A Novel Vision-Based Outline Extraction Method for Hull Components in Shipbuilding
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Quicker Insertion Algorithm
- Step 1:
- Insert a new point p. Find out triangles that contain p within their circumcircle. These triangles are marked as “bad triangles”.
- Step 2:
- Delete these “bad triangles” and form a polygonal hole. And generate new triangles by connecting the edges of this polygonal hole to point p.
- The round-off error is inevitable in practice. In some cases, the round-off error causes triangles’ degeneration.
- It is unnecessary to check all triangles. Since “bad triangles” account for a small fraction of all triangles in each iteration, most calculation expenses of the point-in-circumcircle check are worthless.
- Step 0:
- Prepare a super triangle containing all points. The super triangle is T0.
- Step 1:
- Insert a new point p, and find the “bad triangles”. This step consists of 3 sub-steps:
- Step 2:
- Delete the “bad triangles” and generate new triangles. This step consists of 2 sub-steps:
- Step 3:
- Repeat Step 1, until all points are inserted.
3.2. Circumcircle Radius Check for Alpha Shape
4. Experiments
4.1. Case of Low-Density Point Clouds
4.2. Case of High-Density Point Clouds
4.3. Robotic Prototype Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leo, P.F.; Selvaraj, T. Vision Assisted Robotic Deburring of Edge Burrs in Cast Parts. Procedia Eng. 2014, 97, 1906–1914. [Google Scholar] [CrossRef]
- Tellaeche, A.; Arana, R. Robust 3D Object Model Reconstruction and Matching for Complex Automated Deburring Operations. J. Imaging 2016, 2, 8. [Google Scholar] [CrossRef]
- Wen, L.L.; He, X.; Gang, Z.; Si, J.Y.; Zhou, P.Y. Hand–Eye Calibration in Visually-Guided Robot Grinding. IEEE Trans. Cybern. 2016, 46, 2634–2642. [Google Scholar] [CrossRef]
- Theodosios, P. A review of algorithms for shape analysis. Comput. Graph. Image Process. 1978, 7, 243–258. [Google Scholar] [CrossRef]
- Widyaningrum, E.; Gorte, B.; Lindenbergh, R. Automatic Building Outline Extraction from ALS Point Clouds by Ordered Points Aided Hough Transform. Remote Sens. 2019, 11, 1727. [Google Scholar] [CrossRef]
- Available online: https://github.com/Geodan/building-boundary (accessed on 24 January 2024).
- Edelsbrunner, H.; Kirkpatrick, D.; Seidel, R. On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 1983, 29, 551–559. [Google Scholar] [CrossRef]
- Jayachandra, M.R.; George, M.T. Computation of 3D skeletons using a delaunay triangulation technique. Comput.-Aided Des. 1995, 27, 677–694. [Google Scholar] [CrossRef]
- Zollini, S.; Dominici, D.; Alicandro, M.; Cuevas-González, M.; Angelats, E.; Ribas, F.; Simarro, G. New Methodology for Shoreline Extraction Using Optical and Radar (SAR) Satellite Imagery. J. Mar. Sci. Eng. 2023, 11, 627. [Google Scholar] [CrossRef]
- Elyta, W.; Peters, R.Y.; Roderik, C.L. Building outline extraction from ALS point clouds using medial axis transform descriptors. Pattern Recognit. 2020, 106, 107447. [Google Scholar]
