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Abstract: Automatic guided vehicles (AGVs) in the horizontal area play a crucial role in determining
the operational efficiency of automated container terminals (ACTs). To improve the operational
efficiency of an ACT, it is essential to decrease the impact of battery capacity limitations on AGV
scheduling. To address this problem, this paper introduces battery swapping and opportunity
charging modes into the AGV system and proposes a new AGV scheduling problem considering the
hybrid mode. Firstly, this study describes the AGV scheduling problem of the automated container
terminals considering both loading and unloading tasks under the hybrid mode of battery swapping
and charging. Thereafter, a mixed-integer programming model is established to minimize the sum of
energy costs and delay costs. Secondly, an effective adaptive large neighborhood search algorithm is
proposed to solve the problem, in which the initial solution construction, destroy operators, and repair
operators are designed according to the hybrid mode. Finally, numerical experiments are conducted
to analyze the effectiveness of the model and the optimization performance of the algorithm. The
results demonstrate that the hybrid mode of battery swapping and charging can effectively reduce
the number of battery swapping times and scheduling costs compared to the existing mode.

Keywords: automated container terminals; AGV scheduling; battery swapping and charging; energy
cost; adaptive large neighborhood search

1. Introduction

With the advancement of carbon neutrality strategies and the emergence of large-scale
container ships, automated container terminals (ACTs) are currently undergoing a crucial
period of energy conservation, carbon reduction, and intelligent transformation [1,2]. To
enhance the operational efficiency of terminals, battery-driven AGVs are widely employed
in ACTs. These AGVs form a horizontal transport system that connects the seaside and
landside of the ACTs, and the scheduling performance directly affects the operational
efficiency of the ACTs as well as their energy consumption. However, due to the limited
capacity of AGV batteries, the AGVs need to leave the operation area of the ACTs for
power replenishment. The time length of the power replenishment and the location of the
charging and battery swapping stations can result in the sequence of subsequent loading
and unloading operations and operation time being uncertain, thus affecting the synergy
of loading and unloading equipment and the terminal’s operational efficiency.

Currently, AGV power replenishment methods mainly include battery swapping [3]
and battery charging [4]. For instance, the Shanghai Yangshan Phase IV Automated
Terminal has installed a battery swapping station at the front of the terminal, which can
be used for the battery swapping of AGVs. When the power level of AGVs drops below
the threshold, the power-deficient AGVs are dispatched to the battery swapping stations
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to replace their batteries with new ones [5]. Xiamen Yuanhai Terminal and Qingdao Port
Qianwan Terminal use the battery charging mode, where AGVs use the waiting time to
recharge during operation [6]. Battery swapping makes AGV scheduling more flexible;
however, it will affect the continuity of AGV operations due to the battery swapping station
being far away from the operation area. Battery charging can replenish power in the AGV
operation area but requires frequent consideration of charging time, making the constraints
of the AGV scheduling problem more complex. Therefore, optimizing the scheduling of
AGVs while considering power replenishment has become an urgent research problem that
needs to be addressed.

In the existing ACT-related studies, the scheduling of AGVs usually considers the
integration with quay crane (QC) operations and yard crane (YC) operations to improve the
synergy between different loading and unloading equipment, and the energy consumption
or efficiency is usually taken as the optimization objective. Fan et al. [7] established a two-
phase model for the joint scheduling problem of dual-trolley QCs and AGVs to minimize
the energy consumption of the QCs and AGVs. Zhao et al. [8] established a mixed-integer
programming model for the energy consumption problem in the joint scheduling of auto-
mated quay cranes (AQCs) and AGVs, taking into account the capacity limitation of the
automated QC transfer platform to minimize the total energy consumption. Xu et al. [9]
established a multi-objective scheduling model to minimize the total completion time
and carbon emissions of the equipment joint scheduling problem of U-shaped ACTs. Xu
et al. [10] investigated the unloading process of U-shaped ACTs. They established an inte-
grated scheduling model of the QCs, AGVs, and double-cantilever rail cranes to minimize
the processing time and a conflict-free path planning model to minimize the transportation
time of the AGVs. Zhong et al. [11] constructed a mixed-integer programming model to
optimize the joint scheduling of AGVs and YCs, minimizing the total energy consumption
for given loading and unloading tasks. They considered conflict-free path planning for
AGVs and the capacity constraints of the AGV mate, and designed a novel bi-level genetic
algorithm for solving this model. Xing et al. [12] investigated the integrated scheduling
problem of QCs, YCs, and a speed-optimized AGV-integrated scheduling problem, and
constructed a mixed-integer programming model for minimizing the total completion
time of QCs and YCs and the energy consumption of AGVs. Yue et al. [13] established a
two-phase mathematical model for dual-trolley QCs and AGVs by considering constraints
such as vessel stability and aiming at the total energy consumption during loading and
discharging operations. Duan et al. [14] developed a two-phase mathematical model for
the integrated scheduling problem for the QCs and AGVs to minimize the makespan and
the unloaded time of AGVs. The related research results are valuable for the improvement
of the overall operation efficiency and energy consumption optimization of terminals, but
there is still a lack of specific depictions of the operation flow of AGV subsystems and
related constraints. Meanwhile, the influence of battery swapping or battery charging
constraints on the scheduling of AGVs is seldom considered.

