Accurate Identification Method of Small-Size Polymetallic Nodules Based on Seafloor Hyperspectral Data
Abstract
:1. Introduction
2. Data Description
2.1. Data and Study Area
2.2. Data Preprocessing
2.3. Dataset
3. Methods
3.1. YOLOv5
- (1)
- Input: the input image is preprocessed so that the size of the picture becomes 640 × 640 × 3 and the image data is normalized.
- (2)
- Backbone: focus structure is used as a benchmark network, combined with CSP structure, to extract image data features.
- (3)
- Neck: FPN + PAN structure is used to further fuse and extract the information output by Backbone.
- (4)
- Head: GIOU Loss is used as a loss function to process the characteristic information output by the Neck and output a detection result.
3.2. Detection Mechanism
3.3. Workflow
- (1)
- Preprocess original data, including radiation correction, data compression, color synthesis and image enhancement, to obtain processed image data.
- (2)
- Divide the polymetallic nodules in the image into four categories according to the characteristics of the image, adding network public data to expand the number of samples, making a data set together with the processed image data, and divide the data set into a training set, a verification set and a test set according to a ratio of 6:2:2.
- (3)
- With YOLOv5s as the benchmark network, the NWD metric is integrated into the network to participate in the identification work together with the IoU metric in the benchmark network. Five models with different NWD fusion ratios were set up to conduct ablation experiments to test the influence of different fusion ratios of the two metrics on the model recognition effect.
- (4)
- Carrying out an experiment on the test set, comparing a recognition result with a manually marked true value result, counting the correct number, the false test number, and the missed test number of each model, and calculating performance indexes such as precision rate, Recall rate, and the like.
- (5)
- Comparing various evaluation indexes and finally obtaining an optimal model for recognizing the polymetallic nodules by taking YOLOv5s as a reference network and fusing two detection modes of IoU and NWD.
4. Results
4.1. Platform and Indicators
4.2. Ablation Experiment
4.3. Variance Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.; Yang, F.; Tang, Y. High-Resolution Seafloor Survey and Applications; Science Press: Beijing, China, 2021. [Google Scholar]
- Hein, J.R.; Koschinsky, A.; Kuhn, T. Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ. 2020, 1, 158–169. [Google Scholar] [CrossRef]
- Kuhn, T.; Wegorzewski, A.; Rühlemann, C.; Vink, A. Composition, formation, and occurrence of polymetallic nodules. In Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations; Springer: Cham, Switzerland, 2017; pp. 23–63. [Google Scholar]
- Wang, X.; Müller, W.E.G. Marine biominerals: Perspectives and challenges for polymetallic nodules and crusts. Trends Biotechnol. 2009, 27, 375–383. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, S. The development history and latest progress of deep-sea polymetallic nodule mining technology. Minerals 2021, 11, 1132. [Google Scholar] [CrossRef]
- Abramowski, T.; Stoyanova, V. Deep-sea polymetallic nodules: Renewed interest as resources for environmentally sustainable development. In Proceedings of the 12th International Multididciplinary Scientific GeoConference: SGEM, Surveying Geology and Mining Ecology Management, Varna, Bulgaria, 17–23 June 2012; Volume 1, pp. 515–521. [Google Scholar]
- Thomson, C.W.; Murray, J. Report on the Scientific Results of the Voyage of H.M.S. Challenger during the Years 1872–76; Her Majesty’s Government: Edinburgh, UK, 1895.
