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Abstract: Due to the relative motion between transmitters and receivers and the multipath charac-
teristic of wideband underwater acoustic channels, Doppler and channel estimations are of great
significance for an underwater acoustic (UWA) communication system. In this paper, a preamble
signal based on superimposed linear frequency modulation (LFM) signals is first designed. Based
on the designed preamble signal, a real-time Doppler factor estimation algorithm is proposed. The
relative correlation peak shift of two LFM signals in the designed preamble signal is utilized to
estimate the Doppler factor. Moreover, an enhanced channel estimation algorithm, the correlation-
peak-search-based improved orthogonal matching pursuit (CPS-IOMP) algorithm, is also proposed.
In the CPS-IOMP algorithm, the excellent autocorrelation characteristic of the designed preamble
signal is used to estimate the channel sparsity and multipath delays, which are utilized to construct
the simplified dictionary matrix. The simulation and sea trial data analysis results validated the
designed preamble, the proposed Doppler estimation algorithm, and the channel estimation algo-
rithm. The performance of the proposed Doppler factor estimation is better than that of the block
estimation algorithm. Compared with the original OMP algorithm with known channel sparsity, the
proposed CPS-IOMP algorithm achieves a similar estimation accuracy with a smaller computational
complexity, as well as requiring no prior knowledge about the channel sparsity.

Keywords: Doppler estimation; channel estimation; improved orthogonal matching pursuit;
superimposed linear frequency modulation signal; underwater acoustic communication

1. Introduction

Implementing efficient and reliable communication in the underwater acoustic (UWA)
channel is a challenging task due to the complex and time-varying characteristics of the
UWA channel in terms of the limited bandwidth, strong multipath, serious Doppler effect,
and long propagation delay. The Doppler effect in the UWA channel is severe since the
sound wave propagating in the water is slow (about 1500 m/s). And Doppler estimation
and compensation become a critical issue in the UWA communication system. Moreover,
the large multipath delay spread also brings great challenges to UWA communication [1].
Hence, channel estimation and equalization should be used to mitigate the performance
degradation resulting from the multipath.

When the UWA communication system with a high data rate is equipped on a mobile
underwater node, Doppler estimation and compensation are essential before demodulation
at the receiver [2,3]. For the traditional Doppler method, a set of correlators are adopted to
compute the correlation between various Doppler replicas of the transmitted signal and
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the received signal. And then the Doppler shift is determined according to the maximum
correlation [4]. Although the resolution of the method can be improved with an increased
number of correlators, the computational complexity also significantly increases. To reduce
the computational complexity, an efficient block Doppler estimation method was proposed
in [5]. In this method, two linear frequency modulation (LFM) signals are respectively
inserted before and after the data frame, and the time duration of the data frame can be
estimated according to two obtained correlation peaks at the receiver. The time duration
change can further be used to estimate the Doppler factor. This method has been widely
used in UWA communication because of its efficiency and simplicity. Moreover, several
improved methods have been proposed [6–12]. For example, an adaptive dual-stage
Doppler estimation method was proposed in [12]. In the first stage, the block Doppler
estimation method was used for a coarse estimation. In the second stage, a bank of fraction-
delay Farrow filters was used to correct the Doppler factor. However, these methods need
to store the whole data frame, which introduces a large storage overhead and disables the
real-time estimation.

A Doppler estimation method based on hyperbolic frequency modulation (HFM)
signals, which can obtain real-time estimation, was proposed in [13,14]. In this method,
two HFM signals with opposite frequency sweeping directions were inserted before the
data frame. At the receiver, two corresponding matched filters were utilized to estimate
the Doppler factor. Although the accuracy of this method is independent of the frame
length, the estimation accuracy should deteriorate sharply in the presence of a time-varying
multipath. To improve the estimation performance in the time-varying multipath envi-
ronment, a correlation peak matching method was proposed in [15]. However, two HFM
signals need to have the same autocorrelation characteristics in this method. And the
computational complexity was increased. A new preamble waveform based on an HFM
signal was proposed in [16], which leaves a mute span between the up-sweeping HFM and
the down-sweeping HFM signals. Apart from using the time-domain property of HFM
signals, a speed spectrum estimation method utilizing the spectrum property of the signal
was proposed to estimate the Doppler factor in [17].

Recently, numerous achievements in channel estimation for UWA communication have
been obtained. According to prior knowledge for the algorithm, the channel estimation
methods can be divided into the blind method and the training-sequence-based method. In
the blind channel estimation method, the statistical property of received signals is utilized
to estimate the channel state information without any prior information of the transmitted
signal [18]. The training-sequence-based method performs the channel estimation by
utilizing the known training sequence part of the received signals [19]. The training-
sequence-based channel estimation method has been widely studied and adopted owing to
its low computational complexity and good performance. Moreover, the channel estimation
method based on compressed sensing (CS), making full use of the sparsity of the underwater
multipath channel, has become a hot research topic [20].

