guided by local and
global best solutions. However, when a solution near the local best is not the global best, the
particles may stagnate. The Gaussian mutation strategy can help the particles overcome this
stagnation, making them more likely to explore nearby solutions. Therefore, Formula (2)
can be enhanced as follows:

Pk+1
id = Pk

id + Vk+1
id + Gaussian

(
0, σ2

)
(4)

where Gaussian
(
0, σ2) represents a random number following a Gaussian distribution with

a mean of 0 and a variance of σ2. We also employ a nonlinear decreasing function to set the
variance (σ2) for the Gaussian mutation. This approach gradually reduces the strength of
the perturbation in the Gaussian mutation. This is expressed as:

σ2 = h(1 − b)t (5)

where t represents the current iteration number, h is the perturbation strength adjustment
factor, and b is the variance decay factor, which is used to ensure that the variance is
relatively large in the early iterations and gradually decreases in the later iterations.

Dynamically adjusting the variance in the Gaussian mutation strategy helps control
the exploration and exploitation trade-off in the optimization process.

3.2.2. Objective Function and Methods

During the survey, a uniform trigger strategy is employed for seismic source excitation,
with a spacing interval (X) of 6.25 m. The lateral and vertical distances (cx, cy) between the
seismic source and the connection streamer are 2 m and 0.6 m, respectively, and the length
of the connection streamer is 12.5 m.

Due to the relatively low and stable vessel speed and modest water current during the
survey, which result in a minimal streamer feather angle, and considering only the vertical
motion of the seismic source and streamer in a two-dimensional space, we can set a point
on the sea surface as the origin of the coordinates. For consecutive shots, the coordinates
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of the source can be represented as (nX, Hn), where n denotes the number of shots and Hn
denotes the depth of the seismic source for shot n. The hydrophone interval (w) is 3.125 m
and the pitch angle of the hydrophone positions is denoted by θ. As the connection streamer
is not composed of rigid material, to maintain stability in the inversion results and achieve a
smoother array geometry, considering the positions of three virtual channels for the connection
streamer is sufficient. In this scenario, for shot n, the coordinates of the first hydrophone
(including the three virtual channels) can be represented as (R n

x1, Rn
y1

)
, where:

Rn
x1 = nX + cx + wcosθ1 (6)

Rn
y1 = Hn − cy + wsinθ1 (7)

The coordinates of hydrophone k (including the three virtual channels) can be repre-
sented as (R n

xk, Rn
yk

)
, where:

Rn
xk = Rn

xk−1 + wcosθk (8)

Rn
yk = Rn

yk−1 + wsinθk (9)

In this model, θk represents the pitch angle of hydrophone k. The values of k, ranging
from 1 to 3, correspond to the virtual channels introduced to achieve smoother array geometry
in the inversion. The values of k from 4 to 51 correspond to the 48 real seismic channels.

The travel times of the direct wave (TpickD) and seafloor-reflected wave (TpickF) are
obtained by manually picking from actual seismic records. During the inversion process,
the minimum propagation time method is used to calculate the propagation distance based
on the discretized seafloor interface mentioned earlier. The depths of the seafloor surface
and source in each shot are illustrated in Figure 2, and the position of the hydrophones
can be preliminarily set according to the position of the source and Formulas (6)–(9).
The propagation times TcalD and TcalF are calculated from the relative position of the
hydrophones and the seafloor surface. Setting the sound velocity (v) of the seawater as
1485 m/s, the following objective function is established:

o = argmin
(

∑48
1

(
TpickD − TcalD

)2
+ ∑48

1

(
TpickF − TcalF

)2
)

(10)

In the objective function, TcalD denotes the calculated travel times for the direct wave,
and TcalF denotes the calculated travel times for the seafloor-reflected wave obtained by
traversing the seafloor interface using the shortest path algorithm.

The objective function is aimed at minimizing the discrepancy between the calculated
travel times and the record travel times (TpickD and TpickF) by adjusting the array geometry
parameters to obtain the best fit.

When a string of deep-towed seismic array geometries is being evaluated, PSO should
be called at each shot. As the time span or shot frequency of the deep-towed seismic surveys
increases, the number of shots and their corresponding array geometry calculations also
increase, leading to a higher computation time and higher costs.