In recent years, research in the field of AGVs has made significant progress concerning
AGV battery capacity and charging mode. Shi and Liang [15] have studied the waiting
time for AGVs at battery swapping stations and constructed a mixed-integer optimization
model for AGV scheduling that incorporates the battery-swapping process. Ding and
Chen [16] have developed a mixed-integer programming model for dynamic job scheduling
of multi-loading AGVs by adopting a rolling time-domain optimization strategy based on a
cycle-event hybrid drive, taking into account AGV loading capacity and battery endurance
capacity as constraints. Zhou et al. [17] considered the battery endurance capacity and
the difference in power consumption between the heavy and empty conditions of AGVs.
The priority of the tasks was set based on the task distance and urgency, then an end
condition for AGV charging was set to reduce the waiting time of AGVs. Thereafter, a
scheduling model aimed at minimizing the total task completion time was established.
Zhao et al. [18] considered the impact of AGV battery swapping on its operational efficiency
in ACT scenarios, and proposed a two-layer scheduling model to minimize the makespan
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and total battery swapping time. Bian et al. [19] proposed an event-driven approach
for dispatching electric AGVs and established a distribution model with event-driven
considerations for battery capacity. Xiang and Liu. [20] investigated the effects of batching
swapping and plug-in charging strategies on terminal efficiency and proposed an optimal
task allocation strategy for AGVs that accounts for battery management. Based on the
principle of a blocking-type hybrid flow shop problem, Sun et al. [21] established a multi-
resource collaborative scheduling optimization model which considered AGV pooling
efficiency and charging effects. This model aimed to minimize the makespan of QCs and
transportation energy consumption of AGVs. Wang et al. [22] considered the impact of
wind power and logistics scheduling on terminal AGV charging strategies, and proposed a
joint economic optimization method for AGV logistics scheduling and orderly charging. A
joint optimization model to minimize the cost of purchasing electricity at the terminal was
established. Li et al. [23] constructed a two-stage stochastic programming model for the
joint scheduling problem of battery swapping and task operation with random tasks and
employed a double-threshold constraint for battery swapping decision-making to enhance
AGV utilization. Ma et al. [24] investigated a multi-AGV task scheduling problem with
consideration of battery capacity. To minimize the completion times of AGVs, they created
a mixed-integer programming model, and proposed a charging strategy for AGVs in split
congestion road networks. Nevertheless, the aforementioned studies primarily concentrate
on either the charging modes or the swapping modes, with less attention paid to the AGV
scheduling problem in the hybrid mode of battery swapping and charging.

To enhance the flexibility of electrical vehicle scheduling, the field of electrical vehicles
has delved into the problem of scheduling for hybrid mode battery swapping and battery
recharging. Mao et al. [25] proposed a vehicle scheduling optimization model that con-
sidered partial recharging and battery swapping strategies, and designed experiments to
compare the results under multiple recharging option strategies. The findings revealed
that the combination of these two strategies can effectively reduce costs. Raeesi et al. [26]
proposed an ECV path problem with a time window, recharging, and battery swapping
vehicles to optimize the number of vehicles and travel distances. Ferro et al. [27] consid-
ered the selection of different types of charging stations, and developed a mixed-integer
programming model, which was used to minimize the traveling distance cost and energy
costs. Kumar et al. [28] studied the electric vehicle path problem with time windows,
modeling the problem with battery swapping, partial charging, charging flexibility, and
energy prices for different charging levels. The results related to electric vehicle scheduling
verify the effectiveness of the hybrid mode of battery swapping and charging and provide
an important reference for the optimization of AGV scheduling in ACTs under the battery
swapping and charging mode.

From the above literature, it is found that some progress has been made in AGV
scheduling in the field of ACTs; however, studies on AGV scheduling in the hybrid mode
of battery swapping and charging has not been conducted. The research gap can be
summarized as follows:

(1) Although the advantage of hybrid mode of simultaneous swapping and charging has
been verified, the application scenario of the electrical vehicle scheduling problem is
obviously different from that of AGV scheduling under the scenario of ACTs;

(2) Due to the complex operation process and frequently assigned scheduling tasks, there
are higher requirements for the optimization performance and optimization efficiency
of AGV scheduling.

Therefore, to ensure the efficiency of ACTs, it is vital to study the AGV scheduling of
ACTs considering the hybrid mode of battery swapping and charging. This study selects the
Shanghai Yangshan Port Phase IV as an example of ACTs that aim to decrease the impact
of the power replenishment process on the AGV scheduling, thus enhancing operational
efficiency and reducing the energy consumption of the terminal.

The contributions of this paper are summarized as follows:
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(1) An opportunity charging mode is introduced for ACTs, combining the layout of ACTs
with the unique characteristics of battery-swapping AGVs;

(2) To minimize the energy consumption and delay costs of the AGVs, a hybrid mode of
battery swapping and charging based on the AGV scheduling problem is proposed,
and then a mathematical programming model is established;

(3) An adaptive large-neighborhood search algorithm is proposed to provide effective
decision support for AGV scheduling in the hybrid mode.

The remaining parts of the paper are as follows. We provide the problem analysis
and description in Section 2. Section 3 establishes the mathematical model of the focused
problem. Section 4 illustrates the provided algorithm to solve the mathematical model,
followed by the numerical experiments in Section 5 and the conclusions in Section 6.

2. Problem Description
2.1. Problem Analysis

This study investigates the AGV scheduling problem in the context of the hybrid mode
of battery swapping and charging, which is based on the layout of the ACT of Shanghai
Yangshan Port Phase IV. The terminal includes three main areas, which are the seaside
operation area, the yard operation area, and the horizontal transportation area. The layout
is depicted in Figure 1.
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Figure 1. The schematic layout of Shanghai Yangshan Port Phase IV.

The problem scenario targeted by this study has the following typical features: the
blocks of the ACT are perpendicular to the shoreline; there is a buffer in front of each block;
there are five AGV mates in each of the buffers on which AGVs or AYCs can temporarily
place containers; charging facilities are configured for each of these AGV mates to allow
AGVs to stay and charge; the area between the AQCs and the buffers and its intermediate
area is the traveling area of the AGVs; a battery swapping station is set up on the right side
of the ACT; AGVs carry out charging in the buffers of the yard when the power level of
their batteries is higher than the swapping threshold; and AGVs go to the battery swapping
station to replace a battery when the power level is lower than a predefined threshold.

2.2. Energy Consumption Evaluation

The energy consumption formula proposed by Bektaş et al. [29] was adopted to
evaluate the AGV energy consumption. To calculate the mechanical power on each path
(i, j) of the AGV, the average speed is set to be sij, and the total load as M = w + Lij, where
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Lij is the load carried by the vehicle on the path and w is the mass of the vehicle itself. The
length (i, j) of the path is denoted as dij and the mechanical energy MEij required on the
path is calculated by Equation (1),

MEij ≈ Pt
(
dij/sij

)
= αij

(
w + Lij

)
dij + βs2

ijdij (1)

where αij is the arc-specific factor, β is the vehicle-specific factor, and the unit of mechanical
energy is kWh.