Among the CS-based channel estimation algorithms, orthogonal matching pursuit
(OMP) [21] stands out as the most representative with the potential to achieve high es-
timation accuracy, as well as keeping the computational cost low [20]. However, in the
OMP algorithm, determination of the iteration termination condition is a fundamentally
challenging problem. Without an appropriate termination condition, not only accuracy but
also computational complexity will deteriorate. Considering that the time-varying UWA
channel contains both rapidly time-varying and stationary (or slowly varying) components,
a sequentially adaptive observation length OMP (SAOL-OMP) algorithm was proposed
in [22]. Although the SAOL-OMP algorithm exhibits better performance than the OMP,
the iteration termination condition problem was not resolved. To determine the iteration
termination condition, an adaptive OMP (A-OMP) algorithm was proposed in [23], where
the recovery sparsity was exploited to derive a closed-form expression for the termina-
tion condition. However, the A-OMP algorithm has not been validated using sea trial
experiments. The sparse-Bayesian-learning-based channel estimation method has been
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proposed [24,25]. In [24], sparse-Bayesian-learning-framework-based channel estimation
methods were investigated, where the convergence error is avoided by utilizing the sparsity
of the channel. Meanwhile, better channel estimation performance and lower output bit
error rate (BER) were obtained compared to the CS-based method. In [25], a fast channel
estimation algorithm based on sparse Bayesian learning using the fast marginal likelihood
maximization was proposed. However, although the sparse-Bayesian-learning-based chan-
nel estimation method performs well, the computational complexity is much higher, in
terms of long computing time and large power consumption.

In this paper, we investigate the Doppler and channel estimation problem for UWA
communication using a dedicated preamble signal. In more detail, a preamble signal based
on the superimposed LFMs is designed for Doppler and channel estimation. According to
the designed preamble signal, we further propose the corresponding Doppler estimation
algorithm and channel estimation algorithm. The main contributions of this paper are
summarized as follows:

1. To achieve Doppler and channel estimation using the preamble signal, a preamble
signal based on the superimposed LFMs is designed. Specifically, the designed pream-
ble signal is composed of an up-sweeping LFM signal and a down-sweeping LFM
signal, which are superimposed in the time domain. Differing from the traditional
frame structure that inserts two identical LFM signals before and after the data block,
the designed preamble signal can achieve real-time estimation. Compared with the
preamble signal using HFM signals, the designed preamble signal is easy to generate
and does not increase the time duration.

2. As revealed in [14], under the influence of the Doppler factor, the LFM signal has an
approximate linear relationship between the correlation peak shift and the Doppler
factor. Hence, a Doppler estimation method is proposed utilizing the relationship
between the relative correlation peak shift of two superimposed LFM signals and the
Doppler factor. Moreover, once the Doppler factor is estimated, the timing synchro-
nization can be realized simultaneously.

3. An improved OMP channel estimation algorithm utilizing the designed preamble
signal is proposed. Since the preamble signal is composed of two LFM signals, it
also has excellent autocorrelation characteristics. In the proposed algorithm, the
received preamble signal (after Doppler compensation) is correlated with the local
reference signal, and the correlation peaks occur at the positions corresponding to the
multipath delay. According to the position of these correlation peaks, the sparsity and
multipath delays can be determined initially, and the multipath delays can be used
to simplify the dictionary matrix of the OMP algorithm. Hence, compared with the
OMP algorithm, the proposed algorithm not only solves the problem of the iteration
termination condition, but also has a lower computational complexity.

4. The simulated and experimental results demonstrate that using the designed preamble
signal, the proposed algorithms can estimate Doppler and channel state information
effectively and improves the performance of the UWA communication system.

The remainder of this paper is organized as follows. In Section 2, the system model is
introduced and the problem to be solved is stated. In Section 3, the designed preamble sig-
nal, and the proposed Doppler estimation and channel estimation algorithms are presented.
The performance of the proposed algorithms is evaluated by simulations and experimental
data analysis in Section 4. Finally, the conclusion of this paper is given in Section 5.

2. System Model and Problem Statement

In this section, the model of the UWA communication system is introduced. The
problems that we aim to solve in this work are stated.
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2.1. System Model

A UWA communication system with binary phase shift keying (BPSK) modulation
is considered in this paper. And the block diagram of the UWA communication system is
illustrated in Figure 1.
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At the transmitter, the input binary data bit sequence is used to control the switching
of the carrier phase in the BPSK modulator. And a pulse shaping filter is also included to
reduce the inter-symbol interference and control the spectral characteristics of the modu-
lated signal. And then a preamble signal, which is dedicatedly designed for both Doppler
and channel estimation, is added to the modulated information. Finally, the data frame
is transmitted.

After encountering the UWA channel, the transmitted data frame reaches the receiver.
Then, the receiver operates as follows. In the first step, the receiver performs coarse

frame synchronization by utilizing the received preamble signal. Afterward, the received
preamble signal is used for Doppler estimation, as detailed in Section 3.2. Towards Doppler
compensation, a resampling process is performed where the resampling factor is deter-
mined by the estimated Doppler factor. At the same time, fine frame synchronization is
realized. Then, channel estimation using the preamble signal, as described in Section 3.3, is
performed. Following that, frequency-domain channel equalization is carried out, where
the fast Fourier transform (FFT) of time-domain channel estimation is used. Finally, signal
demodulation using a BPSK demodulator is performed to recover the data bits.

