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Abstract: There are many challenges in using side-scan sonar (SSS) images to detect objects. The
challenge of object detection and recognition in sonar data is greater than in optical images due
to the sparsity of detectable targets. The complexity of real-world underwater scanning presents
additional difficulties, as different angles produce sonar images of varying characteristics. This
heterogeneity makes it difficult for algorithms to accurately identify and detect sonar objects. To
solve these problems, this paper presents a novel method for sonar image target detection based on
a transformer and YOLOv7. Thus, two data augmentation techniques are introduced to improve
the performance of the detection system. The first technique applies stain-like noise to the training
optical image data to simulate the real sonar image environment. The second technique adds multiple
shadows to the optical image and 3D data targets to represent the direction of the target in the sonar
image. The proposed method is evaluated on a public sonar image dataset, and the experimental
results demonstrate that the proposed method outperforms the state-of-the-art methods in terms of
accuracy and speed. The experimental results show that our method achieves better precision.

Keywords: sonar image; transformer; stain-like noise; multiple shadows

1. Introduction

The advancement of sonar technology has yielded remarkable achievements in under-
water exploration [1] and target detection [2,3]. Compared with the limitations of optical
sensors in detecting targets, such as short detection distances and poor underwater visibil-
ity, SSS-based target detection methods have become increasingly popular and effective.
These methods [4–6] have proven to be more effective in terms of distance and visibility,
overcoming the limitations of traditional optical sensors. The lack of sonar sample data
and image quality remains a common problem in sonar target recognition. Researchers
have developed various approaches to address these challenges, such as utilizing deep
learning algorithms [7–10] to enhance the image quality of sonar data and applying transfer
learning [11,12], allowing for more robust detection and recognition results. These methods
have shown promising results in simulated underwater environments, but more research
is needed to validate their effectiveness in real-world scenarios or simulated environments.
However, the high cost associated with underwater experiments [13], including the deploy-
ment and recycling of underwater targets, the use of diverse sonar devices, and the search
for suitable experimental areas, has resulted in a lack of available samples. As a result, it
is challenging to obtain sufficient data to evaluate the performance of target recognition
algorithms in real-world scenarios.

Some researchers have employed deep convolutional neural networks (DCNNs) using
style transfer to simulate the environment [4,11,12,14]. This has highly improved the
performance of sonar image detection. Due to the complex underwater environment, some
key features will be lost in the simulated environment. Several experts in the field have
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utilized semantic segmentation to classify targets in sonar images [15–17]. However, most
of them have focused on image classification. Hence, this paper provides a comprehensive
approach that considers the complexities of the underwater environment and employs
feature enhancement techniques for accurate target detection. This approach is combined
with the semantic segmentation method in an optical image dataset to address the lack of
available samples and enable the evaluation of target recognition algorithms in real-world
scenarios. This makes up for the loss of some features in the simulation environment
despite the high cost associated with underwater experiments.

First, we used the semantic segmentation method [18,19] on optical images to ex-
tract the target. However, the limitation of optical single targets in images causes a low
performance in object detection. Therefore, we propose using shadow enhancement on
targets to solve the problem of sonar target features in the real environment to improve the
performance of sonar target detection. Furthermore, we added stain-like noise on targets to
simulate mud and sand obstruction and mutilated targets in the real environment. Finally,
considering the style difference between sonar images and optical images, we used style
transfer to enhance object features via frequency analysis in real sonar images.

The remainder of this paper is organized as follows: In Section 2, we provide an
overview of the existing methods and highlight their shortcomings. In Section 3, we present
our proposed methods, which combine data augmentation and simulation techniques.
These techniques are based on shadow enhancement and the addition of stain-like noise
to the data. Section 4 presents a comparison of our proposed methods with existing
approaches, along with the training results. Additionally, we provide an analysis of the
experiments we designed and conducted, along with a comparison of their results.

