Astronomical Time Scale of the Late Pleistocene in the Northern South China Sea Based on Carbonate Deposition Record
Abstract
:1. Introduction
2. Regional Setting
3. Materials and Methods
3.1. Core Description
3.2. Analysis of Carbonate (%) Content
3.3. Time Series Analysis
4. Results and Analyses
4.1. Carbonate Stratigraphy Comparison
Core | Latitude (N) | Longitude (E) | Water Depth (m) | References |
---|---|---|---|---|
SO49-37KL | 17°49′2.15″ | 112°47′5.63″ | 2004 | [58] |
SO50-29KL | 18°26′4.80″ | 115°39′13.20″ | 3766 | [58] |
83PC | 17°39′31.32″ | 112°32′37.32″ | 1917 | [93] |
SO50-37KL | 18°54′0″ | 115°48′0″ | 2695 | [94] |
S08-57 | 10°37′1.48″ | 113°42′39.99″ | 3400 | [90] |
V36-3 | 19°0′30″ | 116°5′36″ | 2809 | [58] |
V36-6 | 19°46′30.00″ | 115°48′30″ | 1597 | [58] |
MD01-2393 | 10°30′ | 110°2′60″ | 1230 | [95] |
MD972142 | 12°42′ | 119°28′ | 1557 | [96] |
ODP1144 | 20°03′ | 117°25′ | 2036 | [70] |
ODP1143 | 09°22′ | 113°71′ | 2772 | [70] |
ODP1148 | 18°50′ | 116°34′ | 3297 | [70] |
SO17956 | 13°51′ | 112°35′ | 3387 | [70] |
TP86 | 9°23′24″ | 115°40′12″ | 1722 | [97] |
HYD235 | 12°24′36″ | 118°21′ | 2695 | [97] |
ZJ83 | 15°46′48″ | 112°32′24″ | 1511 | [97] |
111PC | 18°10′12″ | 112°1′12″ | 2253 | [97] |
ZSQD6 | 18°30′ | 114°10′48″ | 3020 | [97] |
ZSQD289 | 19°52′12″ | 119°52′12″ | 3605 | [97] |
SCS-15A | 10°25′ | 114°14′ | 1812 | [60] |
SO49-14KL | 18°18′ | 114°24′ | 3624 | [60] |
17957 | 10°54′ | 115°18′ | 2195 | [60] |
GIK17937-2 | 19.50° | 117.67° | 3428 | [98] |
ODP1145 | 19.58° | 117.63° | 3175 | [99,100] |
191PC | 19.05° | 116.22° | 2510 | [101] |
MD05-2904 | 19.46° | 116.25° | 2066 | [102,103] |
MD05-2903 | 19.46° | 116.25° | 2047 | [104] |
MD05-2905 | 20°08.2′ | 117°21.6′ | 1647 | [105] |
ZHS176 | 20°00.0′ | 115°33.3′ | 1383 | [106] |
17940 | 20°07.0′ | 117°23.0′ | 1727 | [107] |
MD972142 | 12°41.1′ | 119°27.9′ | 1557 | [60] |
MD052901 | 14°22.5′ | 110°44.60′ | 1454 | [108] |
ODP1144 | 20°03′ | 117°25′ | 2036 | [70] |
MD01-2393 | 10°30′ | 110°2′60″ | 1230 | [95] |
SCS1 | 18°30′22.56″ | 116°16′5.28″ | 3770 | This study |
4.2. Astronomical Calibration of the Time Scale
4.2.1. Initial Age Model and Spectral Analysis
4.2.2. Astronomical Calibration
5. Discussion
5.1. Low-Carbonate Event
5.2. Effects of Precessional Forcing on Carbonate Content Variations in the Low-Latitude Sea
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, J.; Wang, P.X.; Cheng, X.R.; Li, Q.Y. Astronomically tuned Plio–Pleistocene benthic δ18O record from South China Sea and Atlantic–Pacific comparison. Earth Planet. Sci. Lett. 2002, 203, 1015–1029. [Google Scholar] [CrossRef]
- Tian, J.; Zhao, Q.H.; Wang, P.X.; Li, Q.Y.; Cheng, X.R. Astronomically modulated Neogene sediment records from the South China Sea. Paleoceanography 2008, 23, PA3210. [Google Scholar] [CrossRef]
- Wang, L.; Li, G.; Liu, J.; Mei, X.; Zhang, Y. Astronomical dating of Quaternary strata in the South Yellow Sea and its indication for paleoclimatic evolution. Mar. Geol. 2021, 439, 106557. [Google Scholar] [CrossRef]
- Nie, Y.; Wu, H.; Satolli, S.; Ferré, E.C.; Shi, M.; Fang, Q.; Xu, Y.; Zhang, S.; Li, H.; Yang, T. Late Miocene to present paleoclimatic and paleoenvironmental evolution of the South China Sea recorded in the Magneto-Cyclostratigraphy of IODP Site U1505. Paleoceanogr. Paleoclimatol. 2023, 38, e2022PA004547. [Google Scholar] [CrossRef]
- Wang, P.X.; Li, Q.Y.; Tian, J. Pleistocene paleoceanography of the South China Sea: Progress over the past 20 years. Mar. Geol. 2014, 352, 381–396. [Google Scholar] [CrossRef]
- Tian, J.; Wang, P.; Chen, R.; Cheng, X. Quaternary upper ocean thermal gradient variations in the South China Sea: Implications for east Asian monsoon climate. Paleoceanography 2005, 20, PA4007. [Google Scholar] [CrossRef]
- Liu, Z.; Alain, T.; Clemens, S.C.; Wang, P. Quaternary clay mineralogy in the northern South China Sea (ODP Site 1146). Sci. China Ser. D Earth Sci. 2003, 46, 1223–1235. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, S.Y.; Huang, X.T.; Dou, Y.G.; Li, F.L.; Xu, X.N.; Hao, Q.; Gao, J.H. Sea level change and Kuroshio intrusion dominated Taiwan sediment source-to-sink processes in the northeastern South China Sea over the past 244 kyrs. Quat. Sci. Rev. 2022, 287, 107558. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Yu, J.; Xu, D.; Sun, C. Kuroshio intrusion into the South China Sea with an anticyclonic eddy: Evidence from underwater glider observation. J. Oceanol. Limnol. 2019, 37, 1469–1480. [Google Scholar] [CrossRef]