To address this, an improved strategy that combines the characteristics of seismic
surveys and the physical properties of streamer movement is proposed. During a con-
tinuous near-seabed deep-towed survey, the vessel’s velocity remains relatively stable,
and the time intervals between source triggers are short. Without external factors such as
streamer deployment and retrieval affecting the streamer, the streamer attitude should not
abruptly change during consecutive excitations. Thus, the array geometry at a given source
excitation can serve as a reference and guide for the array geometry in the next excitation.
In the context of PSO, this corresponds to initializing the particle positions. Consequently,
a strategy is introduced in which the array geometry from the previous shot ensemble is
inherited to initialize the particle positions.

Compared to basic PSO for continuous array geometry inversion, the strategy for
generating particle initializations is improved and combined with the characteristics of a
seismic survey in this paper. Additionally, the PSO algorithm is improved by modifying the
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inertia weight and introducing the Gaussian mutation strategy. These enhancements are
designed to make the algorithm more suitable for deep-towed array geometry inversion.
A flowchart of the proposed improvement strategy is depicted in Figure 3. The dashed
boxes in Figure 3 provide a relatively clear method of improvement.
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4. Results
4.1. Comparative Analysis of Practical Data Inversion Using Different Strategies

In this section, the results of array geometry inversion using four different strategies
are compared. These strategies are as follows:

Strategy 1: Basic PSO (PSO)
Strategy 2: PSO with the improvements described in Section 3.2.1 (PSO-G)
Strategy 3: PSO with particle initialization using inherited positions (PSO-C)
Strategy 4: PSO combining strategy 2 and strategy 3 (PSO-CG)
The content in Section 3 illustrates that the objective function has a dimension of 51. To

facilitate the comparison of the efficiency and accuracy of different algorithms, the following
settings are applied:

Strategies 1 and 2: Initialize all particle positions to zero.
Strategies 3 and 4: Initialize the particle positions to the results from the

previous calculation.
Strategies 1 and 3: Set ω to 1.
Strategies 2 and 4: Set ω to the value obtained when a is 0.01 in Formula (3) and set σ2

to the value obtained when h is 0.005 and b is 0.05 in Formula (5).
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All four strategies use 100 particles and a maximum iteration count of 100, and the
learning factors c1 and c2 are set to 1 for all strategies. These settings enable a standardized
comparison of the efficiencies and accuracies of the four different strategies.

Additionally, since no particle position calculation results from previous shots exist
for the initial calculation, PSO-G is applied to the receiving array geometry inversion using
the arrival time records from the first shot. This process yields a convergence position
in 51 dimensions. To ensure accuracy, this position is recalculated once. The resulting
51-dimensional particle position data are then used as the initial particle position for the
second calculation in both strategy 2 and strategy 4.

The fitness curves for the second shot after applying different strategies are obtained
and depicted in Figure 4. Strategy 1 and strategy 2 use an initialization of all-zero particle
positions, resulting in an initial objective function value of approximately 850. The final
convergence values for these strategies are 74.9142 and 5.5361, respectively.
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The significant difference in the convergence values after iteration indicates that
applying the improved PSO can effectively mitigate the convergence to local optima,
thereby enhancing the inversion precision.

Strategy 3 and strategy 4 utilize the particle positions from the previous calculation
as the initial positions for the current calculation. Consequently, at the beginning of the
evaluation, the objective function values are 54.2851 and 6.1057. The final convergence
values for these strategies are 34.2585 and 5.1771, respectively. Strategy 3 does not converge
much in this instance due to the limited precision of the basic particle swarm algorithm.
The convergence curve for strategy 4 demonstrates that the proposed improved particle
swarm algorithm can effectively improve the calculation accuracy.

Taking the results of the 10 continuous calculations for the 21st to 30th shots as an example
(Figure 5), when the termination conditions are the same, the basic particle swarm algorithm
exhibits poor array geometry smoothness and converges to a local optimum. This is due to the
differing particle velocity and position update strategies set in later iterations.

Strategy 1 employs a fixed inertia weight value, which hinders the algorithm’s effec-
tiveness in later iterations, preventing the array geometry from being precisely described.