2. Related Works

Scholars have researched sonar synthetic image datasets [2,3] and zero-shot learning
methods [4,11,14,20] to augment samples to overcome the shortage of samples and simulate
sonar images. Pre-trained DCNNs and fine-tuning techniques are powerful methods for
sonar image detection [21,22]. William et al. [16] present an approach for merging SSS data
and bathymetry information to improve automatic shipwreck identification. The method
combines raw SSS images with a 2D relief map into a composite RGB image and uses a
supervised image segmentation approach to identify shipwrecks. Zhao et al. [4] utilized
a combination of 3D modeling, amplified data, equipment noise, and image mechanisms
to extract target features and simulate target damages and postures using a DCNN and a
fine-tuning style-transfer method. Their approach achieved a precision of 85.3% and a recall
of 94.5%. Li et al. [6] identified texture features as domain-specific features and proposed to
narrow the domain gap by removing these features. This method successfully transferred
knowledge from optical images to sonar image classification tasks. The approach shows
promise for improving the performance of sonar image classification tasks. Lee et al. [12]
employed StyleBankNet [23] to perform style transfer simulations on optical images of
the human body, which improved sonar object detection and achieved a precision of 86%.
The authors generated samples using CAD but noted that significant simulation work
was required to generate sufficient samples. This approach shows promise for enhancing
sonar object detection using simulated optical images. Song et al. [24] introduced an
effective sonar segmentation approach that leverages speckle noise analysis for pixel-wise
classification. This method involves a single-stream deep neural network (DNN) with
multiple side outputs to optimize edge segmentation. Huo et al. [25] utilized a transfer
learning method to leverage knowledge from the ImageNet dataset to classify underwater
targets in an SSS image dataset they built. They proposed using a semisynthetic data
generation method during the transfer process to produce sonar images that effectively
compensate for insufficient data. Ochal et al. [20] conducted a comparison of multiple
supervised and semi-supervised few-shot learning (FSL) methods using underwater optical
and SSS imagery. The results indicate that FSL methods have significant advantages over
simple transfer learning methods, such as fine-tuning a pre-trained model for underwater
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target classification. Yu et al. [9] proposed a novel method for underwater target recognition,
integrating a transformer module and YOLOv5. The method also incorporates an attention
mechanism to improve both accuracy and efficiency. Xu et al. [22] proposed an active
instance segmentation method combining a region-based convolution neural network (R-
CNN) and balanced sampling. The method has benefits when a limited number of labeled
samples are available, leading to better results for underwater shipwreck detection.

These enhancements make the methods well-suited for underwater environments
where target recognition is challenging. However, target features cannot be properly
expressed without considering the image environment (the state of the target, such as
target damage and corruption, target postures, etc.), and a simulated image cannot prop-
erly present sonar features. Many studies have focused on sample amplification and
image-processing mechanisms for underwater target recognition but have not sufficiently
considered the challenges posed by real-world underwater environments, such as mud and
sand obstruction, missing target parts, multiple target states, and shadows and reflections
in sonar data.

3. Our Methods

Our method is based on yolov7 and a transformer backbone model to address the
issue by enhancing multiple shadows on the target. The detection process in a DCNN
involves the relationship between the target feature A and the model feature T.

For the contributions of this study, we define three feature sets including optical target
image features, shadow enhancement features, and random stain-like noise features to
describe the feature mapping process. By adding random stain-like noise to the target
image, the optical image is simulated for a sediment-covered, mutilated target to improve
the uncertainty of target states. Moreover, an image-processing method based on the
existing style transfer method is proposed for data training to more closely represent the
real data and enhance the object features. From the perspective of feature matching, the
more features of the target A contained in model T, the higher the similarity.

3.1. Problem Definitions and Our Framework

A lack of samples is a common problem in target detection in sonar images, which
leads to low model performance. Many methods are applied to transfer optical data to sonar
data to improve target detection performance, but these methods do not fully consider the
underwater environment. Given this issue, the key to successful deep learning work is
preparing datasets with appropriate target features. In this section, we focus on our main
contributions to this field, which include extracting complex features from datasets and
utilizing zero-shot learning for target detection.

We define three types of features, D, S, and T, to describe the feature mapping process.
D(x,y) =

{(
xi, yj

)∣∣yj = {x1, x2, . . . , xn}, j = 1, 2, . . . , m
}

denotes the domain of the optical
target features. ym indicates the mth image feature. xn expresses the nth feature. S(x,y)
denotes the domain of the shadow enhancement features that extends from D. T(x,y)
denotes the domain of random stain-like noise to extend features S. The optical image

features of the target set D(x,y) are expressed as D(x,y) =


x11, x12, . . . , 0, . . . x1n
x21, x22, . . . , 0, . . . x2n

. . . . . .
xm1, xm2, . . . , 0, . . . xmn

. To

standardize the dimensions of all features, zero-padding is used to ensure that all images
have the same dimensions. The target is extracted from the background, so the background
is empty and presents as zero. The values (x11, x12, . . . , x1n) denote the features of the
original target. By augmenting the features D(x,y) with shadow features, the features S(x,y)
are obtained. Simultaneously, a simulation of the complex underwater environment is
performed with the addition of random stain-like noise using the method to obtain the
features T′(x,y). We define an equation to describe the generated training data on one target,
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which combines the features (by summing the features). The features can be expressed as
follows:

T(x,y) = D(x,y)
⊕

S(x,y)
⊕

T′(x,y) (1)

The detection process aims to map the relationships between the real sonar target
features A and features T(x,y) for sonar target detection. We consider three major aspects
in the dataset design: (1) defining the dataset and augmentation from the optical image
to extend multiple shadows on the same target; (2) transferring the optical image to a
sonar-style image; (3) and designing stain-like noise on the target to simulate mud and
sand obstruction.

The data processing to generate the training data in our experiments is shown in
Figure 1.
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Figure 1. Data processing to generate training data on one target.

The process in Figure 1 includes four parts: First, different optical image datasets
are integrated into target categories, such as airplanes, ships, cars, etc. Second, multiple
shadows are generated and the direction for simulating the SSS image targets on the dataset
is adjusted. Third, noise is generated on the targets to simulate covered and incomplete
targets, whereby sediment occlusion on the seabed is simulated by adding stain-like noise.
Fourth, yolov7 is used as the framework, and the transformer is used as the backbone
method for data training. The detection model is then used to detect target objects in the
sonar data.

3.2. Feature Enhancement and Augmentation Methods

The most existing methods focus on amplifying samples from an optical image dataset
with less consideration of the optical background, which can impact the detection perfor-
mance. The target shadow plays an important role in real sonar target image detection.
Examples of real sonar images are shown in Figure 2.
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The shadow between an underwater acoustics image and an optical image are illus-
trated in [26]. Observation geometry given by the range and elevation angle is important
for interpreting the highlight and shadow in an image. Examples of a shadow feature in
sonar and optical images are shown in Figure 3.
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As shown in Figure 3, the target shadow in a real SSS image is always on the left or
right side. The processes for a sonar shadow and an optical shadow are very similar [27].
The side-scan image formation process is briefly sketched in Figure 3a. The intensity of the
corresponding pixel of the side-scan image depends on the amount of energy scattered
back from the surface point. The traditional Lambertian model [28] permits us to derive
the returned intensity from the parameters defining the observed scene [29]. The point p
and intensity I can be expressed as follows:

I(p) = Kϕ(p)R(p)|cos(θ(p))|,
→
r = (x, 0, Z(x, y)),

→
N = (− ∂Z

∂x (x, y),− ∂Z
∂x (x, y), 1)

(2)

where ϕ represents the intensity of the illuminating sound wave at point p, R is the
reflectivity of the object, θ is the incidence angle of the wave front, and K ∈ [0, 1] is a
normalization constant. To obtain the maximum intensity, return Imax at any surface point,
K is set as 1, and the reflectivity and incident intensity values are both 1 for the optimal

surface orientation, with respect to the incident illumination.
→
N and

→
r are a coordinate

system relative to the sensor (Figure 3a). To simplify the process in our experiment, we
defined the seafloor as a flat surface, denoted as Csur f ace, with a constant value to express
the surface intensity. Under this assumption and the combination of expressions in (2), ∂Z

∂x
and ∂Z

∂y yield an expression that depends on Z when applying finite difference methods
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on the gradients. The intensity returned from an object point can be represented with the
following expression:

I(x, y) =
−Z+ x2

−Z ·(1+>( ∂yZ >)2)

√
x2+Z2·

√
1+(∂yZ)

2
+ x2

Z2 ·
(

1+(∂yZ)
2)2

,

I(x, y) = Csur f ace, (sur f ace intensity)

(3)

A shadow is a critical feature in deep learning detection work. The shadow of an object
has discrepancies due to the object’s posture and sonar position. We propose a method
that uses a large amount of optical data and 3D model data [30] to improve an object’s
features via shadow enhancement in the training data. First, we split the optical target
and background to reduce interference when the deep learning network extracts target
features. Second, we generate a target image with multiple shadow features via a 3D model
by adjusting the object and light position.