- Liu, Y.J.; Chen, Z.Q.; Tang, K. Construction of iso-contours, bisectors and Voronoi diagrams on triangulated surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1502–1517. [Google Scholar] [CrossRef]
- Lawson, C.L. Software for C1 surface interpolation. In Proceedings of the Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, Madison, WI, USA, 28–30 March 1977; pp. 161–194. [Google Scholar] [CrossRef]
- Lewis, B.A.; Robinson, J.S. Triangulation of planar regions with applications. Comput. J. 1978, 21, 324–332. [Google Scholar] [CrossRef]
- Dwyer, R.A. Higher-dimensional Voronoi diagrams in linear expected time. Discret. Comput. Geom. 1991, 6, 343–367. [Google Scholar] [CrossRef]
- Green, P.J.; Sibson, R. Computing Dirichlet tessellations in the plane. Comput. J. 1978, 21, 168–173. [Google Scholar] [CrossRef]
- Fortune, S. A sweepline algorithm for Voronoi diagrams. Algorithmica 1987, 2, 153–174. [Google Scholar] [CrossRef]
- Bradford, B.C. Computational Geometry with Imprecise Data and Arithmetic. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1992. [Google Scholar]
- Peter, S.; Robert, L.; Scot, D. A comparison of sequential Delaunay triangulation algorithms. Comput. Geom. 1997, 7, 361–385. [Google Scholar] [CrossRef]
- Rui, Y.K.; Wang, J.C. A new study of compound algorithm based on sweepline and divide-and-conquer algorithms for constructing Delaunay triangulation. Acta Geod. Cartogr. Sin. 2007, 36, 358–362. [Google Scholar] [CrossRef]
- Lo, S.H. Parallel Delaunay triangulation—Application to two dimensions. Finite Elem. Anal. Des. 2012, 62, 37–48. [Google Scholar] [CrossRef]
- Bi, S.B.; Chen, D.Q.; Yan, J.; Guo, Y. Planar Delaunay triangulation algorithm based on 2D convex hull. Comput. Sci. 2014, 41, 317–320. [Google Scholar]
- Li, J.; Li, D.R.; Shao, Z.F. A streaming data Delaunay triangulation algorithm based on parallel computing. Geomat. Inf. Sci. Wuhan Univ. 2013, 38, 794–798. [Google Scholar]
- Cai, Y.L.; Xiao, S.M.; Qi, L. Locking paralleled GPU-based method research for unstructured mesh generation. Comput. Eng. Appl. 2014, 50, 56–60. [Google Scholar]
- Sloan, S.W. A fast algorithm for constructing Delaunay triangulations in the plane. Adv. Eng. Softw. 1987, 9, 34–55. [Google Scholar] [CrossRef]
- Available online: https://github.com/mapbox/delaunator?ref=gorillasun.de (accessed on 24 January 2024).
Test Piece | Points | Triangles |
---|---|---|
1 | 3716 | 7356 |
2 | 3161 | 6260 |
3 | 2179 | 4288 |
4 | 8258 | 16,422 |
5 | 8828 | 17,557 |
6 | 8696 | 17,309 |
Test Piece | Search Cost (Ordinary) | Search Cost (DS) | DS/ Ordinary | Search Cost (DSHI) | DSHI/DS | DSHI/ Ordinary |
---|---|---|---|---|---|---|
1 | 11,410,445 | 255,881 | 2.24% | 29,881 | 11.68% | 2.62‰ |
2 | 9,215,350 | 345,249 | 3.75% | 25,599 | 7.41% | 2.78‰ |
3 | 4,096,232 | 212,507 | 5.19% | 12,761 | 6.00% | 3.12‰ |
4 | 62,778,422 | 722,185 | 1.15% | 72,733 | 10.07% | 1.16‰ |