The time-varying CIR of a multipath UWA channel can be described by

h(τ, t) =
P−1

∑
p=0

Ap(t)δ(τ − τp(t)), (1)

where Ap(t) and τp(t) are the time-varying amplitude and delay of the pth path, respectively.
P is the number of paths.

For a wideband signal, each frequency component is translated by a different amount
due to the Doppler factor. The Doppler effect can be modeled as a time scaling (expansion or
compression) of the signal waveform [5]. Let α denote the Doppler factor, which is defined
as the ratio of the radial relative velocity (v) between the transmitter and the receiver to the
sound speed (c) in the water. The radial relative velocity is considered to be positive if the
transmitter and the receiver are moving closer; otherwise, it is negative.

The following assumptions are considered here.
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Assumption 1. All the paths have a similar Doppler factor. That is,

τp(t) = τp − αt. (2)

Generally, different paths could have different Doppler factors as demonstrated in the
field test results [26,27]. However, the issues of Doppler and channel estimation that need
to be resolved are based on the assumption that all the paths have approximately the same
Doppler factor. In this paper, we consider that the Doppler shift is caused by the relative
transmitter/receiver motion. This assumption seems to be justified as long as the dominant
Doppler shift is caused by direct transmitter/receiver motion [28].

Assumption 2. The delay and amplitude of each path, τp and Ap(t) (0 ≤ p ≤ P − 1), and the
Doppler factor α are constant over the duration of a data frame.

The time duration of a data frame adopted in this paper is less than 500 ms. It is
reasonable that Assumption 2 is justified since the channel coherence time is typically on
the order of seconds.

Hence, the received signal can be expressed as

y(t) =
P−1

∑
p=0

Aps((1 + α)t − τp) + w(t), (3)

where s(t) is the transmitted signal and w(t) is additive white Gaussian noise (AWGN).

2.2. Problem Statement

An LFM signal, generally used as the preamble signal, can be denoted as

sLFM(t) = cos(2π f0t + πkt2), 0 ≤ t ≤ TLFM, (4)

k =
f1 − f0

TLFM
, (5)

where f0 and f1 are the start frequency and stop frequency of the LFM signal, and TLFM is
the time duration of the LFM signal. If f0 < f1, the LFM signal is up-sweeping. If f0 > f1,
the LFM signal is down-sweeping.

By differentiation, the instantaneous frequency of the LFM signal is

f (t) =
1

2π
· d

dt
(2π f0 + πkt2) = f0 + kt, (6)

which is a linear function of time.
As an LFM signal is transmitted, the received LFM signal at the receiver can be

written as

yLFM(t) =
P−1

∑
p=0

Ap cos(2π f0((1 + α)t − τp) + πk((1 + α)t − τp)
2) + w(t). (7)

If the transmitter and the receiver are relatively stationary, a matched filter can correlate
the transmitted and received waveforms to determine when the signal is detected. However,
if relative motion exists, a mismatch will occur. As a Doppler-insensitive waveform, the
main ridge of the ambiguity function for the LFM signal is approximately a sloping curve.
It is indicated that the peak position of the matched filter will deviate from the real-time
delay position in the case of relative motion, which is called range–Doppler coupling [29].
For a realistic Doppler factor level (v < 15 m/s), the offset almost linearly varies with the
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Doppler factor. It is shown in [30] that the relationship between the offset and the Doppler
factor can be approximately expressed as

∆t(α) = −α( f0 + f1)TLFM

2( f1 − f0)
. (8)

From (8), one finds that the Doppler factor can be estimated by the offset of the peak
position of the matched filter. The estimated Doppler factor can be used to perform Doppler
compensation to improve the performance of UWA communication. Moreover, the relative
velocity of the transmitter/receiver can be indirectly calculated based on the estimated
Doppler factor. If the transmitter or receiver is stationary, the radial velocity of the other
can be obtained.

For existing Doppler estimation algorithms using the LFM signal, two LFM signals
are inserted before and after the data frame, respectively. Hence, these algorithms cannot
achieve real-time estimation. Moreover, for existing Doppler estimation algorithms using
the HFM signal, a longer time duration of the preamble signal is needed. So, these algo-
rithms may lead to the increase in overhead. Inspired by (8), a preamble signal should be
designed to achieve real-time Doppler estimation and without increasing the time duration.

The preamble signal can also serve as the training sequence for the channel estimation.
In a discrete-time system, the received preamble signal after Doppler compensation can be
expressed as

yP(n) =
L−1

∑
l=0

sP(n − l)h(l) + w(n), 0 ≤ n ≤ N − 1, (9)

where n is the index, yP(n) is the sampled received preamble signal, sP(n) is the sampled
preamble signal, h(l) is the discrete CIR, L is the length of the discrete channel, N is the total
number of sampled preamble signals, and w(n) is the sampled noise.