From the overall process of target extraction and shadow as shown generator in
Figure 1. The goal of a deep learning network is to extract object features. Since our
experiments were based on zero-shot learning, the backgrounds of the optical images lack
features from the sonar images. We adopted finetuning DeepLabV3 [31,32] as a semantic
segmentation method to extract target features from the optical image. The optical image
was segmented and processed to obtain an image containing only the target, thus improving
the model’s recognition rate. In addition, we adopted 3D data and employed the fine-tuning
exponential shadow maps (ESM) method [33–35], combining lighting and object position
techniques for shadow simulation. Figure 1a–d show the processes of segmentation and
shadow enhancement in our experiment.

The research on real sonar data showed that simulating the features of sonar im-
ages using two-dimensional image shadow simulation cannot fully simulate shadows.
A comparison between real sonar images and stylized 3D-generated images is shown in
Figure 4.
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In a two-dimensional image, we defined function f as the shadow enhancement
function. g(x) is the semantic segmentation function. x is the original optical image. A is
the enhanced features, which can be expressed as Z = f j

i (x, g(x)), i ∈ {0, 1, . . . , 360}, j ∈ N.

In function f j
i , i is shadow angle, and j is shadow width. Z is the entire enhanced features

from one original image.
The rotation matrix R(α, β, γ) = Rz(α)Ry(β)Rx(γ) is used to calculate the target with

its shadow in the image.

Rz(α) =

cosα −sinα 0
sinα cosα 0

0 0 1

, Ry(β) =

 cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ

, Rx(γ) =

1 0 0
0 cosγ −sinγ
0 sinγ cosγ1

.

In the matrix, Rz(α) represents the rotation of an object around the z-axis by α degrees.
Ry(β) and Rx(γ) represent the rotations of the y-axis and x-axis.



J. Mar. Sci. Eng. 2024, 12, 352 7 of 16

In the three-dimensional model, R′′ = R(α, β, γ). The transformation move matrix is

defined as T′′ =


1 0
0 1

0 ∆x
0 ∆y

0 0
0 0

1 ∆z
0 1

.

In the two-dimensional image, R’ = Rz(α). The transformation matrix is defined as

T′ =

1 0 ∆x
0 1 ∆y
0 0 1

.

The shadow calculation process can be expressed as follows:{ ..
A =

.
A(i,j)·R′·T′ + A(i,j), i f min

( .
A(i,j), A(i,j)

)
, (i, j) > 0

...
A = fCSM(O·R′′ ·T′′ )

(4)

where
..
A is the final image matrix with the shadow in the two-dimensional image. Where

A(i,j) is the target without the background and
.
A(i,j) denotes the target shadow generated

from A(i,j). (i, j) represents the coordinate positions.
...
A is the final image matrix with the

shadow in the three-dimensional model. O is the target matrix in the 3D model. Figure 5
displays the generated 3D data shadow compared with the real sonar data.
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Figure 6 displays the airplane sample data for the feature expansion of the target
image in Figure 1c, using shadow feature enhancement methods.
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The displacement generally depends on the center of the original image. We define a
10 pixel displacement in a (512, 512) image in the examples. The rotation angle is around the
image center as the axis, and the angle of the object’s shadow is determined by the object’s
orientation and simulated lighting. Figure 7 displays the sample data for the shadow
feature expansion of the 3D target using shadow feature enhancement methods.
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3.3. Stain-like Noise Method

Many scholars extract targets from optical images and simulate defects, which can
effectively replicate the defects in the targets. However, these defect simulation methods
are limited to the targets and do not adequately represent the surrounding environment
and shadows.

Optical and acoustic images of an aircraft target were derived from [36] to better
understand the real environment, as shown in Figure 9.

Many of the targets to be detected in actual sonar image applications are incomplete
or defective targets. The diagram in Figure 10 illustrates varying degrees of burial of
the targets by sediments, resulting in minimal obstruction, moderate obstruction, and
significant obstruction of the targets.
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Figure 10. Examples of varying degrees of burial of the targets by sediments. (a) Minimal obstruction
of airplane; (b) moderate obstruction of airplane; (c) significant obstruction of airplane; (d) minimal
obstruction of ship; (e) moderate obstruction of ship; (f) and significant obstruction of ship.