The electrical energy consumption of the AGV is calculated by converting mechanical
energy into electrical energy of the battery as in Equation (2),

Eij = e f fd · e f fm · MEij = e f fd · e f fm ·
[
αij

(
w + Lij

)
dij + βs2

ijdij

]
(2)

where e f fm denotes the motor efficiency and e f fd denotes the battery discharge efficiency.
The calculation of the loading energy consumption wi is related to the loading distance
between the start and end positions of task i, the loading speed, and the amount of loading,
which is calculated by Equation (3).

wi = e f fd · e f fm ·
[
αi(w + Li)Di + βs2

i Di

]
(3)

The calculation of loading task energy consumption is based on Equation (3), while
the no-load energy consumption is determined by setting the load Lij to zero and updating
the distance Di travelled by i to the distance dij travelled from the end position of task i to
the start point of task j.

2.3. AGV Scheduling Based on the Hybrid Mode

The tasks performed by AGVs were classified as unloading tasks, loading tasks, and
battery swapping tasks. The location of the tasks from the start point to the end point was
known and path conflicts were not considered. The operation time of the loading task is the
sum of the time when the AQC picks up the container from the AGV and the time when
the AGV picks up the container from the AGV mate. The operation time of the unloading
task is the sum of the time the AQC delivers the container to the AGV and the time the
AGV delivers the container to the AGV mate.

The loading and unloading vessel plan provides a time window [e i, li] for each
loading and unloading container task. The notation ei denotes the earliest available start
time for the task i, and li denotes the latest available start time for the task i. Since the
scheduling priority of the AQCs and AYCs is higher than that of the AGVs, when the AGV
executes task i later than the latest available start time of the task, it will cause delays in the
scheduling of the AQCs or AYCs as well as delays in the subsequent AGV tasks that may
result in delay costs. Discretizing the swapping tasks at the battery swapping station, the
duration of each swapping task is known, and each swapping task can only serve one AGV
that is short of power at the same time.

To determine the timing of charging, four types of articulation of AGV loading and
unloading tasks are analyzed: an AGV performs a loading task after performing an un-
loading task; an AGV performs a loading task after performing a loading task; the AGV
performs an unloading task after performing an unloading task; and the AGV performs an
unloading task after performing an loading task.

As shown in Figure 2, tasks 1 and 3 are unloading tasks, and tasks 2 and 4 are loading
tasks. The time windows and paths of all the tasks are known. After executing unloading
task 1, AGV A immediately goes to the starting position of task 2, and assuming that AGV
A arrives at the starting position of task 2 in 220 s, AGV A can make use of the waiting time
of 30 s before executing task 2 to carry out charging operations. AGV B travels to the start
position of task 3 immediately after executing task 4. Since the task is not conducted on
the buffer side, it is not possible to perform power replenishment. Assuming that AGV B
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arrives at the start position of task 3 in 290 s, the delay time for AGV B to execute task 3 is
10 s.
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From the above analysis, it was found that optimizing the AGV task allocation, se-
quence of operations, and timing of charging and swapping can effectively reduce the
possibilities of no-loading and delays of the AGVs. The objective is to schedule the sequence
of loading and unloading tasks of AGVs and coordinate the recharging and swapping
process so that the AGVs can complete the specified container delivery tasks in a given
time window and minimize the energy consumption and the delay cost of the AGVs.

3. Mathematical Modelling
3.1. Assumptions

The AGV scheduling problem for an ACT in the hybrid mode of battery swapping
and charging satisfies the following assumptions:

(1) Each AGV has the same specifications and the same size;
(2) Each AGV transports only one container at a time during the execution of a task;
(3) Each AGV travels at a common speed between any two nodes;
(4) During the scheduling plan period, the time window and the start and end position

of each container task are known;
(5) In this scheduling problem, the conflicts of AGVs on the road are not considered;
(6) The batteries in the battery swapping station are sufficient in number and fully charged;
(7) The charging facility is set at the AGV mate in the buffer of the yard;
(8) The charging mode of the AGVs is linear charging, and the amount of charging is

proportional to the charging time.

To accurately model the AGV scheduling problem under the hybrid mode of battery
swapping and charging, it is necessary to define the studied problem using the above
assumptions. For example, the type of AGVs and their speed were set at the same value.
One standard container can be transported by one AGV at a time. Although many un-
certainties exist in real-world ACTs, studying a mathematical model is still an important
means to propose an effective scheduling solution to reduce the impact of AGV power
supplementation on the efficiency of automated container terminals.

3.2. Notations

The notation variables and corresponding definitions are shown in Table 1.
The decision variables are shown in Table 2.
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Table 1. Definition of notation variables.

Notation Description

Iload The set of loading tasks
Iunload The set of unloading tasks

Ir The set of unloading and loading tasks
I0 The dummy starting task
I′0 The dummy ending task
It The set of battery-swapping tasks
I The set of all tasks

i, j The index for task, i, j are positive integers
K The set of AGVs
k The index for AGVs; k is a positive integer
ei The earliest starting time of unloading and loading task i
li The latest starting time of unloading and loading task i
y The time for a AQC to deliver to or pick up containers from an AGV
q The time for an AGV to deliver to or pick up containers from an AGV mate

tcharge The time for an AGV to swap a battery at the battery swapping station
hi The execution time for task i

zij
The no-load energy consumption for travelling from the end position of task i to

the start position of task j
wi The loading energy consumption of task i
C The total power of the AGV
c The charging rate

Emax The AGV battery swapping threshold
bk The initial power of AGV k
v1 The no-load speed of an AGV
v2 The load speed of an AGV

dij
The no-load distance travelled by an AGV from the end position of task i to the

start position of task j
Di The load distance for an AGV performing task i
ce The energy cost of one unit
ct The penalty cost per time unit

Table 2. Definitions of decision variables.

Decision Variables Description

xijk
0–1 variable, which is 1 when AGV k executes task j immediately after task

i, and 0 otherwise
yik 0–1 variable, which is 1 when AGV k performs task i and 0 otherwise
gik The remaining power of AGV k after the execution of task i
sik The start time of AGV k performing task i
uik The wait time of AGV k performing task i
τik The delay time of AGV k performing task i

3.3. The Mathematical Model

In the AGV scheduling problem of ACTs with the hybrid mode of battery swapping
and charging, two main optimization objectives are considered and transformed as cost
functions. The first objective is to minimize the electrical energy consumption, including
both stages of the loading and unloading transportation of AGVs. The second objective is
to minimize the penalty cost if the task cannot be started within the given time window.
Therefore, the mathematical model of the AGV scheduling considering the hybrid mode is
shown as follows.