- Kuhn, T.; Rühlemann, C.; Wiedicke-Hombach, M. Developing a Strategy for the Exploration of Vast Seafloor Areas for Prospective Manganese Nodule Fields. In Proceedings of the 41st Conference of the Underwater Mining Institute, UMI 2012, Shanghai, China, 15–20 October 2012. [Google Scholar]
- Halbach, P.; Kriete, C.; Prause, B.; Puteanus, D. Mechanisms to explain the platinum concentration in ferromanganese seamount crusts. Chem. Geol. 1989, 76, 95–106. [Google Scholar] [CrossRef]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Koschinsky, A.; Hein, J.R.; Kraemer, D.; Foster, A.L.; Kuhn, T.; Halbach, P. Platinum enrichment and phase associations in marine ferromanganese crusts and nodules based on a multi-method approach. Chem. Geol. 2020, 539, 119426. [Google Scholar] [CrossRef]
- Lusty, P.A.J.; Hein, J.R.; Josso, P. Formation and Occurrence of Ferromanganese Crusts: Earth’s Storehouse for critical Metals. Elements 2018, 14, 313–318. [Google Scholar] [CrossRef]
- Nozaki, T.; Tokumaru, A.; Takaya, Y.; Kato, Y.; Urabe, T. Major and trace element compositions and resource potential of ferromanganese crust at Takuyo Daigo Seamount, northwestern Pacific Ocean. Geochem. J. 2016, 50, 527–537. [Google Scholar] [CrossRef]
- Knobloch, A.; Kuhn, T.; Rühlemann, C.; Hertwig, T.; Zeissler, K.-O.; Noack, S. Predictive Mapping of the Nodule Abundance and Mineral Resource Estimation in the Clarion-Clipperton Zone Using Artificial Neural Networks and Classical Geostatistical Methods. In Deep-Sea Mining; Sharma, R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; Volume 122, pp. 189–212. [Google Scholar]
- Sakellariadou, F.; Gonzalez, F.J.; Hein, J.R.; Rincón-Tomás, B.; Arvanitidis, N.; Kuhn, T. Seabed mining and blue growth: Exploring the potential of marine mineral deposits as a sustainable source of rare earth elements (MaREEs) (IUPAC Technical Report). Pure Appl. Chem. 2022, 94, 329–351. [Google Scholar] [CrossRef]
- González, F.J.; Medialdea, T.; Schiellerup, H.; Zananiri, I.; Ferreira, P.; Somoza, L.; Monteys, X.; Alcorn, T.; Marino, E.; Lobato, A.B.; et al. MINDeSEA: Exploring seabed mineral deposits in European seas, metallogeny and geological potential for strategic and critical raw materials. Geol. Soc. Lond. Spec. Publ. 2023, 526, 289–317. [Google Scholar] [CrossRef]
- Marino, E.; González, F.J.; Kuhn, T.; Madureira, P.; Somoza, L.; Medialdea, T.; Lobato, A.; Miguel, C.; Reyes, J.; Oeser, M. Factors controlling rare earth element plus yttrium enrichment in FeMn crusts from Canary Islands Seamounts (NE Central Atlantic). Mar. Geol. 2023, 464, 107144. [Google Scholar] [CrossRef]
- Joo, J.; Kim, S.S.; Choi, J.W.; Pak, S.J.; Ko, Y.; Son, S.K.; Moon, J.; Kim, J. Seabed mapping using shipboard multibeam acoustic data for assessing the spatial distribution of ferromanganese crusts on seamounts in the western pacific. Minerals 2020, 10, 155. [Google Scholar] [CrossRef]
- Qin, X.; Wu, Z.; Luo, X.; Li, B.; Zhao, D.; Zhou, J.; Wang, M.; Wan, H.; Chen, X. Temporal Fusion Based 1-D Sequence Semantic Segmentation Model for Automatic Precision Side Scan Sonar Bottom Tracking. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4201816. [Google Scholar] [CrossRef]
- Kuhn, T.; Rühlemann, C. Exploration of polymetallic nodules and resource assessment: A case study from the German contract area in the Clarion-Clipperton Zone of the tropical Northeast Pacific. Minerals 2021, 11, 618. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Z.; Zhang, K.; Zhao, D.; Zhou, J.; Luo, X.; Shang, J.; Liu, Y.; Sun, K. Mixed Seabed Sediment Classification Based on Transferred Convolutional Neural Network: A Case Study in the Ancient River Valley. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4205116. [Google Scholar] [CrossRef]
- Kuhn, T.; Rathke, M. Visual Data Acquisition in the Field and Interpretation for Seafloor Manganese Nodules. EU Project Blue Mining (GA No. 604500) Delivery D1.31. 2017; p. 34. Available online: https://www.bluemining.eu/downloads (accessed on 14 June 2019).