5 | 72,878,539 | 816,222 | 1.12% | 79,815 | 9.78% | 1.1‰ |
6 | 69,991,500 | 1,112,193 | 1.59% | 77,474 | 6.97% | 1.11‰ |
Test Piece | Time Cost (DSHI) | Time Cost (PCL) | Time Cost (Ordinary) |
---|---|---|---|
1 | 24.03 ms | 34.8 ms | 96.12 ms |
2 | 44.05 ms | 32.81 ms | 216.3 ms |
3 | 40.05 ms | 18.77 ms | 156.2 ms |
4 | 48.06 ms | 96.52 ms | 374.67 ms |
5 | 44.05 ms | 86.5 ms | 336.54 ms |
6 | 36.05 ms | 106.9 ms | 196.26 ms |
Test Piece | Points | Triangles |
---|---|---|
1 | 763,685 | 1,526,916 |
2 | 513,513 | 1,026,757 |
3 | 406,434 | 812,588 |
4 | 1,591,649 | 3,182,968 |
5 | 1,015,985 | 2,031,739 |
6 | 997,571 | 1,994,959 |
Test Piece | Time Cost (DSHI) | Time Cost (PCL) |
---|---|---|
1 | 2854.14 ms | 10,267.7 ms |
2 | 3173.56 ms | 7072.56 ms |
3 | 1818.06 ms | 5323.69 ms |
4 | 9970.89 ms | 27,544.8 ms |
5 | 6987.71 ms | 13,908.4 ms |
6 | 3189.75 ms | 13,399.7 ms |
Test Piece | Points | Triangles |
---|---|---|
1 | 17,604 | 35,029 |
2 | 16,295 | 32,400 |
3 | 12,263 | 24,381 |
4 | 17,130 | 34,060 |
5 | 15,531 | 30,899 |
6 | 14,809 | 29,478 |
Test Piece | Search Cost (Ordinary) | Search Cost (DS) | DS/ Ordinary | Search Cost (DSHI) | DSHI/DS | DSHI/ Ordinary |
---|---|---|---|---|---|---|
1 | 301,184,708 | 4,067,904 | 1.35% | 106,970 | 2.63% | 0.36‰ |
2 | 259,483,564 | 2,737,748 | 1.06% | 104,982 | 3.83% | 0.4‰ |
3 | 146,277,609 | 2,410,395 | 1.65% | 74,661 | 3.10% | 0.51‰ |
4 | 285,813,272 | 1,504,871 | 0.53% | 94,157 | 6.26% | 0.33‰ |
5 | 232,072,475 | 2,795,457 | 1.20% | 82,272 | 2.94% | 0.35‰ |
6 | 211,203,409 | 2,815,502 | 1.33% | 83,908 | 2.98% | 0.4‰ |
Test Piece | Time Cost (DSHI) | Time Cost (PCL) | Time Cost (Ordinary) |
---|---|---|---|
1 | 104.28 ms | 220.35 ms | 925.43 ms |
2 | 78.53 ms | 165.68 ms | 1325.7 ms |
3 | 47.33 ms | 143.52 ms | 492.26 ms |
4 | 94.16 ms | 207.7 ms | 926.27 ms |
5 | 90.14 ms | 164.04 ms | 1106.24 ms |
6 | 63.55 ms | 163.06 ms | 455.05 ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Zhao, Y.; Ni, C.; Ding, J.; Zhang, T.; Zhang, R.; Jiang, X. A Novel Vision-Based Outline Extraction Method for Hull Components in Shipbuilding. J. Mar. Sci. Eng. 2024, 12, 453. https://doi.org/10.3390/jmse12030453
Yu H, Zhao Y, Ni C, Ding J, Zhang T, Zhang R, Jiang X. A Novel Vision-Based Outline Extraction Method for Hull Components in Shipbuilding. Journal of Marine Science and Engineering. 2024; 12(3):453. https://doi.org/10.3390/jmse12030453
Chicago/Turabian StyleYu, Hang, Yixi Zhao, Chongben Ni, Jinhong Ding, Tao Zhang, Ran Zhang, and Xintian Jiang. 2024. "A Novel Vision-Based Outline Extraction Method for Hull Components in Shipbuilding" Journal of Marine Science and Engineering 12, no. 3: 453. https://doi.org/10.3390/jmse12030453
APA StyleYu, H., Zhao, Y., Ni, C., Ding, J., Zhang, T., Zhang, R., & Jiang, X. (2024). A Novel Vision-Based Outline Extraction Method for Hull Components in Shipbuilding. Journal of Marine Science and Engineering, 12(3), 453. https://doi.org/10.3390/jmse12030453