Objective function:

min f = {ce(∑i∈I ∑j∈I ∑k∈K zijxijk + ∑i∈I ∑k∈K wiyik) + ct∑i∈I ∑k∈K τik} (4)

Subject to:
∑k∈K yik = 1, ∀i ∈ Ir (5)
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∑k∈K yik ≤ 1, ∀i ∈ It (6)

yik = ∑j∈I xjik, ∀i ∈ Ir ∪ It, ∀k ∈ K (7)

xiik = 0, ∀i ∈ I, ∀k ∈ K (8)

∑j∈I xijk = 1, ∀i ∈ I0, ∀k ∈ K (9)

∑i∈I xijk = 1, ∀j ∈ I′0, ∀k ∈ K (10)

∑i∈I xijk − ∑h∈I xjhk = 0, ∀j ∈ Ir ∪ It, ∀k ∈ K (11)

ei ≤ sik, ∀i ∈ I, ∀k ∈ K (12)

sik + hi + Di/v2 + dij/v1 − M(1 − xijk) ≤ sjk, ∀i, j ∈ I, i ̸= j, ∀k ∈ K (13)

uik = (sjk − sik − hi − Di/v2 − dij/v1)xijk, ∀i, j ∈ I, i ̸= j, ∀k ∈ K (14)

τik ≥ sik − li, ∀i ∈ I, ∀k ∈ K (15)

gik = bk, ∀i ∈ I0, ∀k ∈ K (16)

gik = C, ∀i ∈ It, ∀k ∈ K (17)

gjk − qc + wj ≤ gik − zij + M(1 − xijk), ∀i ∈ I, j ∈ Iunload, ∀k ∈ K (18)

gjk − qc + wj ≥ gik − zij + M(xijk − 1), ∀i ∈ I, j ∈ Iunload, ∀k ∈ K (19)

gjk − qc + wj ≤ gik − zij + cujk + M(1 − xijk), ∀i ∈ I, j ∈ Iload, ∀k ∈ K (20)

gjk − qc + wj ≥ gik − zij + cujk + M(xijk − 1), ∀i ∈ I, j ∈ Iload, ∀k ∈ K (21)

Emax − (gik − zij) + M(1 − xijk) ≥ 0, ∀i ∈ I, ∀j ∈ It, ∀k ∈ K (22)

xijk ∈ {0, 1}, ∀i, j ∈ I, ∀k ∈ K (23)

yik ∈ {0, 1}, ∀i ∈ I, ∀k ∈ K (24)

0 ≤ gik ≤ C, ∀i ∈ I, ∀k ∈ K (25)

sik ≥ 0, ∀i ∈ I, ∀k ∈ K (26)

uik ≥ 0, ∀i ∈ I, ∀k ∈ K (27)

τik ≥ 0, ∀i ∈ I, ∀k ∈ K (28)

where Equation (4) is the objective function that aims to minimize the sum of the energy con-
sumption cost and delay cost of the AGVs. The energy consumption cost consists of loading
energy consumption and no-load energy consumption. The delay cost is the cost gener-
ated when the task start time exceeds its latest available start time. Constraint (5) ensures
that each loading and unloading task can only be executed once by one AGV. Constraint
(6) ensures that each battery-swapping task can be performed at most once by one AGV.
Constraint (7) guarantees that for any loading/unloading or battery swapping task, there
is at most one immediately preceding task. Constraint (8) guarantees that tasks cannot be
self-connected. Constraints (9) and (10) ensure that each AGV starts from the execution of
a dummy starting task and ends with the execution of a dummy ending task. Constraint
(11) is an arc balance constraint that ensures that the AGV should satisfy arc balance during
the execution of loading, unloading, and battery-swapping tasks. Constraint (12) ensures
that the start time of task i execution by AGV k is greater than or equal to the earliest time
window of task i. Constraint (13) restricts the feasibility of the sequential processing time
for AGV k to execute tasks i, j. If AGV k executes task j immediately after task i, that is,
xijm = 1, the constraint (13) becomes sik + hi + Di/v2 + dij/v1 ≤ sjk. Constraint (14) calcu-
lates the waiting time before AGV k executes task j. If AGV k executes task j immediately
after task i, that is, xijm = 1, the constraint (14) becomes ujk = sjk − sik − hi − Di/v2 − dij/v1.
Constraint (15) defines the delay time for AGV k to execute task i. Constraints (16) and
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(17) denote the remaining power constraints after AGV k executes the dummy starting
task and the battery swapping task, respectively. Constraints (18) and (19) denote the
remaining power constraints before the AGV k performs the unloading task j. If AGV k
executes unloading task j immediately after task i, that is, xijm = 1, constraints (18) and (19)
become gjk − qc + wj = gik − zij. Constraints (20) and (21) represent the remaining power
constraints before the AGV k performs the loading task j, when the immediately following
task j is a loading task and the AGV k can use the waiting time for opportunity charging.
When xijm = 1, the constraint (20) becomes gjk − qc + wj = gik − zij + cujk. Constraint (22)
indicates that the AGV k needs to have enough power to travel to the battery swapping
station for the battery swapping task. That is, the AGV k battery swapping threshold must
be greater than or equal to the remaining power of the AGV k when completing task i
minus the no-load energy consumption of AGV k from the end position of task i to the
start position of task j. Constraints (23) to (28) represent the range of values of the decision
variables.

4. An Adaptive Large-Neighborhood Search Algorithm

The AGV scheduling problem modeled in this paper is a mixed-integer programming
model with a large number of decision variables and constraints, which is difficult to solve
in a reasonable time using commercial solvers, so an adaptive large-neighborhood search
algorithm is proposed.