Under the assumption that the channel is time-invariant within the time duration of
the data frame, (9) can be presented in a matrix-vector form as

yP = Ah + w, (10)

where A is the dictionary matrix, which is composed of the sampled preamble signal with
a size of N × L, as well as a Toeplitz matrix. Matrix A can be defined as

A =


sP(0) sP(−1) · · · sP(−(L − 1))
sP(1) sP(0) · · · sP(−(L − 2))

...
...

. . .
...

sP(N − 1) sP(N − 2) · · · sP(N − L)

. (11)

For n < 0, sP(n) can be considered as 0. Vectors yP, h, and w are defined as

yP = (yP(0), yP(1), · · · , yP(N − 1))T , (12)

h = (h(0), h(1), · · · , h(L − 1))T , (13)

w = (w(0), w(1), · · · , w(N − 1))T . (14)

Since Toeplitz matrix A satisfies the restricted isometry property (RIP) [31] and the
UWA channel is typically sparse, the CS-based methods can be used to estimate the channel.

However, existing CS-based channel estimation algorithms usually do not consider the
estimation of sparsity and set the sparsity as a fixed value. Thus, these algorithms are not
practical. In this work, taking the excellent autocorrelation characteristic of the designed
preamble signal into consideration, we should resolve the issue of how to estimate the
sparsity of a UWA channel, and make the OMP algorithm more practical.



J. Mar. Sci. Eng. 2024, 12, 338 7 of 21

3. Proposed Methods

In this section, we present our work to deal with the problems stated in Section 2.2.
First, a preamble signal is designed using superimposed LFM signals. Using the designed
preamble signal, a Doppler estimation and an enhanced OMP channel estimation algorithm
are presented.

3.1. Superimposed-LFM-Based Preamble Signal

If the transmitter only transmits one LFM signal, the receiver cannot estimate the
Doppler correctly, since the offset is unknown. In order to obtain the Doppler factor, two
LFM signals should be included in a data frame. Moreover, to achieve real-time Doppler
estimation while reducing the length of the preamble signal, a superimposed-LFM-based
preamble signal is designed. In addition, the designed preamble signal can also be used as
the training sequence for the channel estimation.

Figure 2 illustrates the structure of the communication frame which consists of a
designed preamble signal and the data signal. The designed superimposed-LFM-based
preamble signal is composed of a down-sweeping LFM signal and an up-sweeping LFM
signal, where LFM− and LFM+ denote down-sweeping and up-sweeping LFM signals, re-
spectively. Although the up-sweeping and down-sweeping LFM signals are superimposed
in the time domain, they can still be identified in the frequency domain. A guard interval is
added between the preamble signal and the data signal.
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The designed preamble signal, sP(t), can be denoted as

sP(t) =
sd(t) + su(t)

2
, 0 ≤ t ≤ TP, (15)

sd(t) = cos(2π fHt − πkt2), (16)

su(t) = cos(2π fLt + πkt2), (17)

k =
fH − fL

TP
, (18)

where sd(t) and su(t) are LFM− and LFM+, respectively; fL is the lower bound of the
frequency range; fH is the upper bound of the frequency range; and TP is the time duration
of the preamble signal.

3.2. The Real-Time Doppler Estimation Algorithm

Using the designed preamble signal, a real-time Doppler estimation algorithm is
proposed in this work.

Figure 3 illustrates the structure diagram of the proposed Doppler estimation method,
where t1 and t2 are the correlation peak positions of correlator 1 and correlator 2, respec-
tively; and t0 is the start position of the received preamble signal without the Doppler factor.
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As shown in Figure 3, two correlators are used to estimate the Doppler factor. In
this paper, we consider a realistic Doppler factor level (α < 0.01). Hence, for correlator 1,
according to (8), the time offset between the correlation peak position and the start position
of the received preamble signal, ∆t1, can be obtained as

∆t1 = t1 − t0 = −α( fL + fH)TP

2( fH − fL)
. (19)
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( fH − fL)(∆t2 − ∆t1)

( fH + fL)TP
=

( fH − fL)(t2 − t1)

( fH + fL)TP
. (21)

Furthermore, by substituting (21) into (19), the estimation of the start time of the
received signal can be calculated as

t̂0 = t1 +
α̂( fL + fH)TP

2( fH − fL)
. (22)

One finds from (22) that communication frame synchronization is realized.

3.3. The Enhanced OMP Channel Estimation Algorithm

In this work, a correlation-peak-search-based improved OMP (CPS-IOMP) algorithm
is proposed to estimate the channel using the designed preamble signal.