- Hu, D.; Wu, L.; Cai, W.; Gupta, A.S.; Ganachaud, A.; Qiu, B.; Gordon, A.L.; Lin, X.; Chen, Z.; Hu, S.; et al. Pacific western boundary currents and their roles in climate. Nature 2015, 522, 299–308. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, C.-Y.; Wang, C.-C.; Wei, G. A millennial-scale sea-surface temperature record from the South China Sea (8° N) over the last 150 kyr: Monsoon and sea-level influence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 236, 39–55. [Google Scholar] [CrossRef]
- Chen, L.; Chen, L.; Yin, Z.X.; Guan, Y.L.; Zhang, Y.Z.; Li, G.S.; Jiang, Z.X. Magnetic characteristics of sediments from the central basin of the South China Sea since the late Pleistocene: Implications for sediment provenance and evolution of the East Asian monsoon. Chin. J. Geophys. 2023, 66, 3557–3575, (In Chinese with English Abstract). [Google Scholar]
- Liu, Z.F.; Zhao, Y.L.; Colin, C.; Stattegger, K.; Wiesner, M.G.; Huh, C.A.; Zhang, Y.W.; Li, X.J.; Sompongchaiyakul, P.; You, C.F.; et al. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Sci. Rev. 2016, 153, 238–273. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Mei, X.; Zhang, F.; Xu, J.; Liu, C.; Wei, C.; Liu, Q. A review of current and emerging approaches for Quaternary marine sediment dating. Sci. Total Environ. 2021, 780, 146522. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Song, Y.; Zhan, W.; Tian, R.; Wang, Z.; Xu, X.; Luo, L.; Abbas, M.; Lai, Z. Late Pleistocene to Holocene sedimentary history in the Pearl River Delta revealed by OSL and radiocarbon dating. Catena 2023, 224, 106972. [Google Scholar] [CrossRef]
- Zhong, J.; Ling, K.; Yang, M.; Shen, Q.; Abbas, M.; Lai, Z. Radiocarbon and OSL dating on cores from the Chaoshan delta in the coastal South China Sea. Front. Mar. Sci. 2022, 9, 1030841. [Google Scholar] [CrossRef]
- Zhao, H.; Lu, Y.; Wang, C.; Mao, H.; Ji, H. A review of OSL dating for water-laid deposits: Progress and prospect. Nucl. Technol. 2011, 34, 82–86. [Google Scholar]
- Shen, X.; Hu, B.; Yan, H.; Dodson, J.; Zhao, J.; Li, J.; Ding, X.; Li, Q.; Wang, X.; Xu, F. Reconstruction of Kuroshio intrusion into the South China Sea over the last 40 kyr. Quat. Sci. Rev. 2022, 290, 107622. [Google Scholar] [CrossRef]
- Li, M.K.; Ouyang, T.P.; Tian, C.J.; Zhu, Z.Y.; Peng, S.S.; Tang, Z.H.; Qiu, Y.; Zhong, H.X.; Peng, X.C. Sedimentary responses to the East Asian monsoon and sea level variations recorded in the northern South China Sea over the past 36 kyr. J. Asian Earth Sci. 2019, 171, 213–224. [Google Scholar] [CrossRef]
- Li, M.K.; Ouyang, T.P.; Zhu, Z.Y.; Tian, C.J.; Peng, S.S.; Zhong, H.X.; Peng, X.C.; Qiu, Y. Reconstruction of chemical weathering intensity and Asian summer monsoon evolution in the Red River basin over the past 36 kyr. Paleoceanogr. Paleoclimatol. 2022, 37, e2021PA004397. [Google Scholar] [CrossRef]
- Xu, F.J.; Hu, B.Q.; Zhao, J.T.; Liu, X.T.; Xu, K.H.; Xiong, Z.F.; Wang, F.F.; Ding, X.; Li, Q.; Guo, J.W. Provenance and weathering of sediments in the deep basin of the northern South China Sea during the last 38 kyr. Mar. Geol. 2021, 440, 106602. [Google Scholar] [CrossRef]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef]
- Broecker, W.; Barker, S.; Clark, E.; Hajdas, I.; Bonani, G. Anomalous radiocarbon ages for foraminifera shells. Paleoceanography 2006, 21, PA2008. [Google Scholar] [CrossRef]
- Bard, E.; Arnold, M.; Duprat, J.; Moyes, J.; Duplessy, J.C. Reconstruction of the last deglaciation: Deconvolved records of δ18O profiles, micropaleontological variations and accelerator mass spectrometric14C dating. Clim. Dyn. 1987, 1, 101–112. [Google Scholar] [CrossRef]
- Barker, S.; Broecker, W.; Clark, E.; Hajdas, I. Radiocarbon age offsets of foraminifera resulting from differential dissolution and fragmentation within the sedimentary bioturbated zone. Paleoceanography 2007, 22, PA2205. [Google Scholar] [CrossRef]
- Mekik, F. Radiocarbon dating of planktonic foraminifer shells: A cautionary tale. Paleoceanography 2014, 29, 13–29. [Google Scholar] [CrossRef]