4.1. Framework of the Proposed Algorithm

The adaptive large-neighborhood search (ALNS) is a heuristic algorithm proposed by
Ropke and Pisinger [30], which has been applied in the fields of vehicle path optimization
and ACT scheduling [31–33]. This study adopts the architecture of the ALNS algorithm
shown in Figure 3.
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The framework of ALNS consists of five parts: the construction of the initial solution,
the selection of the destroy and repair operators for destroying and repairing the solutions,
the updating of the weights of the operators, the adaptive selection of the operators, and
the acceptance criterion of the solutions. To solve the proposed mathematical model
effectively, the coding process is developed by considering all the constraints of the AGV
scheduling problem in the focused ACT, by which the effectiveness of the scheduling
sequence is ensured. Moreover, the initialization process considers the time windows of
the container tasks as well as the battery-swapping process and the opportunity charging
process, by which the accuracy of the scheduling decision can be ensured. The destroy
and repair approach is designed according to the characteristics of the studied model. In
addition, the acceptance criterion of the solutions is the simulated annealing algorithm that
permits solutions that are slightly worse than the current solutions. Then, the algorithm can
jump out of local optima. The ALNS stops either when the number of non-improvement
temperature decrements exceeds a specified number or after having run the maximum
number of allowed iterations.

4.2. Coding for the AGV Scheduling

The solution encoding and decoding approach is described through the attributes
and sequence of tasks. The sequence of tasks consists of three parts, i.e., the dummy
tasks, the loading and unloading tasks, and the battery-swapping tasks. The task sequence
chromosome is encoded using natural numbers, each chromosome sequence represents a
set of loading and unloading tasks, each natural number in the chromosome represents
the index of a loading and unloading task, and the length of the chromosome is equal to
the number of all loading and unloading tasks. In this study, the loading and unloading
types of the loading and unloading tasks are known, and the numbers of the operational
AQCs and block of each loading and unloading task are known. Taking eight loading and
unloading tasks, two operational AQCs, and four operational blocks as an example, the
initial task sequence is a chromosome whose length is the number of loading and unloading
tasks, and the encoding is shown in Figure 4.
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The tasks are assigned to AGVs and executed sequentially based on the attributes of
the tasks, time window constraints, and energy consumption. A task sequence represents
the traveling route of an AGV k, and the total number of sequences is the same as the
total number of AGVs, which is K. All AGVs start from the dummy starting task, execute
the tasks sequentially according to the time window constraints and power constraints in
the order of the tasks within the route, and return to the dummy ending task. The AGV
calculates whether its remaining power is below a threshold or cannot complete the next
task after each task, inserting a battery-swapping task if it is, or continuing to execute the
next task if the power is sufficient. It should be noted that the dummy starting task and
dummy ending task are not involved in the destruction and repair step since they are the
dummy tasks, and can be executed repeatedly.

After assigning AGVs to each loading and unloading task, the sequence of the tasks to
be accomplished by each AGV is shown in Figure 5 below:
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After the decoding process, the tasks are assigned to the AGVs, and the task sequences
of different AGVs are generated. C1 denotes the inserted battery swapping task. The
task route of AGV1 is I0→U1→U2→L4→C1→L7→I0′, and the task route of AGV2 is
I0→L3→U5→U6→L8→I0′.

4.3. Initial Solutions

The initial solution construction process considers time windows and power con-
straints to ensure the feasibility of the initial solution in the following steps:

(1) Let the increment of the objective function value of the sequence of tasks inserted by
task i into AGV k be ∆ fik; different insertion positions lead to different increments
of the objective function value, define ci = min{∆ fik}, ∀i ∈ I, ∀k ∈ K and take the
minimum value of ci corresponding to AGV k as the best choice for task i.

(2) Iterate all tasks i in the set of loading and unloading tasks and insert them into the
AGV task sequence.

(3) Update the remaining power gik of the AGV after task i is inserted into AGV k. The
update of the power gik is divided into the power update after battery swapping and
the power update after charging, where the power update of charging is divided into
fixed charging and opportunity charging. Fixed charging is the charging of AGV k
that utilizes the interaction time between the buffer in the yard and the AGV mate,
assuming that the last task is j and the current task is i. The remaining power is
calculated by Equation (29):

gik = gjk + qc − zji (29)

where Equation (29) indicates that the remaining power gik of the AGV k after execut-
ing task i is the remaining power of the AGV k after executing the last task j minus
the no-load energy consumption of the AGV k traveling from the ending position
of task j to the starting position of task i, plus the supplemental power of the fixed
charging time.

Opportunity charging needs to determine the loading and unloading container at-
tribute of task i. If task i is a loading task L, the power is increased according to the early
arrival time; if not, the power remains unchanged and the power after opportunity charging
is calculated by Equation (30):

gik = gjk + cq − zji + cuik (30)

where Equation (30) represents the remaining power gik of the AGV k after executing task
i, which equals to the remaining power of the AGV k after executing the task j minus the
no-load energy consumption of the AGV k traveling from the ending position of task j to
the starting position of task i, plus the supplemental power for the fixed charging time and
the supplemental power utilizing the waiting time before executing task i.

The power update after battery swapping needs to determine whether the remain-
ing power of AGV k is sufficient to travel to the battery-swapping station, as shown in
inequality (31):

gjk − zjh ≤ Emax (31)
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where the inequality (31) indicates whether the remaining power of AGV k after executing
the last task j minus the no-load energy consumption of AGV k traveling to the battery-
swapping station is less than or equal to the swapping threshold, and if so, if it is necessary
to go to the battery-swapping station to swap the battery.

(4) Update the start time and end time of task i based on the time window of the task and
the position of AGV k. Define sik as the start time of executing task i, oik as the end
time of executing task i, and tij as the no-load time from the ending position of task i
traveling to the starting position of task j.

When AGV k executes task i after task j, the expression for the start time sik of task i is
updated as

sik = max
{

ojk + tji, ei

}
(32)

The end time oik of the execution of task i by AGV k is updated by Equation (33),

oik = sik + hi + Di/v2 (33)

(5) Based on the updated power and time in steps (4) and (5), calculate the increment
∆ fik of the objective function value for each task i to be inserted into the AGV k, and
keep iterating until all the tasks are assigned to the AGV.