The block diagram of the proposed channel estimation algorithm, which consists of
the channel sparsity estimation module and the OMP module, is illustrated in Figure 4.
The input signal of the proposed channel estimation algorithm is the received preamble
signal after the Doppler compensation with the Doppler factor estimated in (21).
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The channel sparsity is estimated according to the excellent autocorrelation charac-
teristic of the designed preamble signal. In the proposed correlation-peak-search-based
channel sparsity estimation module, correlation processing is first performed between the
Doppler-compensated received preamble signal and the locally generated preamble signal.
And then, the correlation peaks are searched. These correlation peaks are mainly caused by
the multipath, and the positions of the correlation peaks correspond to the multipath delay.
Hence, the positions of the correlation peaks can be used to determine the channel sparsity.
The correlation peaks larger than the threshold η are selected.

Let the number of selected correlation peaks be L’. Obviously, L’ is much smaller
than L. The corresponding normalized delay of each correlation peak is denoted as ci,
i = 1, 2, . . ., L’. Hence, dictionary matrix A can be simplified as

Λ = [ac1 , ac2 , · · · , acL′ ] =


sP(0 − c1) sP(0 − c2) · · · sP(0 − cL′)
sP(1 − c1) sP(1 − c2) · · · sP(1 − cL′)

...
...

. . .
...

sP(N − 1 − c1) sP(N − 1 − c2) · · · sP(N − 1 − cL′)

, (23)

where ai is the (i + 1)th column of matrix A.
Since the simplified dictionary matrix eliminates some irrelevant paths, the delay

corresponding to each column of Λ no longer changes continuously. The jump at the delay
corresponding to the multipath is a stair-like change trend with the increase in the index,
as shown in Figure 5a. The number of jumps is the estimated channel sparsity. Owing to
the noise and large sidelobes in the correlation processing, the actual obtained jump at the
delay may be as illustrated in Figure 5b. Comparing Figure 5b with Figure 5a, we observe
that the overall trend of the change is basically consistent and the columns corresponding
to multipath delay are almost included, although more columns are selected in the actual
obtained result. Therefore, with an appropriate threshold, the channel sparsity can be
estimated and the simplified dictionary matrix can be constructed by filtering out the
columns corresponding to multipath delay.
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After obtaining the channel sparsity and the simplified dictionary matrix, the channel
state information is estimated with the OMP algorithm in the proposed CPS-IOMP algo-
rithm. The OMP algorithm is an iterative procedure for estimating the channel taps and its
coefficients sequentially. The number of iterations is set as the estimated channel sparsity.
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At each iteration, the column of the dictionary matrix which has the largest absolute
value of correlation with the residual is selected. In the proposed CPS-IOMP algorithm, the
index of the selected column of the simplified dictionary matrix can be written as

λs = argmax
i=c1,c2,...,cL′

|⟨ai, rs−1⟩|, (24)

where ⟨·⟩ denotes the inner product operation, |·| denotes the absolute value of a scalar, s is
the iteration time, rs−1 is the residual vector in the previous iteration, and the initialized
residual vector, r0, is yP.

Then, the index is added to the support set, I . That is,

I = I ∪ {λs}. (25)

Obviously, the initialized support set is blank.
According to the support set, the coefficients can be measured via the least-squares

(LS) method as
ĥs = Λ†[I ]yP, (26)

where (·)† denotes the Moore–Penrose pseudo-inversion operation and Λ[I] denotes the
submatrix of Λ with the column index belonging to set I .

Finally, the residual vector can be updated as

rs = yP − Λ[I ]ĥs. (27)

The procedure of the CPS-IOMP algorithm is summarized in Algorithm 1.

Algorithm 1: CPS-IOMP algorithm

Input: dictionary matrix, A; received preamble signal after Doppler compensation, yP;
threshold η.
Initialization: residual vector, r0 = yP; support set, I = Ø.
1: Perform the correlation processing between the received preamble signal after Doppler
compensation and the locally generated preamble signal.
2: Search for the correlation peaks with normalized amplitude larger than threshold η.
3: Estimate the channel sparsity k and construct the simplified dictionary matrix Λ.
4: for s = 1 to k do
5: Perform (24);
6: Perform (25);
7: Perform (26);
8: Perform (27);
9: end for
Output: ĥk.

For the CPS-IOMP algorithm, the threshold selected in the channel sparsity estimation
module impacts both the computational complexity and estimation accuracy. A smaller
threshold filters more correlation peaks, which results in more columns in the simplified
dictionary matrix and higher computational complexity. In addition, a smaller threshold
increases the estimated channel sparsity, which leads to more iterations in the CPS-IOMP
algorithm and increases the computational complexity. And an excess estimated sparsity
may potentially reduce performance. Conversely, a larger threshold filters fewer corre-
lation peaks, which leads to a lower estimated channel sparsity. When the estimated
channel sparsity is too small, both the computational complexity and the performance
of the proposed channel estimation algorithm reduce significantly. Hence, the threshold
should be selected to achieve a trade-off between computational complexity and estimation
performance. In the next section, we determine the selection of the threshold based on the
simulation results of the performance of the CPS-IOMP algorithm over different thresholds
and computational complexities.
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4. Numerical Results and Discussions

In this section, the proposed Doppler estimation algorithm and channel estimation
algorithm are validated using the superimposed-LFM-based preamble signal.