With the rapid development of DCNNs, object features can be easily extracted from
data. A DCNN network is capable of extracting object features even from zero-shot learning,
with minimal real-world conditions. This is because the training samples used for a DCNN
are almost perfect and may not accurately represent the complexities and variabilities
presented in real-world conditions. We propose a random stain-like noise method to
simulate the damage, occlusion, and other factors in real sonar imaging targets underwater,
which can effectively improve recognition efficiency. The proposed method was proven to
be effective in the experiments. The single process of generating data with stain-like noise
is shown in Figure 11.
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Our study compared the recognition performance for different types of noise, and
we found that random stain-like noise resulted in the highest performance, as depicted in
Figure 11. However, stain-like noise can lead to overfitting, which affects the recognition
accuracy. To address this, we finetuned the data and achieved a peak performance of 0.89
mean average precision (mAP) [37] when the noise occupied approximately 31% of the
target image in our experimental data.

Figure 12 compares the performance trends for the different noise types in the noise-
occupied area on the target. The noise-occupied area on the target ranged from 10% to 60%.
We found that the difference between a noise-occupied area of less than 10% and no noise
was minimal. The performance greatly decreased with a noise-occupied area of over 50%
due to overfitting.
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Figure 12. Performance trends for different noise types.

The process of stain-like noise is exhibited in Algorithm 1.

Algorithm 1: Process of stain noise

Input: Scale n is the number of stain points. θ is the area ratio.
C is a constant value which expresses the pixels of one stain point.
Steps: Directions of walk (up, down, right, left). Number of walks.
Output: The image with random stain points.
Initialize: Size of image (width, height). The maximum area proportion of stain points
In image. Calculate n by θ.
for i in scale(n) do

for step in walks do
if is over the maximum area proportion then

Return image
end
if is the direction being walked then

Update the direction
end
Update stain noise in image

end
end

An example with different parameters is shown in Figure 13.
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The simulation process for generating stain-like noise data can be expressed as the
following equation: 

g(x, y) = x
⊙(

C·
i<h,j<w

∑
i,j

y(i,j)·A(i,j)

)

A(i,j) =


0, . . . , 0
0, . . . , 0

. . . , ai,j , . . .
0, . . . , 0
0, . . . , 0


(5)

We use g(x, y) to express the generated stain-like points on the target. x is the original
image. C is a constant that expresses the pixels of one stain-like point. y is one stain-like
point, and (i, j) is its position. A(i,j) is the image matrix of generated stain-like points. Zeros
are used in A(i,j) to create an empty background for the stain-like image. h is the image
height. w is the image width.

4. Experiment and Analysis

In this section, we present a series of experiments to compare our proposed method
with the existing methods. The experiments were conducted on different datasets. We
report our method’s performance using several evaluation metrics commonly used in
the field.

In this study, we adopted precision, recall, and mAP to evaluate the model’s perfor-
mance. True positive (TP) means that the network detection is a target and is correct. False
positive (FP) means that if a sample does not belong to a class but is predicted to, it is
considered a false positive. False negative (FN) means that if a sample belongs to a class
but is predicted not to, it is considered a false negative.

Precision signifies the proportion of accurately predicted positive samples to the total
number of predicted positive samples:

Precision =
TP

TP + FP

Recall signifies the proportion of correctly predicted positive samples to the overall
number of positive samples:

Recall =
TP

TP + FN
With the results of our experiments, we believe that our method has the potential to be

used in real-world applications and can contribute to the advancement of the underwater
detection field.
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Our model can be fitted to customized target sizes, which can be defined in the training
data. We adjusted the target size to (128,128) in the training data. Figure 14 shows examples
of the detection of different, real-sonar targets selected from our test results.
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Figure 14. Detection of different real sonar targets.

In our experiments, we extracted target features from our trained model with different
types of images with the t-distributed stochastic neighbor embedding (t-SNE) method [38]
to better understand the impact of enhancement features on the target in an optical image,
as shown in Figure 15.
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Figure 15. Features extracted on different targets with t-SNE distribution.

Based on the results, by enhancing the optical image targets, the enhanced target
images have similar distributions to the real sonar targets.

4.1. Experimental Data

To increase the diversity of the target forms, we trained our model on a portion of
the VOC2012 dataset, the human pose and NWPU VHR-10 [39,40] image dataset, and the
pascal and human pose 3D dataset [41]. We conducted a comparative experiment on the
different datasets under the same batch, verifying 29 real aircraft wreck sonar images, five
real body sonar images, and 43 real shipwreck sonar images that are publicly available on
the internet. The results show that our model is effective in detecting both aircraft wrecks
and shipwrecks in sonar images and can be used for practical applications in underwater
target recognition. We used three types of targets with shadow enhancement and stain-like
noise in our experiments, including an airplane, person, ship, and others. The enhanced
training dataset and test data is shown in Table 1.