4.4. Destroy Operators

After constructing an initial sequence of solutions, the algorithm removes a certain
number of tasks from the current sequence by using a destroy operator and saves them
in an unsorted list L of deleted tasks. The number of tasks p to be deleted by the destroy
operators is determined by the size of the problem, setting the real number range of the
number of deleted tasks p per iteration to [0, q], where the upper limit q = ρn, n denotes
the total number of loading and unloading tasks, and ρ denotes the removal rate parameter.
Four destroy operators were designed in this study:

(1) The random destroy operator

The random destroy operator is a random selection of the number p of tasks to be
removed from the task sequence and present in the list L of deleted tasks.

(2) The worst target destroy operator

The destroying strategy of the worst target destroy operator is to compute the impact
of each task i on the objective function; the higher the impact, the more it needs to be
destroyed and reinserted, thus selecting p tasks with the highest impact for removal.

Define the insertion cost of each task i as cost(i, s) = f (s)− f−i(s), where f (s) is the
current objective function value and f−i(s) is the objective function value after removing
task i. Sort cost(i, s) in descending order, corresponding to each task i, to obtain a sequence
of tasks. Select p tasks that have the largest impact on the objective function value to be
removed from the sequence.

(3) The worst time destroy operator The worst time destroy operator considers the time
window constraints and removes the tasks that have a long waiting time before the
AGV executes task i. This operator serves to minimize the time delay cost of the AGV.
The main operation flowchart of this operator is as follows:

(1) Calculate the waiting time uik = sik − aik for each task, where sik is the time
when AGV k starts to execute task i, and aik is the time when AGV k reaches
the starting position of task i.

(2) Sort the waiting times uik in descending order according to the magnitude of
the values, which corresponds to the sequence of all the tasks i, and remove
the first p tasks.
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(4) The similarity destroy operator

The similarity destroy operator was proposed by Shaw [34], which serves to remove a
set of tasks that have similar properties and can be easily exchanged. During the destruction
process, pairs of tasks with high similarity need to be prioritized to obtain a better solution.
Define the similarity value of two tasks i, j as R(i, j), and calculate the similarity value
between tasks i, j by Equation (34):

R(i, j) = δ1(dA(i),A(j) + dB(i),B(j)) + δ2
(∣∣ei − ej

∣∣)+ δ3
∣∣Li − Lj

∣∣ (34)

There are three main influencing factors for similarity judgment: similarity of task
start and end positions, similarity of time, and similarity of load. δ1, δ2, δ3 represent the
weight coefficients of the three influencing factors, respectively. A(i), B(i) represent the
start position and end position of task i, and Li is the container load of task i.

The main operation process of this operator is as follows:

(1) Select a task i in the task sequence randomly, and calculate the similarity between task
i and all other tasks;

(2) Sort the similarities in ascending order to obtain a new task sequence;
(3) Define the random parameter y ∈ [0, 1), and randomize the control parameter n, then

the yn task in the task sequence is removed;
(4) Iterate sequentially until the p tasks with the largest similarity are selected to be

removed from the sequence, and added to the list L of removed tasks.

4.5. Repair Operator

After the destruction of the solution using the destroy operator, it is necessary to
reinsert these deleted tasks back into the sequence of tasks of the solution in a certain way.
Therefore, two repair operators are designed to obtain a new feasible solution:

(1) The greedy repair operator employs a greedy heuristic algorithm that, after inserting
a task i into a path k, computes the increment ∆ fik of the increased target value, and if
it is not possible to insert the path k, then it sets ∆ fik = ∞. Insert task i to the position
that minimizes ci = min{∆ fik}. Iterate this process until all tasks p are inserted into
the path.

(2) The regret value repair operator is an improvement of the greedy algorithm, the
operator decides its insertion position according to the regret value generated after the
task insertion, described as the difference between the cost of inserting the task into
the optimal position and the sub-optimal position in the task sequence. The higher
the regret value, the higher the difference between the insertion cost of the optimal
and sub-optimal positions. The regret value is calculated by Equation (35):

c∗i = ∆ fi2 − ∆ fi1 (35)

where ∆ fi1 and ∆ fi2 denote the value added to the objective function after inserting
task i into the optimal and sub-optimal positions, respectively. The regret values are
sorted in a descending manner, and the p tasks with the highest regret values are
selected in turn to be inserted into the optimal position.

4.6. Adaptive Selection Mechanism

The ALNS needs to select one of the destroy and repair operators in each iteration
to realize adaptive adjustment. To dynamically adjust the selection probability of each
operator, a weight factor scoring and adaptive probability selection mechanism is used.
The weight factor scoring mechanism tracks the score of each heuristic operator to measure
the performance of that operator.

Assuming that each operator has an initial score of 0 before an iteration, the operator
increases the corresponding score after each iteration based on the following three scenarios:
if the solution obtained in that iteration is a new global optimum, the operator’s score
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is increased by σ1; if the solution obtained in that iteration is not better than the global
optimum but better than the local optimum, the operator’s score is increased by σ2; and
if the solution obtained in that iteration is worse than the solution obtained before the
iteration, but still accepts this worse solution after passing the solution acceptance criterion,
the iteration process will increase the operator’s score to zero. If the algorithm still accepts
this worse solution after passing the solution acceptance criterion, the score of the operator
is increased by σ3 during the iteration.

An operator scoring mechanism is used, where the recorded scores are used after each
iteration to compute new weights. Define ωij as the weighting factor of operator i in the
jth iteration. The initial weight of each operator is set to 1. At the end of each search, the
adaptive weight ωij of each operator is updated based on the scores of each operator in
this search, which is calculated by Equation (36):

ωi,1+j =

{
(1 − a)ωij + a

πij
θij

, θij > 0

ωij, θij = 0
(36)

where πij denotes the score of operator i in the jth iteration, θij denotes the number of
adaptive selections of operator i in the jth iteration, and a ∈ [0, 1] is the speed factor of
weight adjustment. The higher the score and the better the performance of the operator in
each iteration, the larger the percentage of the operator after the weight update, and the
easier it is to be selected by roulette in the next iteration with a higher probability.