Figure 6 shows the designed superimposed-LFM-based preamble signal, where
Figure 6a,b are the waveform and the spectrogram, respectively. In the designed preamble
signal, fL = 23 kHz, fH = 27 kHz, and TP = 40 ms. Notably, these parameters are used in the
sea trial. The sampling frequency at the receiver, fs, is set as 128 kHz. From Figure 6, we
observe that the up-sweeping and down-sweeping LFM signals can still be identified in
the frequency domain, although they are superimposed in the time domain.
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4.1. Simulation Results

The Bellhop model is used to generate a UWA sparse multipath channel. The water
depth is set as 65 m, the sound speed is set as 1545 m/s, the depth of the transmitter is set
as 20 m, the depth of the receiver is set as 25 m, and the range of the transmitter–receiver is
1 km. Figure 7 demonstrates the CIR of the generated channel which consists of 10 paths,
the maximum multipath delay is about 26 ms, and the maximum attenuation relative to
the main path is about 13.2 dB.
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The root-mean-square error (RMSE) of the estimated Doppler factor is adopted to
evaluate the performance of the Doppler estimation algorithm. The RMSE is defined as

RMSE =

√
E(|α̂ − α|2), (28)

where E(·) denotes the mathematical expectation, α is the simulated Doppler factor, and
α̂ is the estimated Doppler factor. Thus, the smaller the RMSE of the estimated Doppler
factor, the better the performance of the Doppler estimation algorithm.
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First, we evaluate the performance of the proposed Doppler estimation algorithm.
For comparison, two existing Doppler estimation algorithms, namely the block Doppler
estimation algorithm proposed in [5] and the adaptive dual-stage algorithm proposed
in [12], are selected. The block estimation algorithm is a classic algorithm and widely used
in practical applications. The adaptive dual-stage algorithm is a state-of-the-art algorithm,
which is an improvement of the block estimation algorithm.

The performance of Doppler factor estimation is shown in Figure 8, where the simu-
lated Doppler factor is negative in Figure 8a and positive in Figure 8b. Each value of the
RMSE is averaged with 1000 Monte Carlo simulations. From Figure 8, we observe that
the performance of proposed the Doppler factor algorithm is better than that of the block
Doppler estimation algorithm. As the signal-to-noise ratio (SNR) is low, the performance
of the proposed Doppler factor algorithm improves significantly compared with the block
Doppler estimation algorithm. Compared with the adaptive dual-stage algorithm, the
estimation performance of the proposed algorithm is slightly worse, especially when the
SNR is high. However, the computational complexity of the adaptive dual-stage algorithm
is much higher than that of the proposed algorithm. Moreover, since one frame of the
signal needs to be stored in order to perform Doppler estimation in two existing Doppler
estimation algorithms, the estimation is not real-time. Therefore, the proposed Doppler
estimation algorithm has a good comprehensive performance in terms of a lower com-
putational complexity, a better estimation performance, and the possibility of real-time
estimation. It is more suitable for practical application.
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Moreover, the performance of the proposed Doppler estimation algorithm is stable
under different SNRs and Doppler factors, and the estimation error is less than 2 × 10−4.

The normalized mean square error (NMSE) of the estimated CIR is adopted to evaluate
the performance of the channel estimation algorithm. The NMSE is defined as

NMSE =
∥h − ĥ∥2

2

∥h∥2
2

, (29)

where ∥ · ∥2 denotes the L2 norm of a vector; h is the simulated CIR; and ĥ is the estimated
CIR. Thus, the smaller the NMSE of the estimated CIR, the better the performance of the
channel estimation algorithm.

Figure 9 shows the impact of the threshold on the performance of the proposed
channel estimation algorithm in terms of NMSE and estimated channel sparsity, where
the SNR is 5 dB. Each value of the NMSE and estimated channel sparsity is averaged
with 500 Monte Carlo simulations. From Figure 9, we observe that the estimated channel
sparsity decreases as the threshold increases. However, as the threshold increases, the
NMSE of the CPS-IOMP algorithm decreases and then increases. The NMSE of the CPS-
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IOMP algorithm reaches the minimum value as the estimated channel sparsity approaches
the actual value. Considering the trade-off between the computational complexity and the
channel estimation performance, the threshold for the channel sparsity estimation module
is set as 0.1. In subsequent simulations and sea trial data analysis, the threshold is set as 0.1.
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To verify the performance of the channel estimation method proposed in this paper,
we compared it to the OMP algorithm.

Figure 10 shows the performance of the channel estimation algorithm in terms of the
NMSE, where the CIR of the generated channel depicted in Figure 6 is adopted, and the
Doppler effect is not considered. Each value of the NMSE is averaged with 500 Monte
Carlo simulations. The CPU running time is also listed in Table 1, where the CPU is an
Intel i7-9750H.

From Figure 10, we observe that the performance of the proposed CPS-IOMP algo-
rithm in terms of the NMSE is similar to that of the OMP algorithm with known channel
sparsity. However, the proposed CPS-IOMP algorithm needs no prior knowledge on
channel sparsity.