- Tao, C.; Jin, X.; Bain, A.; Li, H.; Deng, X.; Zhou, J.; Gu, C.; Wu, T.; Roy, W. Estimation of manganese nodule coverage using multi-beam amplitude data. Mar. Georesour. Geotechnol. 2015, 33, 283–288. [Google Scholar]
- Chennu, A.; Färber, P.; Volkenborn, N.; Al-Najjar, M.A.; Janssen, F.; De Beer, D.; Polerecky, L. Hyperspectral imaging of the microscale distribution and dynamics of microphytobenthos in intertidal sediments. Limnol. Oceanogr. Methods 2013, 11, 511–528. [Google Scholar] [CrossRef]
- Johnsen, G.; Volent, Z.; Dierssen, H.; Pettersen, R.; Ardelan, M.V.; Søreide, F.; Fearns, P.; Ludvigsen, M.; Moline, M. Underwater Hyperspectral Imagery to Create Biogeochemical Maps of Seafloor Properties Subsea Optics and Imaging; Woodhead Publishing: Sawston, UK, 2013; pp. 508–540e. [Google Scholar]
- Tegdan, J.; Ekehaug, S.; Hansen, I.M.; Aas, L.M.; Steen, K.J.; Pettersen, R.; Beuchel, F.; Camus, L. Underwater Hyperspectral Imaging for Environmental Mapping and Monitoring of Seabed Habitats OCEANS 2015-Genova; IEEE: Genoa, Italy, 2015; pp. 1–6. [Google Scholar]
- Sture, Ø.; Ludvigsen, M.; Aas, L.M.S. Autonomous Underwater Vehicles as a Platform for Underwater Hyperspectral Imaging Oceans 2017-Aberdeen; IEEE: Aberdeen, UK, 2017; pp. 1–8. [Google Scholar]
- Van der Meer, F.D.; Van der Werff, H.M.A.; Van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M. Boudewijn de Smeth, Tsehaie Woldai. Multi-and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar]
- Dumke, I.; Purser, A.; Marcon, Y.; Nornes, S.M.; Johnsen, G.; Ludvigsen, M.; Søreide, F. Underwater hyperspectral imaging as an in situ taxonomic tool for deep-sea megafauna. Sci. Rep. 2018, 8, 12860. [Google Scholar] [CrossRef]
- Dumke, I.; Nornes, S.M.; Purser, A.; Marcon, Y.; Ludvigsen, M.; Ellefmo, S.L.; Johnsen, G.; Søreide, F. First hyperspectral imaging survey of the deep seafloor: High-resolution mapping of manganese nodules. Remote Sens. Environ. 2018, 209, 19–30. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, X.; Lu, X. A supervised segmentation network for hyperspectral image classification. IEEE Trans. Image Process. 2021, 30, 2810–2825. [Google Scholar] [CrossRef]
- Liu, B.; Yu, X.; Zhang, P.; Yu, A.; Fu, Q.; Wei, X. Supervised deep feature extraction for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1909–1921. [Google Scholar] [CrossRef]
- Lv, W.; Wang, X. Overview of hyperspectral image classification. J. Sens. 2020, 2020, 4817234. [Google Scholar] [CrossRef]
- Bilgin, G.; Erturk, S.; Yildirim, T. Unsupervised classification of hyperspectral-image data using fuzzy approaches that spatially exploit membership relations. IEEE Geosci. Remote Sens. Lett. 2008, 5, 673–677. [Google Scholar] [CrossRef]
- Abid, N.; Shahzad, M.; Malik, M.I.; Schwanecke, U.; Ulges, A.; Kovács, G.; Shafait, F. UCL: Unsupervised Curriculum Learning for water body classification from remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102568. [Google Scholar] [CrossRef]
- Fang, H.; Du, P.; Wang, X. A novel unsupervised binary change detection method for VHR optical remote sensing imagery over urban areas. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102749. [Google Scholar] [CrossRef]
- Ye, P.; Han, C.; Zhang, Q.; Gao, F.; Yang, Z.; Wu, G. An Application of Hyperspectral Image Clustering Based on Texture-Aware Superpixel Technique in Deep Sea. Remote Sens. 2022, 14, 5047. [Google Scholar] [CrossRef]
- Wang, J.; Yang, W.; Li, H.-C.; Zhang, H.; Xia, G.-S. Learning center probability map for detecting objects in aerial images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4307–4323. [Google Scholar] [CrossRef]
- Kisantal, M.; Wojna, Z.; Murawski, J.; Naruniec, J.; Cho, K. Augmentation for small object detection. arXiv 2019, arXiv:1902.07296. [Google Scholar]
- Bodla, N.; Singh, B.; Chellappa, R.; Davis, L.S. Soft-NMS—Improving object detection with one line of code. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5561–5569. [Google Scholar]
- Eggert, C.; Brehm, S.; Winschel, A.; Zecha, D.; Lienhart, R. A closer look: Small object detection in faster R-CNN. In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; pp. 421–426. [Google Scholar]
- Ren, Y.; Zhu, C.; Xiao, S. Small object detection in optical remote sensing images via modified faster R-CNN. Appl. Sci. 2018, 8, 813. [Google Scholar] [CrossRef]
- Jocher, G.; Nishimura, K.; Mineeva, T. YOLOv5 (Minor Version 6.0) [EB/OL]. Available online: https://github.com/ultralytics/yolov5/releases/tag/v6.0 (accessed on 1 May 2023).