4.7. Acceptance Criteria

The adaptive large-neighborhood search algorithm is allowed to accept worse solu-
tions, the probability is calculated by Equation (37):

p =

{
e−( f (snew)− f (scur))/Tnow

1
, f (snew) < f (scur)
, f (snew) > f (scur)

(37)

When the new solution snew is better than scur, the probability p = 1, i.e., the new
solution snew is accepted; when the new solution snew is worse than scur, the probability
p = e−( f (snew)− f (scur))/Tnow

is used to decide whether to accept the new solution snew or not,
where Tnow denotes the temperature of the simulated annealing acceptance criterion at
the current iteration, and Tnow > 0. An initial temperature Tstart = − λ

ln0.5 f (s) needs to be
generated before the start of the iteration such that the newly generated feasible solution
in the initial condition is still accepted with a probability of 50% when it is worse than
the initial solution with a value of λ. In each iteration, the annealing temperature T in the
acceptance criterion decreases continuously at the rate of the equation T = T · v, where v is
the simulated annealing cooling rate and takes values in the range 0 < v < 1.

5. Computational Experiments

To verify the effectiveness of the proposed AGV scheduling model and the ALNS
algorithm, numerical experiments of two scales were designed for comparative analysis.
Furthermore, the effectiveness of the model was analyzed by designing experiments related
to the charging and battery-swapping factors. The numerical experiments were carried
out on a Huawei MateBook14 laptop with an Intel Core i5 2.11 GHz processor and 16 GB
of RAM. The model was validated using C# calling ILOG CPLEX 12.5, and the LNS
algorithm, which does not include the operator adaptive selection mechanism, was used
for comparative analysis. The algorithm parameters and the value settings are shown in
Table 3.
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Table 3. The parameter settings of the ALNS.

Parameters Description Value

σ1 The algorithm iterates to obtain a globally optimal solution score 6
σ2 The algorithm iterates to obtain the current optimal solution score 3
σ3 The algorithm iterates to obtain an inferior solution score 1
δ1 Destroy operator task distance similarity weighting factor 9
δ2 Destroy operator task time similarity weighting factor 3
δ3 Destroy operator task container weight similarity weighting factor 9
v Cooling rate for simulated annealing acceptance criteria 20

λ
Initial temperature coefficients for simulated annealing acceptance

criteria 0.05

a Weight-adjusted speed factor 0.1

5.1. Instance Settings

Taking the Shanghai Yangshan Deepwater Port Phase IV ACT as an example, the AGV
weighs 29 tons, of which the battery pack weighs 5.5 tons. The maximum speed of the
AGV was 6 m/s (meters/seconds), and the working speed was set at 3 m/s. The maximum
battery capacity of the AGVs was 300 kWh, and the threshold of the battery swapping was
set at 40% of the remaining capacity of the battery. The average time to swap a battery
at the battery swapping station is 300 s. The energy consumption evaluation of the AGV
refers to the relevant studies by Feng and Figliozzi [35] and Murakami [36], and sets the
motor efficiency at 1.25 and the battery discharge efficiency at 1.11. Referring to the study
by Zhang et al. [37], the parameters in the energy consumption calculations were set to
α = 5, β = 5. The charging rate at the AGV mate in the front of the block is 0.08 kWh/s.
The time for the container to be transported from the AQC transfer platform to the AGV
was U(20, 40) s, and the fixed time for the container to be unloaded from the AGV to the
AGV mate was 25 s. The unit energy cost of the AGV is 0.8 CNY/kWh, and the cost of the
unit delay time is 0.2 CNY/s. The cost of the AGV is 0.8 CNY/kWh.

The validity of the model and algorithm was verified by two groups of instances, large
(L) and small (S), and the parameters of the instances are shown in Table 4.

Table 4. The parameters of the problem instances.

ID Number of Tasks Number of AGVs Number of AQCs Number of Blocks

S1 8 2 2 4
S2 10 2 2 4
S3 12 3 2 4
S4 14 3 5 10
S5 16 4 5 10
S6 18 4 5 10
S7 20 6 5 10
L1 40 8 5 10
L2 40 8 5 10
L3 60 10 10 20
L4 60 10 10 20
L5 80 10 10 20
L6 80 12 10 20
L7 100 14 10 30
L8 100 14 10 30

5.2. Computational Results
5.2.1. Experimental Results of Small-Scale Instance

Due to the NP-hard feature of the problem, the CPLEX solution time increases expo-
nentially with the number of tasks and AGVs, which makes it difficult to obtain effective
results in a reasonable time. Referring to the experimental scheme of Zhuang [28], Treal was
set to be the running time of the CPLEX solution model, and the maximum solution time
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Tmax allowed by the corresponding algorithms was set according to the scale size of the
arithmetic example.

In the small-scale instance, the CPLEX solution results were compared with the optimal
solution of the proposed ALNS algorithm to verify the validity of the constructed model by
using the proposed ALNS solution, and the results are shown in Table 5.

Table 5. Comparison of CPLEX and ALNS computation results.

ID
CPLEX ALNS

GAP1
Treal(s) OBJ1 Tmax(s) Optimal Value Average Value σ2

1

S1 0.28 46.10 80 46.10 46.35 0.55 0.00%
S2 1.32 65.37 100 65.49 65.54 0.01 0.18%
S3 24.98 109.68 120 109.68 110.89 1.81 0.00%
S4 10.92 142.81 140 143.19 144.59 3.59 0.26%
S5 42.67 167.56 160 168.14 169.60 4.89 0.34%
S6 279.57 218.07 180 219.57 221.91 8.23 0.69%
S7 1483.99 269.56 200 274.03 276.98 11.03 1.66%

AVG 263.39 145.59 140 146.60 148.04 4.30 0.45%

GAP1 = (ALNS’ optimal value − OBJ1)/OBJ1 × 100%.

From Table 5, in the instances where CPLEX can obtain the optimal solution, the
average difference between the optimal value of ALNS and the optimal value of CPLEX
is only 0.45%, and the difference in the average value is only 1.68%. The CPLEX solution
further verifies the effectiveness of the model and also verifies the effectiveness of the
proposed ALNS. In addition, comparing the computation times of CPLEX and ALNS, it
was found that when the scale of the instance rose to 18 containers, the solution time of
CPLEX increased dramatically, and when the scale of the instance reached 20 containers, it
had already reached 1483.99 s, which is far more than the time for the ALNS algorithm to
obtain an effective solution.