- Wycech, J.; Kelly, D.C.; Marcott, S. Effects of seafloor diagenesis on planktic foraminiferal radiocarbon ages. Geology 2016, 44, 551–554. [Google Scholar] [CrossRef]
- Missiaen, L.; Waelbroeck, C.; Pichat, S.; Jaccard, S.L.; Eynaud, F.; Greenop, R.; Burke, A. Improving North Atlantic marine core chronologies using 230Th normalization. Paleoceanogr. Paleoclimatol. 2019, 34, 1057–1073. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, PA1003. [Google Scholar]
- Geibert, W.; Stimac, I.; Rutgers van der Loeff, M.M.; Kuhn, G. Dating deep-sea sediments with 230Th excess using a constant rate of supply model. Paleoceanogr. Paleoclimatol. 2019, 34, 1895–1912. [Google Scholar] [CrossRef]
- Wu, H.; Shi, M.; Zhao, X.; Huang, B.; Zhang, S.; Li, H.; Yang, T.; Lin, C. Magnetostratigraphy of ODP Site 1143 in the South China Sea since the Early Pliocene. Mar. Geol. 2017, 394, 133–142. [Google Scholar] [CrossRef]
- Yang, X.Q.; Friedrich, H.; Wu, N.Y.; Yang, J.; Su, Z.H. Geomagnetic paleointensity dating of South China Sea sediments for the last 130 kyr. Earth Planet. Sci. Lett. 2009, 284, 258–266. [Google Scholar]
- Pillans, B.; Gibbard, P. Chapter 30—The Quaternary Period. In The Geologic Time Scale; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Boston, MA, USA, 2012; pp. 979–1010. [Google Scholar]
- Sakuramoto, Y.; Yamazaki, T.; Kimoto, K.; Miyairi, Y.; Kuroda, J.; Yokoyama, Y.; Matsuzaki, H. A geomagnetic paleointensity record of 0.6 to 3.2 Ma from sediments in the western equatorial Pacific and remanent magnetization lock-in depth. J. Geophys. Res. Solid Earth 2017, 122, 7525–7543. [Google Scholar] [CrossRef]
- Simon, Q.; St-Onge, G.; Hillaire-Marcel, C. Late Quaternary chronostratigraphic framework of deep Baffin Bay glaciomarine sediments from high-resolution paleomagnetic data. Geochem. Geophys. Geosyst. 2012, 13, Q0AO03. [Google Scholar] [CrossRef]
- Jin, H.; Wan, S.; Clift, P.D.; Liu, C.; Huang, J.; Jiang, S.; Li, M.; Qin, L.; Shi, X.; Li, A. Birth of the Pearl River at 30 Ma: Evidence from sedimentary records in the northern South China Sea. Earth Planet. Sci. Lett. 2022, 600, 117872. [Google Scholar] [CrossRef]
- Yu, S.; Huang, C.; Zhang, R.; Wang, Z.; Ogg, J.; Kemp, D.B. Astronomical time scale for the lower Doushantuo Formation of early Ediacaran, South China. Sci. Bull. 2018, 63, 1485–1494. [Google Scholar]
- Huang, H.; Gao, Y.; Ma, C.; Jones, M.; Zeeden, C.; Ibarra, D.; Wu, H.; Wang, C. Organic carbon burial is paced by a ~173-ka obliquity cycle in the middle to high latitudes. Sci. Adv. 2021, 7, 9489–9498. [Google Scholar] [CrossRef]
- Xu, K.; De Vleeschouwer, D.; Vahlenkamp, M.; Yang, R.; Chen, H. Reconstructing eocene eastern Indian Ocean dynamics using ocean-drilling stratigraphic records. Paleoceanogr. Paleoclimatology 2021, 36, e2020PA004116. [Google Scholar] [CrossRef]
- Chen, G.; Gang, W.; Tang, H.; Gao, G.; Wang, N.; Liu, L.; Yang, S.; Wang, Y. Astronomical cycles and variations in sediment accumulation rate of the terrestrial lower Cretaceous Xiagou Formation from the Jiuquan Basin, NW China. Cretac. Res. 2020, 109, 104156. [Google Scholar] [CrossRef]
- Sun, Y.; Clemens, S.C.; An, Z.; Yu, Z. Astronomical timescale and palaeoclimatic implication of stacked 3.6 Myr monsoon records from the Chinese Loess Plateau. Quat. Sci. Rev. 2006, 25, 33–48. [Google Scholar] [CrossRef]
- Milankovitch, M. Théorie Mathématique des Phénomènes Thermiques Produits Par la Radiation Solaire; Gauthier-Villars et Cie: Paris, France, 1920. [Google Scholar]
- Milankovitch, M.K. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. R. Serbian Acad. Spec. Publ. 1941, 133, 1–633. [Google Scholar]
- Hays, J.D.; Imbrie, J.; Shackleton, N.J. Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science 1976, 194, 1121–1132. [Google Scholar] [CrossRef]
- Yu, Z.W.; Ding, Z.L. An automatic orbital tuning method for paleoclimate records. Geophys. Res. Lett. 1998, 25, 4525–4528. [Google Scholar] [CrossRef]
- Zeeden, C.; Meyers, S.R.; Hilgen, F.J.; Lourens, L.J.; Laskar, J. Time scale evaluation and the quantification of obliquity forcing. Quat. Sci. Rev. 2019, 209, 100–113. [Google Scholar] [CrossRef]
- Ao, H.; Dekkers, M.J.; Qin, L.; Xiao, G.Q. An updated astronomical timescale for the Plio-Pleistocene deposits from South China Sea and new insights into Asian monsoon evolution. Quat. Sci. Rev. 2011, 30, 1560–1575. [Google Scholar] [CrossRef]