From Table 1, we observe that the CPU running time of the proposed CPS-IOMP
algorithm is less than that of the OMP algorithm, although the channel sparsity estimation
module is needed in the proposed channel estimation algorithm. The reason for the
efficiency is that the proposed channel estimation algorithm only requires calculating
(26) for selected columns. Hence, the computational complexity of the proposed channel
estimation algorithm reduces significantly.
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Table 1. The performance of channel estimation method in terms of CPU running time.

SNR/dB OMP Algorithm CPS-IOMP Algorithm

0 0.505 s 0.261 s
5 0.490 s 0.282 s
10 0.497 s 0.273s
15 0.488 s 0.291 s
20 0.491 s 0.304 s
25 0.490 s 0.285 s
30 0.489 s 0.285 s

Furthermore, considering the implications of practical impairments such as carrier
frequency offset (CFO) and sampling frequency offset (SFO) caused by imperfect Doppler
compensation, we analyze their effect on the performance of the proposed channel es-
timation algorithm. Figure 11 shows the impact of the Doppler estimation error on the
performance of the proposed channel estimation algorithm in terms of NMSE. Each value
of the NMSE is averaged with 500 Monte Carlo simulations.
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From Figure 11, we observe that the performance of the proposed channel estimation
algorithm obviously deteriorates as the Doppler estimation error exists and the Doppler
factor cannot be fully compensated. The larger the Doppler estimation error, the more
severe the performance degradation will be. For example, as the Doppler estimation error
is 10−5, the performance still deteriorates significantly, which implies that the proposed
algorithm may be more suitable for scenarios without Doppler or with perfect Doppler
compensation. However, as shown in Figure 11, when the Doppler estimation error is 10−5,
the performance degradation of the proposed channel estimation algorithm is acceptable.
According to the results shown in Figure 8, we can see that when the SNR is greater than
0 dB, the error of the proposed Doppler estimation algorithm is around 10−6~10−5, which
indicates that the proposed algorithm can effectively improve system performance. The
corresponding simulation is conducted next.

To evaluate the performance of the proposed Doppler factor estimation algorithm
and CPS-IOMP algorithm in a UWA communication system, the communication frame
structure consists of the designed superimposed-LFM-based preamble signal illustrated in
Figure 6 and the data block with 1000 BPSK symbols at a baud symbol rate of 4000. The
modulation mode is BPSK, the carrier frequency is 25 kHz, and the bandwidth is 4 kHz.
The performance of the UWA communication system in terms of bit error rate (BER) is
shown in Figure 12, where the CIR of the generated channel depicted in Figure 6 is adopted,
and the Doppler factor is set as 0.004. Each value of BER is averaged with 500 Monte Carlo
simulations. From Figure 12, we observe that the BER of the UWA communication system
with Doppler compensation and channel equalization is obviously reduced.
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4.2. Sea Trial Data Analysis Results

To validate the proposed Doppler factor estimation algorithm, we analyzed the data
collected from a UWA mobile communication experiment conducted near the Ross Sea in
Antarctica on 25 December 2022. The transmitter was deployed on a moving boat drifting
with the ocean current and the depth of the transducer was about 12 m. The receipt was
deployed on the seabed at (163◦45.42′ E, 74◦56.347′ S), and the depth of the transducer was
about 130 m. In the sea trial, the communication frame structure, as illustrated in Figure 13,
was composed of two up-sweeping LFM signals and one down-sweeping LFM signal. The
parameters of LFM signals are consistent with those in the simulations.
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The proposed Doppler factor estimation algorithm can be indirectly validated by
modifying (20) using the second up-sweeping LFM signal and the third down-sweeping
LFM signal. As the time duration of the gap between LFM+ and LFM− is TGAP, (20) can be
modified as

∆t2 = t2 − t0 = −α( fL + fH)TP

2( fL − fH)
+

TGAP

1 + α
=

α( fL + fH)TP

2( fH − fL)
+

TGAP

1 + α
. (30)

Solving (19) and (30), the estimation of the Doppler factor can be obtained as

α̂ =
(t2 − t1 − a) +

√
(t2 − t1 − a)2 − 4a(TGAP − (t2 − t1))

2a
, (31)

where a = ( fL+ fH)TP
fH− fL

.
The moving speed of the boat is calculated using the GPS records, and the sound speed

in water is about 1440.5 m/s. The actual Doppler factor can be calculated. Figure 14 shows
the estimated Doppler factor, where the proposed Doppler factor estimation algorithm
and the block estimation algorithm are compared. In Figure 14, the blue circle denotes
the calculated actual Doppler factor, the red triangle denotes the estimated Doppler factor
with the proposed Doppler factor estimation algorithm, and the green star denotes the
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estimated Doppler factor with the block estimation algorithm. From Figure 14, we observe
that the proposed estimation algorithm can estimate the Doppler factor successfully and
outperforms the block estimation algorithm.
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To validate the proposed channel estimation algorithm, we analyzed the data collected
from a UWA communication experiment conducted in the East China Sea in September
2022. Two UWA communication nodes were deployed at (122◦59.025′ E, 30◦38.392′ N) and
(122◦58.283′ E, 30◦37.328′ N). The depth of two nodes was about 50 m. The communication
frame structure as illustrated in Figure 13 is also adopted.