5.2.2. Experimental Results of Large-Scale Instance Experiments

The optimization of AGV scheduling in the horizontal transportation area of the
terminal needs to consider the timeliness; however, during the solution test of CPLEX,
when the scale of the instance reached 40 containers, even if the solution time was set to
7200 s, CPLEX still failed to obtain an acceptable solution.

Therefore, to further verify the effectiveness of the adaptive mechanism in the pro-
posed ALNS algorithm, simulation experiments were carried out on eight groups of
large-scale instances, which were compared with the LNS algorithm without an adap-
tive mechanism, and each group of instances was run 10 times and the optimal and average
values were recorded, with the termination criterion that the optimal solution remained
unchanged after 500 iterations, and the computational results are shown in Table 6.

From the data in Table 6, it can be seen that in the eight groups of experiments with
larger scale of instances, the optimal value and the average value obtained using the
proposed ALNS algorithm were better than the LNS algorithm, with the optimal value
improving by 2.21%. The average value improved by 3.12%. In addition, the average
variance of the ALNS algorithm has an obvious advantage over the LNS algorithm, and
the stability of the solution performance is higher, which verifies the effectiveness of the
proposed adaptive selection mechanism, which further verifies the feasibility of the ALNS
for solving large-scale instances.
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Table 6. Computational results of ALNS and LNS.

ID
ALNS LNS

GAP1 GAP2
Optimal Value Average Value σ2

1 Optimal Value Average Value σ2
2

L1 475.90 484.80 60.89 489.95 504.44 78.61 −2.87% −3.89%
L2 520.58 531.83 40.53 533.02 553.78 74.43 −2.33% −3.96%
L3 1012.82 1044.15 471.46 1021.87 1072.65 815.67 −0.89% −2.66%
L4 1034.62 1089.55 800.08 1050.01 1117.42 1408.05 −1.47% −2.49%
L5 1357.36 1410.19 1529.14 1388.05 1453.56 2726.03 −2.21% −2.98%
L6 1360.58 1415.58 1928.92 1399.53 1469.35 3686.35 −2.78% −3.66%
L7 2787.04 2847.39 2372.12 2852.12 2946.48 3936.58 −2.28% −3.36%
L8 2812.16 2899.27 2660.80 2883.67 2982.07 4018.73 −2.48% −2.78%

AVG 1420.13 1465.35 1232.99 1452.28 1512.47 2093.06 −2.21% −3.12%

GAP1 = (ALNS’ optimal value-LNS’ optimal value)/LNS’ optimal value × 100%; GAP2 = (ALNS’ average
value − LNS’ average value)/LNS’ average value × 100%.

5.2.3. Analysis of the Effectiveness of the Hybrid Mode

In order to verify the effectiveness of the AGV scheduling method based on the
charging-battery swapping hybrid mode, four sets of these large-scale instances were
selected to analyze the differences between the charging–battery swapping hybrid mode
proposed in this study and the existing overall battery swapping mode in the terminal. The
experimental results are shown in Table 7 below.

Table 7. Comparison of charging and battery swapping modes.

ID NC1 Obj1 NC2 Obj2 Dif1 Dif2

L1 1 475.90 2 518.86 −50.00% −8.28%
L3 2 1012.82 4 1085.00 −50.00% −6.65%
L5 4 1357.36 6 1491.33 −33.33% −8.98%
L7 6 2787.04 11 2974.94 −45.45% −6.32%

AVG 3.25 1408.28 5.75 1517.53 −43.48% −7.20%
Dif1 = (NC1 − NC2)/NC2 × 100%; Dif2 = (Obj1 − Obj2)/Obj2 × 100%.

In Table 7, column 1 presents the number of the instance, columns 2 and 3 provide
the number of AGV battery swaps and the optimal objective function value obtained in
the hybrid mode of battery swapping and charging. Columns 4 and 5 show the number
of AGV battery swaps and the optimal objective function value obtained in the overall
battery swapping mode, and columns 6 and 7 provide the gap in the number of battery
swaps and the gap in the objective function value, respectively. From the data in Table 7,
it can be seen that the optimal time delay cost and no-load energy cost obtained from the
AGV scheduling model in the hybrid mode are significantly reduced, and the number
of AGV battery swaps and scheduling costs are better than that of the mode of battery
swapping, with the average number of battery swaps reduced by 43.48% and the average
objective function value optimized by 7.20%. It is further demonstrated that the power
replenishment strategy based on the hybrid mode of battery swapping and charging can
reduce the times of battery swapping in AGV scheduling and save the total cost.

6. Conclusions

This study focused on AGV scheduling in ACTs. The AGV scheduling problem in
ACTs based on the hybrid mode of battery swapping and charging is investigated by
considering the battery capacity limitation of AGVs.

Firstly, the AGV scheduling problem characteristics of the hybrid mode of battery
swapping and charging are described, and the mixed-integer programming model of the
problem is established to minimize the energy cost and time delay cost. Furthermore, based
on the problem characteristics, an ALNS algorithm that is suitable for solving the problem
is designed by considering the time window constraints and the battery swapping process.
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Finally, the optimization performance of the proposed ALNS algorithm is verified through
simulation experiments, along with the AGV scheduling costs under the hybrid mode of
battery charging and swapping. Moreover, the single-battery swapping mode is compared
to verify the validity and feasibility of the proposed AGV scheduling model based on the
hybrid mode. From the simulation results, it is shown that the average number of battery
swapping times is reduced by 43.48%, and the total cost is reduced by 7.2%, which provides
an important theoretical basis and a case study reference for solving AGV scheduling
problems under the power constraints of the ACTs.

As for the AGV scheduling problem in ACTs, the following two directions are provided
for further study. First, the path planning of AGVs should be considered along with the
scheduling process. The collision avoidance and collision of AGV paths were not considered
in the assumptions. However, there are restrictions on intersection and lane capacity during
the actual AGV transport process, and if the AGV does not have a good collision avoidance
mechanism, scheduling accidents may occur. In addition, an adaptive large-neighborhood
search algorithm with a better solution quality is needed. To improve the performance of
the algorithm, the operator should be enhanced, and the algorithm should also have the
ability to tune adaptive parameters.
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