- Meyers, S.R. Cyclostratigraphy and the problem of astrochronologic testing. Earth-Sci. Rev. 2019, 190, 190–223. [Google Scholar] [CrossRef]
- Shackleton, N.J.; Berger, A.; Peltier, W.R. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Earth Environ. Sci. Trans. R. Soc. Edinb. 1990, 81, 251–261. [Google Scholar] [CrossRef]
- Imbrie, J.; Hays, J.; Martinson, D.; McIntyre, A.; Mix, A.; Morley, J.; Pisias, N.; Prell, W.; Shackleton, N. The Orbital Theory of Pleistocene Climate: Support Frim a Revised Chronology of the Marine δ18O Record; Reidel Publishing Company: Dordrecht, The Netherlands, 1984; Volume 126, pp. 269–305. [Google Scholar]
- Zhang, Y.; Yi, L.; Ogg, J.G. Pliocene-Pleistocene magneto-cyclostratigraphy of IODP Site U1499 and implications for climate-driven sedimentation in the northern South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 527, 118–132. [Google Scholar] [CrossRef]
- Grützner, J.; Giosan, L.; Franz, S.O.; Tiedemann, R.; Cortijo, E.; Chaisson, W.P.; Flood, R.D.; Hagen, S.; Keigwin, L.D.; Poli, S.; et al. Astronomical age models for Pleistocene drift sediments from the western North Atlantic (ODP Sites 1055–1063). Mar. Geol. 2002, 189, 5–23. [Google Scholar] [CrossRef]
- Feng, X.G.; Jiang, F.Q.; Zhang, Z.H.; Xiong, Z.F.; Zhong, Y.; Dong, J.; Chen, T.Y.; Li, A.C.; Zou, X.Q.; Shi, X.F. Long eccentricity forcing Asian dust input into the northwestern Pacific during the early Pleistocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 596, 110963. [Google Scholar] [CrossRef]
- Beddow, H.M.; Liebrand, D.; Wilson, D.S.; Hilgen, F.J.; Sluijs, A.; Wade, B.S.; Lourens, L.J. Astronomical tunings of the Oligocene–Miocene transition from Pacific Ocean Site U1334 and implications for the carbon cycle. Clim. Past 2018, 14, 255–270. [Google Scholar] [CrossRef]
- Wehausen, R.; Brumsack, H.J. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments. Earth Planet. Sci. Lett. 2002, 201, 621–636. [Google Scholar] [CrossRef]
- Liebrand, D.; Beddow, H.M.; Lourens, L.J.; Pälike, H.; Raffi, I.; Bohaty, S.M.; Hilgen, F.J.; Saes, M.J.M.; Wilson, P.A.; van Dijk, A.E.; et al. Cyclostratigraphy and eccentricity tuning of the early Oligocene through early Miocene (30.1–17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records from Walvis Ridge Site 1264. Earth Planet. Sci. Lett. 2016, 450, 392–405. [Google Scholar] [CrossRef]
- Hilgen, F.; Zeeden, C.; Laskar, J. Paleoclimate records reveal elusive ~200-kyr eccentricity cycle for the first time. Glob. Planet. Chang. 2020, 194, 103296. [Google Scholar] [CrossRef]
- Qian, J.X. Paleoceanography of the South China Sea since the Late Quaternary; Science Press: Beijing, China, 1999; p. 167. [Google Scholar]
- Farrell, J.W.; Prell, W.L. Climatic change and CaCO3 preservation: An 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography 1989, 4, 447–466. [Google Scholar] [CrossRef]
- Wang, P.X.; Wang, L.J.; Bian, Y.H.; Jian, Z.M. Late Quaternary paleoceanography of the South China Sea: Surface circulation and carbonate cycles. Mar. Geol. 1995, 127, 145–165. [Google Scholar] [CrossRef]
- Huang, C.Y.; Wang, C.C.; Zhao, M.X. High-resolution carbonate stratigraphy of IMAGES core MD972151 from South China Sea. Terr. Atmos. Ocean. Sci. 1999, 10, 225–238. [Google Scholar] [CrossRef]
- Huang, E.Q.; Tian, J.; Qiao, P.J.; Wan, S.; Xie, X.; Yang, W.G. Early interglacial carbonate-dilution events in the South China Sea: Implications for strengthened typhoon activities over subtropical East Asia. Quat. Sci. Rev. 2015, 125, 61–77. [Google Scholar] [CrossRef]
- Thunell, R.C.; Qingmin, M.; Calvert, S.E.; Pedersen, T.F. Glacial-Holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2. Paleoceanography 1992, 7, 143–162. [Google Scholar] [CrossRef]
- Prell, W.L.; Kutzbach, J.E. Monsoon variability over the past 150,000 years. J. Geophys. Res. Atmos. 1987, 92, 8411–8425. [Google Scholar] [CrossRef]
- Berger, A.; Loutre, M.F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 1991, 10, 297–317. [Google Scholar] [CrossRef]
- Yu, P.S.; Huang, C.C.; Chin, Y.; Mii, H.S.; Chen, M.T. Late Quaternary East Asian Monsoon variability in the South China Sea: Evidence from planktonic foraminifera faunal and hydrographic gradient records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 236, 74–90. [Google Scholar] [CrossRef]