Strategy 2, an improvement of PSO, yields better results.
Strategy 3 inherits the array geometry results from the previous shot ensemble. Since

this result is near the strongest result of basic PSO, the array geometries for 10 consecutive
shots are similar for these two strategies.
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Figure 5. Calculated array geometry using different strategies (Strategy 1: upper left; strategy 2: lower
left; strategy 3: upper right; strategy 4: lower right).

In contrast, strategy 4, which incorporates enhancements, yields a smoother array
geometry. The roll angles between shots indicate continuous changes, which align more
closely with the actual streamer’s motion attitude.

To reduce errors, calculations are performed for the 100 shots, and the average results
are obtained. The results are presented in Table 1, where “zeros (1,51)” represents a
1 × 51 vector filled with zeros, and “last (1,51)” indicates the results from the previous shot.
The findings reveal that the objective function under strategy 4 (PSO-CG) achieves the
highest convergence accuracy.

Table 1. Fitness performance: applying different strategies for inversion.

Strategy Maximum
Iteration

Initialization of
Particle Vector

Inertia Weight
Generation Strategy

Average Best
Fitness Value

1. PSO 100 zeros (1,51) 1 57.963654
2. PSO-G 100 zeros (1,51) Formula (3) 4.514059
3. PSO-C 100 last (1,51) 1 23.299226
4. PSO-CG 100 last (1,51) Formula (3) 4.126673

4.2. Analysis of the Results before and after Improvement

The improved array geometry inversion, which was obtained using the proposed method,
is incorporated into the seismic data headers. Subsequently, a floating datum is applied for
static correction and velocity analysis using Geovation software from CGG Company, France,
resulting in the creation of velocity spectra and common midpoint (CMP) gathers.

Figure 6 displays the velocity spectra and the corresponding 430th CMP gather for the
array geometries estimated using strategy 1 and strategy 4. The estimations obtained using
the proposed approach better focus on the velocity spectra than those obtained using the
other strategies.
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Figure 7 illustrates the stack profiles of the streamer attitudes estimated using
strategy 1 and strategy 4. The stack profiles generated using strategy 4 demonstrate a
higher precision and resolution than those generated using strategy 1. These improved
stack profiles effectively reveal the subsurface geological structures.
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In summary, the results indicate that the proposed strategy, strategy 4, enhances the focus
of the velocity spectra and yields a higher level of detail and resolution in the stack profiles,
thus exhibiting a stronger ability to reveal subsurface geological structures than strategy 1.

4.3. Performances of Different Strategies Excluding Error Effects

Due to the combined impact of errors, such as the manual picking errors in the
first break, data-fitting errors, and the initial errors in the near-bottom underwater sound
velocity, the optimal fitness is not equal to 0. Therefore, to eliminate the influence of
errors on the algorithm’s convergence, the results of 100 consecutive calculations using
strategy 4 are assumed to represent the real array geometries. Under these geometries, the
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travel times of the direct wave TmD and seafloor reflection wave TmF for each shot are calculated
using the shortest path algorithm instead of the previously described TpickD and TpickF. All
other settings are kept the same, and the objective function can now be expressed as:

o = argmin
(

∑48
1 (TmD − TcalD)

2 + ∑48
1 (TmF − TcalF)

2
)

(11)

After applying the four strategies from Section 3.1 again, we obtain the average
best-fitness-value-calculated positioning error of 100 shots (Figure 8).
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Figure 8 depicts the error distributions of the performances of the four strategies.
Hydrophone positioning errors, which average 100 shots and 48 hydrophone positions in
each shot, are calculated based on the coordinate difference. In this way, the interference
of errors is eliminated. In theory, the optimal values of the best fitness value and position
error should be zeroes, while the actual values are as Figure 8 and Table 2 show.

Table 2. Performance and positioning errors using different strategies.