- Panaretos, V.M.; Zemel, Y. Statistical aspects of Wasserstein distances. Annu. Rev. Stat. Its Appl. 2019, 6, 405–431. [Google Scholar] [CrossRef]
- Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. Unitbox: An advanced object detection network. In Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 516–520. [Google Scholar]
- Wang, J.; Xu, C.; Yang, W.; Yu, L. A normalized Gaussian Wasserstein distance for tiny object detection. arXiv 2021, arXiv:2110.13389. [Google Scholar]
- Von Stackelberg, U. Growth history of manganese nodules and crusts of the Peru Basin. Geol. Soc. Lond. Spec. Publ. 1997, 119, 153–176. [Google Scholar] [CrossRef]
- Thornburg, T.M.; Kulm, L.D. Sedimentary basins of the Peru continental margin: Structure, stratigraphy, and Cenozoic tectonics from 6 S to 16 S latitude. Nazca Plate Crustal Form. Andean Converg. 1981, 154, 393–422. [Google Scholar]
- Weber, M.E.; Wiedicke, M.; Riech, V.; Erlenkeuser, H. Carbonate preservation history in the Peru Basin: Paleoceanographic implications. Paleoceanography 1995, 10, 775–800. [Google Scholar] [CrossRef]
- Thiel, H. Use and protection of the deep sea-an introduction. Deep-Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 3427–3431. [Google Scholar] [CrossRef]
- Devey, C.W.; Greinert, J.; Boetius, A.; Augustin, N.; Yeo, I. How volcanically active is an abyssal plain II Evidence for recent volcanism on 20 Ma Nazca Plate seafloor. Mar. Geol. 2021, 440, 106548. [Google Scholar] [CrossRef]
- Borowski, C. Physically disturbed deep-sea macrofauna in the Peru Basin, south-east Pacific, revisited 7 years after the experimental impact. Deep-Sea Res. II 2001, 48, 3809–3839. [Google Scholar] [CrossRef]
- Haeckel, M.; König, I.; Riech, V.; Weber, M.E.; Suess, E. Pore water profiles and numerical modelling of biogeochemical processes in Peru Basin deep-sea sediments. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 3713–3736. [Google Scholar] [CrossRef]
- Grupe, B.; Becker, H.J.; Oebius, H.U. Geotechnical and sedimentological investigations of deep-sea sediments from a manganese nodule field of the Peru Basin. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 3593–3608. [Google Scholar] [CrossRef]
- Weber, M.; von Stackelberg, U.; Marchig, V.; Wiedicke, M.; Grupe, B. Variability of surface sediments in the Peru basin: Dependence on water depth, productivity, bottom water flow, and seafloor topography. Mar. Geol. 2000, 163, 169–184. [Google Scholar] [CrossRef]
- Von Stackelberg, U. Manganese Nodules of the Peru Basin Handbook of Marine Mineral Deposits; Routledge: London, UK, 2017; pp. 197–238. [Google Scholar]
- Borowski, C.; Thiel, H. Deep-sea macrofaunal impacts of a large-scale physical disturbance experiment in the Southeast Pacific. Deep-Sea Res. II 1998, 45, 55–81. [Google Scholar] [CrossRef]
- Greinert, J. RV SONNE Fahrtbericht/Cruise Report SO242-1 [SO242/1]: JPI OCEANS Ecological Aspects of Deep-Sea Mining, DISCOL Revisited, Guayaquil-Guayaquil (Equador), 28.07.–25.08. 2015; GEOMAR Helmholtz-Zentrum für Ozeanforschung: Kiel, Germany, 2015. [Google Scholar]