- Xie, X.; Liu, X.; Chen, G.; Korty, R.L. A transient modeling study of the latitude dependence of East Asian winter monsoon variations on orbital timescales. Geophys. Res. Lett. 2019, 46, 7565–7573. [Google Scholar] [CrossRef]
- Huang, E.; Wang, S.; Wei, S.; Yuan, Z.; Tian, J. Precession control of interglacial winter monsoon intensity over tropical East Asia. Glob. Planet. Chang. 2023, 229, 104247. [Google Scholar] [CrossRef]
- Liu, X.; Shi, Z. Effect of precession on the Asian summer monsoon evolution: A systematic review. Chin. Sci. Bull. 2009, 54, 3720–3730. [Google Scholar] [CrossRef]
- Wang, P.; Li, Q. The South China Sea: Paleoceanography and Sedimentology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 13. [Google Scholar]
- Chu, P.C.; Wang, G.H. Seasonal Variability of Thermohaline Front in the Central South China Sea. J. Oceanogr. 2003, 59, 65–78. [Google Scholar] [CrossRef]
- Fang, G.H.; Fang, W.D.; Fang, Y.; Wang, K. A survey of studies on the South China Sea upper ocean circulation. Acta Oceanogr. Taiwanica 1998, 37, 1–16. [Google Scholar]
- Yuan, D.L.; Han, W.Q.; Hu, D.X. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J. Geophys. Res. Ocean. 2006, 111, C11007. [Google Scholar] [CrossRef]
- Qu, T.D.; Girton, J.B.; Whitehead, J.A. Deepwater overflow through Luzon Strait. J. Geophys. Res. Ocean. 2006, 111, C01002. [Google Scholar] [CrossRef]
- Webster, P.J. The role of hydrological processes in ocean-atmosphere interactions. Rev. Geophys. 1994, 32, 427–476. [Google Scholar] [CrossRef]
- Xia, H.; Li, S.; Shi, M. Three-D numerical simulation of wind-driven current and density current in the Beibu Gulf. Acta Oceanol. Sin. 2001, 20, 455–472. [Google Scholar]
- Wu, D.; Wang, Y.; Lin, X.; Yang, J. On the mechanism of the cyclonic circulation in the Gulf of Tonkin in the summer. J. Geophys. Res. Ocean. 2008, 113, C09029. [Google Scholar] [CrossRef]
- Caruso, M.J.; Gawarkiewicz, G.G.; Beardsley, R.C. Interannual variability of the Kuroshio intrusion in the South China Sea. J. Oceanogr. 2006, 62, 559–575. [Google Scholar] [CrossRef]
- Wang, G.H.; Xie, S.P.; Qu, T.D.; Huang, R.X. Deep South China Sea circulation. Geophys. Res. Lett. 2011, 38, L05601. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, C.; Tian, J.; Yang, Q.; Wang, B.; Xie, L.; Qu, T. Deep water circulation in the Luzon Strait. J. Geophys. Res. Ocean. 2014, 119, 790–804. [Google Scholar] [CrossRef]
- Önorm, L. Chemical Analyses of Soils–Determination of Carbonate; Österreichisches Normungsinstitut: Wiena, Austria, 1989. [Google Scholar]
- Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Thomson, D.J. Spectrum estimation and harmonic analysis. Proc. IEEE 1982, 70, 1055–1096. [Google Scholar] [CrossRef]
- Mann, M.E.; Lees, J.M. Robust estimation of background noise and signal detection in climatic time series. Clim. Chang. 1996, 33, 409–445. [Google Scholar] [CrossRef]
- Kodama, K.P.; Hinnov, L.A. Rock Magnetic Cyclostratigraphy; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Li, M.S.; Hinnov, L.; Kump, L. Acycle: Time-series analysis software for paleoclimate research and education. Comput. Geosci. 2019, 127, 12–22. [Google Scholar] [CrossRef]
- Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.; Levrard, B.A. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 2004, 428, 261–285. [Google Scholar] [CrossRef]
- Kotov, S.; Paelike, H. QAnalySeries-a cross-platform time series tuning and analysis tool. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018; p. PP53D-1230. [Google Scholar]
- Li, X.J.; Jiang, M.S. Low carbonate event in northern South China Sea during the early Holocene and its paleoclimatic significance. J. Palaeogeogr. 2003, 5, 355–364, (In Chinese with English Abstract). [Google Scholar]
- Wang, C.; Gong, Q.J.; Shi, X.F.; She, M.; Wei, X.U. Geochemical characteristics of core S08-57 in South China Sea and their paleoceanographic significance. J. Trop. Oceanogr. 2007, 26, 37–42, (In Chinese with English Abstract). [Google Scholar]
- Lu, H.F.; Liu, J.; Chen, F.; Zhou, Y.; Liao, Z.L.; Zhang, X.; Zheng, K.Q. CaCO3 chemostratigraphy of sediment cores from northeastern South China Sea. Gresearch Eological South China Sea 2008, 1, 14–22, (In Chinese with English Abstract). [Google Scholar]