Generally, the channel temporal coherence function is adopted to characterize the
channel variation over time. It is indicated in [32] that the channel temporal coherence can
be calculated by

p(τ) =
E[h∗(t)h(t + τ)]√

E
[
|h(t)|2

]
E
[
|h(t + τ)|2

] , (32)

where h(t) is the CIR at geotime t and h(t+τ) is the CIR with a lag time τ. Thus, the larger
the channel temporal coherence, the slower the channel variation.

By matched-filtering each received LFM signal with its corresponding transmitted
LFM signal, an estimate of the CIR is obtained for each LFM signal within a communication
frame. To calculate the temporal coherence, the CIRs estimated by the second LFM+ and the
third LFM− are used. The calculated temporal coherence of a sequence of communication
frames is shown in Figure 15. From Figure 15, we observe that the temporal coherence is
high (>0.86), which means that the channel almost does not vary during the time duration
of the second LFM+ and the third LFM−. Hence, the assumption that the channel does
not vary during the time duration of the second LFM+ and the third LFM− is justified. To
simulate the received signal of the designed superimposed-LFM-based preamble signal,
we superimposed the received second LFM+ and the received third LFM− in each com-
munication frame. The simulated received signal is used to validate the proposed channel
estimation algorithm.
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Since the actual CIR is unknown, the NMSE of channel estimation is re-defined as

NMSE =
∥yP − ŷP∥

2
2

∥yP∥
2
2

, (33)

where ŷP=sP⊗ĥk.
Figure 16 shows the performance of the channel estimation algorithm in terms of

NMSE in (33). The CPU running time is also listed in Table 2, where the CPU is an Intel
i7-9750H. The channel sparsity for the OMP algorithm is set as 5.
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From Figure 16, we observe that the performance of the proposed CPS-IOMP algorithm
in terms of NMSE is similar to that of the OMP algorithm.

Table 2. The comparison of CPU running time for different channel estimation algorithms.

No. of
Frames

OMP
Algorithm

CPS-IOMP
Algorithm

No. of
Frames

OMP
Algorithm

CPS-IOMP
Algorithm

1 38.445 ms 28.315 ms 10 38.427 ms 28.021 ms
2 38.420 ms 33.594 ms 11 38.246 ms 26.643 ms
3 38.646 ms 28.743 ms 12 38.444 ms 26.578 ms
4 38.566 ms 27.206 ms 13 38.385 ms 27.077 ms
5 38.417 ms 30.495 ms 14 38.570 ms 26.110 ms
6 38.445 ms 35.387 ms 15 38.322 ms 26.941 ms
7 38.402 ms 27.462 ms 16 38.180 ms 27.964 ms
8 38.568 ms 33.447 ms 17 38.385 ms 28.840 ms
9 38.358 ms 30.266 ms 18 38.691 ms 29.185 ms
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From Table 2, we observe that the CPU running time of the proposed CPS-IOMP
algorithm is less than that of the OMP algorithm. Since the fixed channel sparsity is
adopted in the OMP algorithm, the CPU running time of the OMP algorithm is constant
for different communication frames. However, the CPU running time of the proposed
CPS-IOMP algorithm varies across different communication frames. The reason for the
variation in CPU running time is that the number of iterations in the proposed CPS-IOMP
algorithm depends on the estimated channel sparsity. Owing to the variation in channel
sparsity, the CPU running time varies slightly across different communication frames. In
addition, the dimension of the simplified dictionary matrix constructed from different
communication frames is different, which also leads to the variation in CPU running time
across different communication frames. Furthermore, although it is assumed that the
channel does not vary during the time duration of the second LFM+ and the third LFM−

in each communication frame, the time interval between two communication frames is on
the order of seconds, and the channel may vary.

5. Conclusions

In this paper, a preamble signal, a superimposed-LFM-based preamble signal, was
designed for real-time Doppler estimation. Based on the designed preamble signal, a
Doppler factor estimation algorithm and an enhanced channel estimation algorithm were
proposed. In the proposed Doppler estimation algorithm, the relationship between the
Doppler factor and the peak position offset of the matched filter was utilized to estimate
the real-time Doppler factor. For the CPS-IOMP algorithm, the excellent autocorrelation
characteristic of the designed preamble signal was used to estimate the channel sparsity,
and a simplified dictionary matrix was constructed to reduce the computational complexity.
The CIR was estimated using the OMP algorithm with the simplified dictionary matrix. The
designed preamble signal, the proposed Doppler estimation algorithm, and the proposed
channel estimation algorithm were validated by simulations and sea experiments. Numeri-
cal results show that the proposed Doppler estimation algorithm achieves a more accurate
estimation performance. Furthermore, the proposed CPS-IOMP algorithm performs well
in terms of good channel estimation performance and less CPU running time.
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