Strategy Maximum
Iteration

Initialization of
Particle Vector

Inertia Weight
Generation Strategy

Average
Time Cost (s)

Average Best
Fitness Value

Position Error (m)
(Per Hydrophone)

1. PSO 100 zeros (1,51) 1 2.41898 38.97512 1.21158
2. PSO-G 100 zeros (1,51) Formula (3) 2.43994 0.32962 0.10353
3. PSO-C 100 last (1,51) 1 2.59914 9.38700 0.59843
4. PSO-CG 100 last (1,51) Formula (3) 2.48249 0.04001 0.03528

Strategies 1 and 2 did not apply inherited particle positions as initial positions, and
strategies 1 and 3 did not use the improved PSO algorithm; although these strategies
have moderate spreads, with no outliers detected, their errors are higher than those in
strategy 4. Meanwhile, strategies 3 and 4 applied inherited particle positions as the initial
positions, and the boxes for them appear to be significantly skewed to the left, with
few outliers detected in strategy 4. Using the improved PSO algorithm when applying
strategy 4 yields minimal errors, which shows its robustness as well.

We averaged each hydrophone position error from each shot, and the results of
using strategy 4 are depicted. Each hydrophone positioning error is 0.03528 m, while
strategy 1 (1.21158 m), strategy 2 (0.10353 m), and strategy 3 (0.59843 m) all exhibit higher
errors. These results are presented in Table 2. Additionally, the average time cost shows
that the supposed strategy did not have a significant impact on the time consumption.
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The calculation results, excluding the influence of errors, indicate that employing the
improved inversion strategy based on the proposed approach can accelerate the conver-
gence while ensuring a sufficiently high level of accuracy.

5. Conclusions

In this study, an improved deep-towed seismic array geometry estimation method
based on an improved PSO algorithm is introduced. The method improves the algorithm
by modifying the inertia weight generation strategy, introducing a Gaussian mutation
mechanism, and considering the specific motion characteristics of deep-towed seismic
streamers. Under the same number of iterations, PSO-CG shows a better convergence accu-
racy. The average best fitness achieved is 0.04001, while its time cost does not significantly
increase. Although the position errors are small, more refined settings for the parameters
and combining this approach with other methods can further reduce the errors. It will
more precisely describe the array geometry, significantly improving the resolution and
signal-to-noise ratio of deep-towed multichannel seismic imaging profiles.

This paper is primarily focused on array geometry inversion from the perspective of
direct arrival times and seafloor reflection arrival times. Manually picking the travel time of
direct waves and seafloor reflection waves can introduce errors, and the initial assumption
of the near-seabed water sound velocity affects the computed results. Future research will
investigate methods for automatically picking the travel time of direct waves and seafloor
reflection waves and optimizing the near-seabed water sound velocity assumptions to
further enhance the model’s accuracy.
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Nomenclature
Decision parameters
Symbol Definition Size Value
D Dimensionality of the search space 1 × 1 51
Pi Position vector of particle i 1 × 51
Vi Velocity vector of particle i 1 × 51
Pbi Personal best vector of particle i 1 × 51
PG Global best vector 1 × 51
ω Inertia weight 1 × 1
c1 Personal learning factor 1 × 1 1
c2 Global learning factor 1 × 1 1
r1, r2 Random vectors within [0, 1] 1 × 1
a Inertia weight decay factor 1 × 1 0.01
b Perturbation strength adjustment factor 1 × 1 0.05
h Variance decay factor 1 × 1 0.005
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Model parameters
Symbol Definition Size Value Unit
X Excitation spacing interval 1 × 1 6.25 m
cx Lateral distance from source to streamer 1 × 1 2 m
cy Vertical distance from source to streamer 1 × 1 0.6 m
w Hydrophone interval 1 × 1 3.125 m
Hn Depth of source for shot n 1 × 1 m
θk Pitch angle for hydrophone k 1 × 1 rad
Rn

xk Abscissa for hydrophone k for shot n 1 × 1 m
Rn

yk Ordinate for hydrophone k for shot n 1 × 1 m
v Sound velocity of seawater 1 × 1 1485 m/s
TpickD Real travel time vector of direct wave 1 × 48 ms
TpickF Real travel time vector of seafloor-reflected wave 1 × 48 ms
TcalD Calculated travel time vector for direct wave 1 × 48 ms
TcalF Calculated travel time vector for seafloor-reflected wave 1 × 48 ms
TmD Model travel time vector of direct wave 1 × 48 ms
TmF Model travel time vector of seafloor-reflected wave 1 × 48 ms
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