- Stuiver, M.; Reimer, P.J. CALIB rev. 8. Radiocarbon 1993, 35, 215–230. [Google Scholar] [CrossRef]
- Zhuang, C.; Chen, F.; Jinpeng, Z.; Yang, Z.; Sihai, C. Planktonic foraminifera in the Xisha Trough of the South China Sea during the last 120 ka and their paleoclimatic implications. Mar. Geol. Quat. Geol. 2013, 33, 89–96, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, L.; Jian, Z.; Chen, J. Late Quaternary pteropods in the South China Sea: Carbonate preservation and paleoenvironmental variation. Mar. Micropaleontol. 1997, 32, 115–126. [Google Scholar] [CrossRef]
- Liu, Z.; Colin, C.; Trentesaux, A.; Blamart, D.; Bassinot, F.; Siani, G.; Sicre, M.-A. Erosional history of the eastern Tibetan Plateau since 190 kyr ago: Clay mineralogical and geochemical investigations from the southwestern South China Sea. Mar. Geol. 2004, 209, 1–18. [Google Scholar] [CrossRef]
- Chen, M.-T.; Shiau, L.-J.; Yu, P.-S.; Chiu, T.-C.; Chen, Y.-G.; Wei, K.-Y. 500,000-year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 197, 113–131. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhao, L.; Li, B.; Li, X.J.; Zhong, H.X.; Tian, C.J. Carbonate cycle in sub-bottom strata in the South China Sea and the east sea area of Taiwan Island. Geol. China 2020, 47, 1486–1500. [Google Scholar]
- Li, L.; Wang, H.; Luo, B.; He, J. The characterizations and paleoceanographic significances of organic and inorganic carbon in northern South China Sea during past 40 ka. Mar. Geol. Quat. Geol. 2008, 28, 79–85, (In Chinese with English Abstract). [Google Scholar]
- Sun, Y.; Wu, F.; Clemens, S.C.; Oppo, D.W. Processes controlling the geochemical composition of the South China Sea sediments during the last climatic cycle. Chem. Geol. 2008, 257, 240–246. [Google Scholar] [CrossRef]
- Oppo, D.W.; Sun, Y. Amplitude and timing of sea-surface temperature change in the northern South China Sea: Dynamic link to the East Asian monsoon. Geology 2005, 33, 785–788. [Google Scholar] [CrossRef]
- Fan, W.; Chen, R.; Zhao, Q.; Gao, S. Planktonic foraminifera in core 191PC from the northern South China Sea and their paleoenvironmental significance. Acta Micropalaeontol. Sin. 2007, 24, 233–241, (In Chinese with English Abstract). [Google Scholar]
- Zheng, H.; Chen, G.; Xie, X.; Mei, X.; Li, J.; Ge, H.; Huang, E. Grain size distribution and dynamic control of late quaternary terrigenous sediments in the South China Sea and their implication for East Asian monsoon evolution. Quat. Sci. 2008, 28, 414–424, (In Chinese with English Abstract). [Google Scholar]
- Liu, Z.; Li, X.; Colin, C.; Ge, H. A high-resolution clay mineralogical record in the northern South China Sea since the Last Glacial Maximum, and its time series provenance analysis. Chin. Sci. Bull. 2010, 55, 4058–4068. [Google Scholar] [CrossRef]
- Xie, X.; Zheng, H.-B.; Qiao, P.-J. Millennial climate changes since MIS 3 revealed by element records in deep-sea sediments from northern South China Sea. Chin. Sci. Bull. 2014, 59, 776–784. [Google Scholar] [CrossRef]
- Yang, W.G.; Zheng, H.B.; Xie, X.; Zhou, B.; Cheng, X. East Asian summer monsoon maximum records in northern South China Sea during the early Holocene. Quat. Sci. 2008, 28, 425–430, (In Chinese with English Abstract). [Google Scholar]
- Ye, L.; Chu, F.; Ge, Q.; Xu, D. A rapid gas hydrate dissociation in the northern South China Sea since the late Younger Dryas. Earth Sci. J. China Univ. Geosci. 2013, 38, 1299–1308, (In Chinese with English Abstract). [Google Scholar]
- Jian, Z.; Wang, L.; Kienast, M.; Sarnthein, M.; Kuhnt, W.; Lin, H.; Wang, P. Benthic foraminiferal paleoceanography of the South China Sea over the last 40,000 years. Mar. Geol. 1999, 156, 159–186. [Google Scholar] [CrossRef]
- Li, J.R. Carbon Reservoir in Low-Latitude Oceans and Orbital Cycles of Monsoon Climate. Ph.D. Thesis, Tongji University, Shanghai, China, 2007. (In Chinese with English Abstract). [Google Scholar]
- Lehner, B.; Grill, G. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- Li, C.; Lin, J.; Kulhanek, D. South China Sea Tectonics. In Proceedings of the International Ocean Discovery Program Expedition 349, Hong Kong, China, 26 January–30 March 2014; International Ocean Discovery Program College Station: College Station, TX, USA, 2015. [Google Scholar]