- Tsune, A.; Okazaki, M. Some Considerations about Image Analysis of Seafloor Photographs for Better Estimation of Parameters of Polymetallic Nodule Distribution. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, ISOPE, Busan, Republic of Korea, 15–20 June 2014. ISOPE-I-14-117. [Google Scholar]
- Gazis, I.Z.; Schoening, T.; Alevizos, E.; Greinert, J. Quantitative map** and predictive modeling of Mn nodules’ distribution from hydroacoustic and optical AUV data linked by random forests machine learning. Biogeosciences 2018, 15, 7347–7377. [Google Scholar] [CrossRef]
- Yang, Y.; He, G.; Ma, J.; Yu, Z.; Yao, H.; Deng, X.; Liu, F.; Wei, Z. Acoustic quantitative analysis of ferromanganese nodules and cobalt-rich crusts distribution areas using EM122 multibeam backscatter data from deep-sea basin to seamount in Western Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2020, 161, 103281. [Google Scholar] [CrossRef]
- Neubeck, A.; Gool, L.J.V. Efficient Non-Maximum Suppression. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR 2006), Hong Kong, China, 20–24 August 2006. [Google Scholar]
- Zhang, J.; Wei, X.; Zhang, L.; Yu, L.; Chen, Y.; Tu, M. YOLO v7-ECA-PConv-NWD Detects Defective Insulators on Transmission Lines. Electronics 2023, 12, 3969. [Google Scholar] [CrossRef]
Dataset | Category | Photograph | Number of Tags |
---|---|---|---|
Train | polymetallic nodule | 86 | 1966 |
Test | polymetallic nodule | 10 | 542 |
Operating System | CPU | Memory | Deep Learning Framework |
---|---|---|---|
Windows 10 | Intel(R) Core(TM) i7-9700 CPU @ 3.00 GHz 3.00 GHz (Intel, Santa Clara, CA, USA) | 64 GB | Pytorch |
NWD_Ratio | Precision (%) | Recall (%) | [email protected] (%) |
---|---|---|---|
0 | 80.6 | 71.5 | 78.9 |
0.3 | 85.3 | 77.6 | 86.2 |
0.5 | 86.8 | 87.4 | 92.3 |
0.8 | 72.7 | 69.0 | 70.1 |
1 | 64.5 | 62.0 | 62.7 |
NWD_Ratio | Manual Count | Block Count | Correct Number | False Detection | Missed Detection |
---|---|---|---|---|---|
0 | 542 | 651 | 509 | 142 | 33 |
0.3 | 542 | 621 | 512 | 109 | 30 |
0.5 | 542 | 625 | 529 | 96 | 13 |
0.8 | 542 | 743 | 513 | 230 | 29 |
1 | 542 | 1074 | 504 | 570 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, K.; Wu, Z.; Wang, M.; Shang, J.; Liu, Z.; Zhao, D.; Luo, X. Accurate Identification Method of Small-Size Polymetallic Nodules Based on Seafloor Hyperspectral Data. J. Mar. Sci. Eng. 2024, 12, 333. https://doi.org/10.3390/jmse12020333
Sun K, Wu Z, Wang M, Shang J, Liu Z, Zhao D, Luo X. Accurate Identification Method of Small-Size Polymetallic Nodules Based on Seafloor Hyperspectral Data. Journal of Marine Science and Engineering. 2024; 12(2):333. https://doi.org/10.3390/jmse12020333
Chicago/Turabian StyleSun, Kai, Ziyin Wu, Mingwei Wang, Jihong Shang, Zhihao Liu, Dineng Zhao, and Xiaowen Luo. 2024. "Accurate Identification Method of Small-Size Polymetallic Nodules Based on Seafloor Hyperspectral Data" Journal of Marine Science and Engineering 12, no. 2: 333. https://doi.org/10.3390/jmse12020333
APA StyleSun, K., Wu, Z., Wang, M., Shang, J., Liu, Z., Zhao, D., & Luo, X. (2024). Accurate Identification Method of Small-Size Polymetallic Nodules Based on Seafloor Hyperspectral Data. Journal of Marine Science and Engineering, 12(2), 333. https://doi.org/10.3390/jmse12020333