Table 1. Training and test data.

Class Training Data
(Optical Image and 3D-Model)

Test Data
(Real Sonar Image)

Airplane 3648 29

Person 3180 5

Ship 3608 43

Others 2800 9
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Table 2 compares the performance of our method with that of state-of-the-art methods.

Table 2. Comparison with existing methods’ performances.

Model Precision Recall mAP
(IOU = 0.5)

StyleBank + fastrcnn [12] 0.860 0.705 0.786

Whitening and coloring transform [14] 0.875 0.836 0.75

Improved style transfer + yolov5 [4] 0.853 0.945 0.876

Yolov5 + style transfer + regular-shaped
noise [11] 0.899 0.861 0.865

Our method:
Yolov7 (transformer backbone) +
stain-shaped noise

0.903 0.857 0.891

In the comparison table, the precision with our method is increased by 0.004 compared
with the existing methods’ highest precision. Our method’s recall is decreased by 0.088
compared with the existing methods’ top recall, and its mAP is increased by 0.015 compared
with the existing top mAP.

4.2. Experiment with Different Noise Types

We employed the Yolov7 framework–transformer backbone model on different types
of noise datasets to investigate the performance of each noise type, including Gaussian, salt
and pepper, regular shapes, stain-like shapes, and no noise. Examples of the noise types
are shown in Figure 16.
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Table 3 presents the performances of the different types of noise in the Yolov7 framework.

Table 3. Comparison between performances of different noise types.

Noise Type No Noise Gaussian Salt and
Pepper

Regular
Shape

Stain-like
Shape

mAP 0.739 0.803 0.806 0.816 0.824

Our analysis of the experimental results reveals that the highest mAP achieved for the
recognition of stain-like noise was 0.824.

4.3. Experiment with Different Models

We conducted experiments using different models on the same dataset with shadow
enhancement and random stain-like noise to further verify the detection performance. The
comparison is shown in Table 4. Our experiments reveal that the combination of the two
models exhibits better detection performance. The results show that the Yolov7 framework–
transformer backbone model has significant potential to enhance object detection accuracy
in various real-world applications.
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Table 4. Comparison of different models’ performances.

Model Yolov5 Yolov7 Yolov5
(Transformer Backbone)

Yolov7
(Transformer Backbone)

mAP 0.742 0.815 0.843 0.891

The results show that the Yolov7 framework–transformer backbone model achieved the
highest recognition mAP of 0.891. We obtained the best performance in all model comparison
experiments using stain-like shapes and shadow enhancement as the training dataset.

4.4. Experiment on Shadow Enhancement

To verify whether the target shadow features increased the detection performance,
we conducted an experiment using the Yolov7 framework to compare two datasets: one
with shadow enhancement features and another without. The results of the comparison are
presented in Table 5.

Table 5. Comparison of performance with and without shadow enhancement.

Data No Shadow Enhancement Shadow Enhancement

mAP 0.763 0.806

Our experimental results demonstrate that shadow enhancement is an effective data
augmentation technique for improving the performance of sonar target detection models.
Using simulation methods based on shadow enhancement can improve the model’s ability
to generalize real-world scenarios, resulting in a higher recognition mAP of up to 0.806. It
should be noted that the detection result uses the model without real data in the training
phase (only enhanced optical image and 3D-models are in the training dataset).

5. Conclusions

In this paper, we applied a transformer as the backbone model of Yolov7 to improve
the underwater detection performance, despite a lack of training data. We addressed the
design considerations for complex underwater scenarios, the limitations of lost features
with style transfer, and targets covered by mud and sand. Hence, we proposed a method
that merges stain-like noise on a simulated target to overcome the constraints of the real
environment. Furthermore, we removed the background from optical target images to focus
the training model on target features and reduce useless information. Additionally, we
used shadow enhancements on the targets in two-dimensional images and a CSM shadow
generator on a 3D model. The method addressed the key features of the target shadows,
which would otherwise be missing when directly using optical object style transfer. Using
comparison experiments, we demonstrated that our proposed method could achieve a
better target detection performance than other methods that do not include shape noise
fusion and key feature enhancement in the training data.

Future research could, for instance, investigate the relationship between the percentage
of noise occupying the target and the dataset size, target number, and target categories.
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