- Zeeden, C.; Hilgen, F.; Westerhold, T.; Lourens, L.; Röhl, U.; Bickert, T. Revised Miocene splice, astronomical tuning and calcareous plankton biochronology of ODP Site 926 between 5 and 14.4 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 369, 430–451. [Google Scholar] [CrossRef]
- Mei, X.; Zheng, H.B.; Huang, E.Q.; Chen, G.C.; Xie, X. Characteristics of sediments in the Southern South China Sea during last 500 ka and their paleoenvironmental significancesi. Mar. Geol. Quat. Geol. 2007, 27, 77–84. [Google Scholar]
- Su, X.; Liu, C.; Beaufort, L.; Barbarin, N.; Jian, Z. Differences in Late Quaternary primary productivity between the western tropical Pacific and the South China Sea: Evidence from coccoliths. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2015, 122, 131–141. [Google Scholar] [CrossRef]
- Chen, M.T.; Huang, C.Y.; Wei, K.Y. 25,000-year late Quaternary records of carbonate preservation in the South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 129, 155–169. [Google Scholar] [CrossRef]
- Yamamoto, M.; Sai, H.; Chen, M.T.; Zhao, M. The East Asian winter monsoon variability in response to precession during the past 150,000 yr. Clim. Past 2013, 9, 2777–2788. [Google Scholar] [CrossRef]
- Huang, C.Y.; Wu, S.F.; Zhao, M.X.; Chen, M.T.; Wang, C.H.; Tu, X.; Yuan, P.B. Surface ocean and monsoon climate variability in the South China Sea since the last glaciation. Mar. Micropaleontol. 1997, 32, 71–94. [Google Scholar] [CrossRef]
- Higginson, M.J.; Maxwell, J.R.; Altabet, M.A. Nitrogen isotope and chlorin paleoproductivity records from the Northern South China Sea: Remote vs. local forcing of millennial- and orbital-scale variability. Mar. Geol. 2003, 201, 223–250. [Google Scholar] [CrossRef]
- Huang, C.J. The current status of cyclostratigraphy and astrochronology in the Mesozoic. Earth Sci. Front. 2014, 21, 48–66. [Google Scholar]
- Luz, B.; Shackleton, N.J. CaCO3 solution in the tropical East Pacific during the past 130,000 years. In Dissolution of Deep-sea Carbonates; Sliter, W.V., Bé, A.W.H., Berger, W.H., Eds.; Cushman Foundation for Foraminiferal Research: Lawrence, KS, USA, 1975; Volume 13. [Google Scholar]
- Anderson, R.F.; Fleisher, M.Q.; Lao, Y.; Winckler, G. Modern CaCO3 preservation in equatorial Pacific sediments in the context of late-Pleistocene glacial cycles. Mar. Chem. 2008, 111, 30–46. [Google Scholar] [CrossRef]
- Luo, Y.M.; Kienast, M.; Boudreau, B.P. Invariance of the carbonate chemistry of the South China Sea from the glacial period to the Holocene and its implications to the Pacific Ocean carbonate system. Earth Planet. Sci. Lett. 2018, 492, 112–120. [Google Scholar] [CrossRef]
- Ge, Q.; Chu, F.; Xue, Z.; Liu, J.P.; Du, Y.; Fang, Y. Paleoenvironmental records from the northern South China Sea since the Last Glacial Maximum. Acta Oceanol. Sin. 2010, 29, 46–62. [Google Scholar] [CrossRef]
- Yancheva, G.; Nowaczyk, N.R.; Mingram, J.; Dulski, P.; Schettler, G.; Negendank, J.F.W.; Liu, J.; Sigman, D.M.; Peterson, L.C.; Haug, G.H. Influence of the intertropical convergence zone on the East Asian monsoon. Nature 2007, 445, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Cheng, H.; Edwards, R.L.; Dykoski, C.A.; Kelly, M.J.; Zhang, M.; Qing, J.; Lin, Y.; Wang, Y.; Wu, J.; et al. Timing, duration, and transitions of the last interglacial Asian monsoon. Science 2004, 304, 575–578. [Google Scholar] [CrossRef]
- Dykoski, C.A.; Edwards, R.L.; Cheng, H.; Yuan, D.; Cai, Y.; Zhang, M.; Lin, Y.; Qing, J.; An, Z.; Revenaugh, J. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet. Sci. Lett. 2005, 233, 71–86. [Google Scholar] [CrossRef]
- Wen, X.S.; Zhao, H.T.; Zhang, M.Q.; Song, J.C. Sedimentary characteristics and environmental evolution of drilling core in Lingdingyang. Acta Oceanol. Sin. 1997, 19, 121–128. (In Chinese) [Google Scholar]
- Shao, X.; Wang, Y.; Cheng, H.; Kong, X.; Wu, J.; Edwards, R.L. Long-term trend and abrupt events of the Holocene Asian monsoon inferred from a stalagmite δ10O record from Shennongjia in Central China. Chin. Sci. Bull. 2006, 51, 221–228. [Google Scholar] [CrossRef]
- Alley, R.B.; Mayewski, P.A.; Sowers, T.; Stuiver, M.; Taylor, K.C.; Clark, P.U. Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology 1997, 25, 483–486. [Google Scholar] [CrossRef]
- Rohling, E.J.; Pälike, H. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 2005, 434, 975–979. [Google Scholar] [CrossRef]
- Yu, G.; Liu, J. Geological Records of Volcanic Explosions during the Last 12000 Years and the Volcanic Impacts on Climate Changes. J. Lake Sci. 2003, 15, 11–20, (In Chinese with English Abstract). [Google Scholar]
- Meyers, P.A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 1997, 27, 213–250. [Google Scholar] [CrossRef]
- Berger, A. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 1978, 35, 2362–2367. [Google Scholar] [CrossRef]
- Wen, X.; Liu, Z.; Wang, S.; Cheng, J.; Zhu, J. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years. Nat. Commun. 2016, 7, 11999. [Google Scholar] [CrossRef]
- He, J.; Zhao, M.; Wang, P.; Li, L.; Li, Q. Changes in phytoplankton productivity and community structure in the northern South China Sea during the past 260 ka. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 392, 312–323. [Google Scholar] [CrossRef]
- Su, X.; Liu, C.; Beaufort, L.; Tian, J.; Huang, E. Late Quaternary coccolith records in the South China Sea and East Asian monsoon dynamics. Glob. Planet. Change 2013, 111, 88–96. [Google Scholar] [CrossRef]
- Li, D.W.; Zhao, M.X.; Chen, M.T. East Asian winter monsoon controlling phytoplankton productivity and community structure changes in the southeastern South China Sea over the last 185 kyr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 414, 233–242. [Google Scholar] [CrossRef]
- Tamburini, F.; Adatte, T.; Föllmi, K.; Bernasconi, S.M.; Steinmann, P. Investigating the history of East Asian monsoon and climate during the last glacial–interglacial period (0–140,000 years): Mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea. Mar. Geol. 2003, 201, 147–168. [Google Scholar] [CrossRef]
- Li, J.Y. Quaternary Diatoms from the South Chinaa Sea, Legy 184, Site1144 and Their Palaeoenvironmental Evolution. Geol. Rev. 2002, 48, 542–551, (In Chinese with English Abstract). [Google Scholar]
- Xue, H.; Chai, F.; Pettigrew, N.; Xu, D.; Shi, M.; Xu, J. Kuroshio intrusion and the circulation in the South China Sea. J. Geophys. Res. Ocean. 2004, 109, C02017. [Google Scholar] [CrossRef]
- Liu, J.; Li, T.; Xiang, R.; Chen, M.; Yan, W.; Chen, Z.; Liu, F. Influence of the Kuroshio Current intrusion on Holocene environmental transformation in the South China Sea. Holocene 2013, 23, 850–859. [Google Scholar] [CrossRef]
- Chen, C.C.; Jan, S.; Kuo, T.H.; Li, S.-Y. Nutrient flux and transport by the Kuroshio east of Taiwan. J. Mar. Syst. 2017, 167, 43–54. [Google Scholar] [CrossRef]
- Gerotto, A.; Figueira, R.C.L.; Ferreira, P.A.d.L.; Hahn, A.; Hernandez-Almeida, I.; Nagai, R.H. Carbonate-rich sequences in the deep sea of the eastern South China Sea subbasin (IODP Hole U1431D) during the last 600 kyr. Mar. Micropaleontol. 2020, 158, 101879. [Google Scholar] [CrossRef]
- Wang, P. Global monsoon in a geological perspective. Chin. Sci. Bull. 2009, 54, 1113–1136. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zhang, W.; Zhang, C.; Zheng, L.; Yan, S.; Ma, Y.; Dang, W. Astronomical Time Scale of the Late Pleistocene in the Northern South China Sea Based on Carbonate Deposition Record. J. Mar. Sci. Eng. 2024, 12, 438. https://doi.org/10.3390/jmse12030438
Zhang C, Zhang W, Zhang C, Zheng L, Yan S, Ma Y, Dang W. Astronomical Time Scale of the Late Pleistocene in the Northern South China Sea Based on Carbonate Deposition Record. Journal of Marine Science and Engineering. 2024; 12(3):438. https://doi.org/10.3390/jmse12030438
Chicago/Turabian StyleZhang, Chunhui, Wanyi Zhang, Chengjun Zhang, Liwei Zheng, Shiyi Yan, Yuanhao Ma, and Wei Dang. 2024. "Astronomical Time Scale of the Late Pleistocene in the Northern South China Sea Based on Carbonate Deposition Record" Journal of Marine Science and Engineering 12, no. 3: 438. https://doi.org/10.3390/jmse12030438
APA StyleZhang, C., Zhang, W., Zhang, C., Zheng, L., Yan, S., Ma, Y., & Dang, W. (2024). Astronomical Time Scale of the Late Pleistocene in the Northern South China Sea Based on Carbonate Deposition Record. Journal of Marine Science and Engineering, 12(3), 438. https://doi.org/10.3390/jmse12030438